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ON CARTESIAN PRODUCTS
MirosrAv NovorNy, Brno

Dedicated to Professor OTAKAR BORUVKA to the 70th anniversary of his birthday

(Received April 1, 1969)

INTRODUCTION

In the present paper the following problem is solved: Let f: X Ux— S,
keK
f': X U;r — 8 be bijections. We study the existence of sets Uy ((k, k') €
Kek’

K x K') and of bijections f;: X Ugxr — Uk, fir: X Uy = Uy (k€ K,
¥ eK’ ke K

k' € K') with the property f(fi(urr )i c k' )kex = f'(fir (Wi ke K)k e k* for
every system of elements wuyy € Ugr ((k, k') € K X K’). Necessary and
sufficient conditions for the existence of such sets Uy and bijections
S fxr can be found in the Main Theorem of the paper.

The Main Theorem contains the set theoretical kernel of Reimer’s
investigations [1] and represents a basis for the proof of theorems about
the existence of a common refinement of two direct decompositions of a
relational system (see e.g. [2]). This application will be shown in a latter
paper.

In his books [3], [4], Boraivka tried to build up the group theory step
by step: In the first part of the book there are purely set theoretical
studies concerning mappings and decompositions of sets. By adding a
binary operation we get the theory of homomorphisms and quotients
on groupoids from these set theoretical results. Our theory of Cartesian
products gives a similar possibility to build up the theory of direct
products of algebraic structures starting with purely set theoretical
concepts and theorems concerning Cartesian products.

It seemed to be natural and convenient to substitute the concept of a
Cartesian product by an algebraic structure and to study, instead of
Cartesian products, the so called Cartesian algebras.

1. ADMISSIBLE QUADRUPLES AND CARTESIAN ALGEBRAS

1.1. Definition. Let S, K be non-empty sets; Uy a set for every ke K, f
a bijection of X U onto S, n €S an arbitrary element. Then the quadruple

keK
(8,(Uk)kex , f, m) is called an admissible quadruple.
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1.2. Definition. Let (S, (Uk)ker, f, n) be an admissible quadruple.

We put (nk)kEK =f_1 n.

For every (ux)re k€ X Ur and every koe K we put pi,(ur)iex = i, -
k€K

- For every ko € K and every g, € Uy, we put o, Tk, = (Uk)kex € X Uk
keK
where uy = ny, for every ke K, k £ ky, ug, = g, -
We put g = forpyf! for every ke K.
We put g(si)kek = f(Prf! sk)kex for every (sk)rex € X qxS.
keK

1.3. Lemma. Let (S, (Ug)rek, f. ) be an admissible quadruple. Then the
following assertions hold true:

(2) prox = idy, for every ke K.
(12) If k, L e K and (um)mex € X Up, then
meK
__[ OxUk ’if l=k
0k PrOIPY(Uim)mek N\ (e if L k.

(#3t) (w)ier = (Pr(w)ier)ker for every (wi)iex € X Us.
leK
The proof is very simple.

1.4. Definition. Let K be a non-empty set, (S, 7, (qr)rek, g) a partial
algebra (see [5]) where n is a complete nullary, gz a complete unary
operation for every k € K, and g a partial operation of type K. Let the
following axioms hold:

(@) _{qkfork,leK,k=l.
8=\ for k,le K, k1.
(b) dom g = X qkS.
keK
(c) 9(qkS)kek = s for every se S.

(d)  qrg(s1)iek = sx for every ke K and every (s;)iex € X ¢iS.
' leK

Then the algebra (S, n, (qx)xer, g) is called a Cartesian algebra (ab-
breviation: C-algebra).

1.5. Lemma. Let (S, n, (qk)rer, g) be a C-algebra. Then the following
assertions hold true:
f sfor every ke K, s € qiS.
\ n for every k, 1 K, k #1, seqS.
(%) qkn = n for every ke K.
(433) If k€ K, s € qiS, s1 = n for every L e K, 1 # k then g(s1)iex = Sk -

() qrs =
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Proof. (i) Let s € q,S; then there exists an element ¢ € § such that
s = qit. If k = L then qzs = qrqit = qit = s,if k 5~ Ithen gxs = qrqit = n
according to the axiom (a).

(it) If |K| =1 then gqx = ids according to the axiom (c). Thus,
qin = idsqen = gqrqen = gqun = idgn = n according to the axiom (a).
If |K| > 1 then we take a pair of indices [, m € K, I % m. Then qigns = n
for an arbitrary s € S according to the axiom (a). Thus, gxn = qx(qiqms)-
If & # 1 then the last element is qxqi(qms) = n, if k = | then the last
element is grqr(gms) = qrgms = qigms = n according to the axiom (a).

(mz) If skeq,cS then
_{ n for every le K, l # k,
9 = spforleK,l=k

according to (7). Thus, ¢;sx = s; for every I € K. Therefore sy = ¢(qiSk)iex
= ¢(s1)iex according to the axiom (c).

1.6. Definition. Let (S, (Ug)kex, f, 7) be an admissible quadruple.
We put A(S, (Ur)kek, f, n) = (S, n, (qx)kex, g) Where the operations =,
gr, for every k € K and ¢ are defined according to 1.2.

Then A(S, (Uk)kek, f, n) is clearly a partial algebra which is similar
to a C-algebra.

1.7. Lemma. Let (S, (Up)kek, f, n) be an admissible quadruple. Then
A(S, (Uk)kek, [ n) s a C-algebra.

Proof. 1. For every k, le K we have gxq; = forppf! forpif—1 =
= foxproipif~1. The last mapping is forprf~! = qx if k = ! and f(nm)mex =
= n if k 5 [ according to 1.3 (¢) and (4¢). Thus the axiom (a) holds true.

2. Clearly, dom g = X ¢S which is the axiom (b).,

keK

3. Let s€S be an arbitrary element. We have g(gxs)rex = f(prf1
Jorprf18)kex = f(proxprf')ker = f(prf18)ker = ff~1s = s according to
1.3 (¢) and (¢7). Thus, the axiom (c) is proved.

4. Let us have ke K, (si)iex € X ¢1S. Thus, qg(s1)ick = forpif1
leK

S(oif 7s1)iex = foxpr(pif 's1)iex = foxprf—'sk = qusx. As sy € gqpS then
there exists an element ¢ € § with the property s = git. Thus ggsy =
= qxqit = qxt = sx according to the part 1 of this proof. Thus, the
axiom (d) is proved.

1.8. Remark. If (S, (Ug)kek, f, n) is an admissible quadruple and
(S, n, (ge)ker, 9) = AS, (Urek, f, n) then gxS = forprf—S = forUk
for every ke K.

1.9. Lemma. Let (S, n, (qk)kex, g) be a C-algebra. Then (S, (qxS)kex
g, n) is an admissible quadruple and A(S, (qrS)kex , 9, 7) = (8, %, (q)kek » 9)-
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Proof. It follows from the axiom (b) that ¢ is a mapping of X ¢xS
kek

into §, from the axiom (c) that g is surjective and from the axiom (d)

that g is injective. Thus (8, (gxS)kek, g, #) is an admissible quadruple.

“We have to prove that the unary operations and the partial operation
of A(S, (qxS)kek, g, n) coincide with gx and g respectively.

It follows from 1.5 (#2) and (¢3): If ¢y = n for every ke K then
g(te)kex = n. Thus, g~'n = (f)rex Where ¢ = n for every k e K. Thus,
nx = n for every k€ K.

It follows that for every ke K, 4;eqrpS, we have oxily = (U1)iek
where uy = and w; =n for le K, | £ k. As quiy = 4y for le K,
I =k and ity = n for l € K, | 5 k according to 1.5 (1) we get

oxlly = (q1¥k)iek (*)

Let us suppose s € S. Then s = g(qxs)kex according to the axiom (c).
Thus, g-1s = (grs)kx and

Prgls = qrs  (*F)

Therefore, oxprg~—1s = oxqrs. We have qxs € qxS; thus, oxgrs = (qi9xS)ick
according to (*). It follows gorprg—'s = g(qigws)iek = qxs according to
the axiom (c). Thus, the unary operation gogprg—! of A(S, (qxS)kek, 9, )
coincides with gy.

Let us have an arbitrary element (sg)rex € X qiS. Thus, grsy = sk

keK

for every ke K according to 1.5 (¢). It follows g(sk)kex = ¢(qrSk)ver =
= g(prg 'sk)kex according to (**). Thus, the partial operation of
A(S,(qxS)kek, 9, n) coincides with g¢.

Thus, we have proved that gogprg=! = qi for every ke K and that

9(Prg1sk)kek = g(Sk)kex for every (si)rex € X qiS. According to 1.2 it
ke K

means tha’t A(Ss (qkS)]CEK’ ga n) = (Sv 7’L, (qk)k‘EKy g)

1.10. Theorem. The operator A is a surjection of the class of all admis-
sible quadruples onto the class of all C-algebras.

2. SUBALGEBRAS OF CARTESIAN ALGEBRAS

2.1. Remark. Let S, K be sets, f a partial operation of type K on
the set S. Then f can be considered as a subset of SK X S. If T = §
then we put f|7T = fn (TK X 8). Clearly, f| T is a mapping defined
on a subset of 7K with values in S.

2.2. Theorem. Every subalgebra of a C-algebra is a C-algebra.

.Proof. Let (S, n, (gk)kex, g) be a C-algebra, T = § a closed subset.
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Then neT, g1 < T for every k € K and g(k)% (@Sn T) cT. Let k,

le K. Then
qr | T for k =1

(e | TN | T) =0 | T ={ n for k # 1,

which is the axiom (a).

Clearly, qxT = quS n T for every ke K. Let us suppose k€K,
sk € quS 0 7. Then sy = qgsy € qxT according to 1.5 (¢). Thus, ¢S n T =
= qT = (g | T) T. It follows dom (g | T') = )1(< @SnT)= X (| T)T

ke keK
which is the axiom (b).
For an arbitrary t €T we have (9| 7T) ((gx | T') t)kek = g(qublker = ¢
which is the axiom (c).
Let us suppose ke K and (t)ex € X (2 | T T :IX qiT. Then (g | T)
leK eK

(¢ | )tk = qrg(ti)iex = t; which is the axiom (d).

3. PAIRS OF CARTESTAN ALGEBRAS

3.1. Remark. Two mappings f, f* whose domains are subsets of a set A
are considered to be equal iff dom f= dom f’ and fx = f'z for every
x € dom f. We write, in this case, f = f’.

3.2, Definition. Let ushave C-algebras (S, 7, (gk)kek, 9), (S, 7, (¢4 e k*,9')-
Let sgxr be an element of S for every (k, k')e K X K'. We put
9 og(Skr )k, kyeRx & = 9 (9(Skk ke k)i e k) Iff the I'ight side member is
defined. Otherwise, g'og(sgx), k) < k x k’ 18 considered to be undefined.

3'3' Theorem‘ Let (S’ n, (qk)kEKa g)’ (S, n, (q];')k'eK'r gl) be C'a’lgebras‘
Then the following conditions are equivalent: .

(4) qrqr = qiqk for every (k, k)e K X K'.

(B) g'og = gog'.

Proof. 1. Let (4) hold true. Let sy €S be such elements that
9'o9(Skx )k, ¥y e K x k- is defined, i.e. ¢'(g(skr)ker)r exs is defined. It
follows sgx € qiS for every (k, k')e K X K’ and g(sgx)kek € qiwS for
every k' e K'. We have qxg(si')iex = skx for every (k, k') e K X K'.
1t follows gz'ske' = g1 Qg (S1k')iek = Qi 9(Suriex; We have gy g(si )ik =
= g(sw')1ek according to 1.5 (3). It follows g sk = qrg(Sik)iek = Sk’
ie. s € qS and s € S N g;-S. Therefore ¢'(sgy)iex is defined.
We have qpqrg (kv )rek = qrqpg (Ski')vek: = quskrr = Skx’ according
t01.5 (i). Thus, ¢'(skx Je'e’ = 9" (9 qrg’ (Sk1 ek ek = Qg (1) 17e K EQRS.
It follows that g(g9'(Skr )k’ek’ )kex is defined. Thus dom g'og € dom gog’.
Similarly, we prove dom gog’ < dom ¢'og. It follows that dom g'og =
= dom gog’.
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Let us put s = g’(g(skk Yeek e~ We have g8 = g(skk keg for every
ke K'. It follows qigi's = qig(Sik’)iek = Skx. Thus, Qe Qrs = sgx and
9(9' Sk ek Jker = (9" (qr quS)k’ ek Jkek = G(qrS)kek = §-

We have proved g'cg = gog’. Thus, (B) holds true.

2. Let (B) hold true. Let us suppose s € S, (k, k') e K X K’. We have
(@i Sk ek = gis. It follows !IO.(I'(qkq]'c'S)(k, k') e Kxk' = 9 °9(qugsS)tk, k') €
ckxk’ = J(Grgp ke K ek’ = g QS e = s. 1t follows gqis =
= Q909 (gu8)a, krekxk" = Qg (9 (Qge I ek ik = g'(Peqr’ ' ek’ and,
from the last equation, we get giqrs = qi'9'(qx97S)rex’ = qrgqys. Thus,
(4) holds true.

3.4. Lemma. Let (S, n, (qk)kek, 9), (S, n, (qz)w'ex’, g') be C-algebras.
If the condition (A) of 3.3 is fulfilled then the set g;'S is closed in (S, 1,
(qr)rek , g) for every k' € K'.

Proof. According to 1.5 (43) we have n = gy n € ¢;-S and qxgp'S =
= qpqxS S q;vS; thus ¢S is closed with respect to the nullary and
unary operations.

Let us have sgeqrS n ¢S for every ke K. We put s = g(S)kek -
Then we have ¢kg;'s = qi'qrS = qrqrg(S1)iek = qi'Sk = Sx according to
1.5 (:). Thus, 8 = g(sk)rek = 9(qrqr'S)kek = qz-s and s € ¢;-S. We have
proved that g | ;'S is a partial operation with values in g;-S.

3.5. Definition. Let K, K', S be non-empty sets, let U be a set

for every (k, k') e K X K', Uy a set for every k€ K. Let f: X Ux — 8
keK

be a mapping, fi: X U’ — Uk a mapping for every ke K. Then f(f'k)kek
k'eK’
is the mapping defined on )X Uy in the folloving way: for every

(k,k")e Kx K’
(k' )k, kyekxk' € X U we put f(fideer(um)q, kyckxx =
(k. k) Kx K’

= f(filur )b’ ek Jbe K-

3.6. Lemma. Let (S, n, (qx)kek, 9), (S, n, (gz')ek’, g') be C-algebras.
If the condition (A) of 3.3 is fulfilled then the following condition is fulfilled,
too:

(C) For every k€ K there exists a C-algebra (qxS, n, (qi )v'ek’s 9'k)
and for every k' € K' there exists a C-algebra (g;'S, n, (qkx’)kek > gr’) Such
that 9(giJeek = (G ek

Proof. The set ¢S is closed in (S, n, (gx)iwek’, g') for every ke K
according to 3.4. If we put qkk = qi’ | @S for every ¥’ e K', g, = 9’ | qxS
then (q&S, n, (g’ )kek’ > gi) is & subalgebra of (S, 7, (¢ )k’ ek’ g') Which
is a C-algebra according to 2.2. In a similar way we define (gS, n,
(qkr )ik » gi’) for every &' € K'.

Now, g(gi)ker (Sik'), k') € Kxk' = g(gr(Skr’erer’ ke is defined iff
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Sk’ Eqkk 9eS = (g | S) %S = giqeS = ;'S = (e | GwS) S =

= Qrr'qyS for every (k, ¥')e K x K’ which is a necessary and suf-

ficient condition for the existence of 9’ gk (Skx’ ke k)i’ e k- We have

9GrSkr e ek )eex = 9@ Sk ) crx ek = 9GSk ke k) ek =

= ¢'(9x' (Skk’ )bk )kck’ according to 3.3 which means g(g;)kex = 9'(9k ik’
Thus, (C) holds true.

3.7. Lemma. Let (S, n, (qr)kex, 9), (S, 7, (qi)ek’, g') be C-algebras
for which the condition (C) of 3.6 ist fulfilled. Then the condition (A)
of 3.3 ist fulfilled for them, too.

Proof. 1. Let s € S be an arbitrary element. We have s = g(qxs)kex
QS = Ju(Qw kS)kek’ for every ke K. If we put sgxr = qzprqis for every
(k, ¥')e K X K' then s = g(gz(Skx’)w'ek’)kek. Thus, we have proved,
for every s€ 8, the existence of a system (six' ), &') e kxk® With the
property § = g(gi(skr )k ek’ kK-

2. For an arbitrary s €S we define the elements sy according to
the first part of the proof. Then we put s = Q'S = i’ (Skk Jkex . Ac-
cording to 1 there exists a system (fxx')x, &) e kxx’ With the property
sk = g(Gr(tkr ) ek ek = g’ (v (ter Jrer)ver- 1t follows gp-sg = gy (b1 Jrex -
From sy € ¢'y'S it follows according to 1.5 (¢)

L (Mo VeK,U£K
gu it e = qrsw _{ sp for Ve K', I = k'.

For I’ £ k' we have, according to 1,5 (1), n = qrr'n = qrrgr (b )ik =
= tg1. According to 1.5 (i7) we have ¢'k(txr)rrer’ = tr for every ke K.
It follows sg = g(tgx)kex. From the equation gg'(skx')kex = 8§’ =
= gr'(tkx )kex We get sgxr = qri-siy = tex for every ke K. Thus, s =
= g(Skr')kek and Q'S = QuSk’ = Sk’

3. In the same way we prove q;'qxs = Skx’. Thus, we have gxg; s =
= qx'qxs for every se S and every (k, k') € K X K’. We have proved
that (A) is fulfilled.

3.8. Lemma. Let S, K, K’ be non-empty sets, let Uy be a set for every
ke K and Uj, be a set for every k'€ K'. Letf: X Ux— 8, f': X Uy — 8
kek Kek

be bijections, n € S an arbitrary element. Then the following conditions
are equivalent:

(8) For every (k, k') € K X K’ there exists a set Uyy, for every ke K
there exists a bijection f,, X Ur — Uy, and for every k' € K' there exists

a bijection fy: X Ugpr — Uk such that f(fi)kek = f'(fi )kek’-

(y) For the C-algebms A(S, (Uk)kex, fr m)s A8, (Upex > f'5 n) the
condition (C) of 3.6 is fulfilled.
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Proof. I. 1. Let (&) be fulfilled. According to 1.2 we put (ngr )x'ekK’
= fy Ing for every k € K; if (ugx')r'ex’ € X Urir We put pyx(wrr )ik’
k'eK’

X
= wuy, for every kye K'. For arbitrary (k, ko) € K X K', gk, € Upp:
“‘we put oggurk; = (Ukk )k-ek’ Where ugy = ni for every k' e K', k' 7 k,
and ugk, = @k, The symbols ny, py» O have a similar meaning
(instead of f; we take fi-, instead of ni the element n;/). We have
F(f e e ek = frker = n = f'(np e ek’ = f'(for (Mg ke Kk e K =
= f(f1(jy)kek’)kek- As the mappings f, f; are injections it follows
fele rerr = fi(nig wex: for every ke K, thus mye = ny for every
(k, ¥)e K x K.

2. The mapping foxf, is an injection of X Uiy onto forUx = q&S
KeK’

for every k € K according to 1.8. Thus, (&S, (Ukk)wek’, forf'x, n) 18 an
admissible quadruple and (g8, 7, (¢'kx)kek’> 4'x) = A((qS, (Urk Jirer,
foxfi, m) is a C-algebra. Similarly, we define (g;S, 7, (qkx')kek, gx’) for
every k' € K’. According to 1.2 we have gy = forfiorepir (forfr) ' =
= foufionk Pk fit prf-1 and similarly g = f "oy frope 0 e S o L

3. Let us have arbitrary elements (ko, ko) € K X K', g, € Uk, .
Let us put uger = ngg for every (k, k') € K X K', (k, k') # (ko, ko) and

Ukoks , = ,izkok; . Then fok,,f,;uokk;dkok; = fOkaf;l::DSuknk’)k’ eK’ =
= fUilwr erkex = f'(fir(won eer)ier’ = S o fe(wirker =
= [0k, fx. 0, according to 1. Thus, forfiom = flopfrro for every

(k, k') e K x K'. It follows gpyqeS = forfionk Prfr Prf " forprf 18 =
= forrfronr Prxfi 1 oef 1S = forfionr Ukk according to 2. Similarly we
prove that gurgyS = fopfioom Urk . Thus, guapS = Sorfrorr Uner =
= f'op frrouk Uk = qrargyS for every (k, k') € K X K'.

4. Let us suppose sy € 8 for every (k, k') € K x K'. Then
991Kk ek Jkek is defined iff sgp € grr@eS = qerqrS (cf. 3) which
is a necessary and sufficient condition for the existence of
9’9k (Skk ke )krex’. In this case sgp € forfiore Ukxy Which means the
existence of an element ug € Uggs with the property sgx' = forf0ne tir =

foyfeomui. According to 1.2 we have gi(sur ek =
Jof (P f i Pef sk e = fouf (D f v S ok 10kx Wk ek =
= forfr(wir kex:. Thus, ggi(sie eex kex = J(Drf " forf(Urr ek Jker =
= f(fi(urk')kex')kex according to 1.3 (7). Similarly, we prove
9 (9 (Skr JkeR)krer’ =F" (fier (Wak ker)i-ex’ - Thus, we have g(g(ser ek Jkek =
= f(filurr Woer ker = f'(fir ik ke )b ex: = 9 (Gh' (kxJkek)iex and the
condition (C) of 3.6 is fulfilled for the C-algebras A(S, (Uk)kek,f, n),
A(S, (Up ek’ , f’', n). Thus () holds true.

II. Let (y) be fulfilled. We put A(S, (Ux)kers f> n) = (5, %, (qk)kek s 9),
AS, (Up ek, f/, n) = (S, n, (qy)kex’, g')- There exist C-algebras
(qxS, n, (g ek, g'x) for every k € K and (xS, 7, (Qrx)kek, grr) for

I
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every k' € K’ such that g(gi)kek = ¢'(gx')krex’ . It follows from the last
equation that guqxS = qrrgiyS for every (k, k') e K X K'. We put
Uk = qrwqiS = qurqyS for every (k, k') € K X K', f, = pif-g; for
every ke K, fy = pyf~igx for every ¥’ € K'. According to 1.8 and
1.9 g5, is a bijection of X Uy onto ¢S = for Uy for every k € K. Thus,
k'eK’
prf1 is a bijection of gxS onto Uy for every k € K. It follows that f;
is a bijection of W Uy onto Uy for every ke K.
742

Let us suppose ugx € Uy for every (k, k') e K X K'. Then
S ewr Yirer Jeex = f(0rf g5 wr ek Jeek = 9(gr(Wick' )2k Jker according
to 1.2. Similarly, we have f'(fi'(urr )ker)k'ek’ = 9" (g (Ui ek )k ek’ 1t
follows from our suppositions that f(fi)kex = 9(9p)kek = ¢ (Gx )krek’ =
= f'(fu)wek’. Thus, the condition (J) holds true.

4. MAIN THEOREM

From the results of the paragraph 3 we get the following theorem:

4.1. Theorem. Let S, K, K’ be non-empty sets, let Uy, be a set for every

keK and U a set for every k' e K'. Let f: X Ux—8, f: X U'pr— 8
keK k'eK’

be bijections, n € S an arbitrary element. Then the following assertions are
equivalent:
(6) For every (k, k') € K X K' there exists a set Ugy, for every k € K
there exists a bijection fi: X Upx — Uy and for every k' e K' there exists
1 29:4

a bijection fir: X Uik — Uy such that f(fr)ker = f'(fi )bk’
keK

(x) For the C-algebras A(S, (Urker, [, m) = (S, n, (qGkkek, 9)
A(S, (U]:;’)Ic’eK’; f,, n) = (S, », (q;/c’)k’EK’: g') we have quI::' = QI’c'qk fO?‘
every (k, k') e K X K'.

(B) For the C-algebras A(S, (Upkex,> fr ) = (8, n, (qk)kek, 9),
A(S, (Ul,c’)k’eK’,fl, n) = (S, n, (q;c‘)k’eK" gl) we have g’'og = gog'.

(y) For the C-algebras A(S, (Ugek, fr m) = (S, n, (qk)kek, 9),
AS, (Ui ek, s n) = (8, m, (@3 )krex’»9') the followin;q conditigvlz is fulfil-
led: For every k € K there exists a C-algebra (@S, , (G k<&, gi) and for
every k' e K' there exists a C-algebra (grS> 7 (qkk)kek, gi') such that
9(Grker = ¢'(gr'rer’ -



110

BIBLIOGRAPHY

[1] O. Reimer, On the direct decompositions of algebras. Publ. Fae. Sci. Univ.
J. E. Purkyn$, Brno, No 437 (1962) 449—457.

[2] J. Hashimoto, On direct product decompositon of partially ordered sets.
Annals of Math. 54 (1951) 315—318.

[3] O. Boriuvka, Uvod do teorie grup. Praha 1944. Krél. ées. spol. nauk.

[4] O. Boruvka, Grundlagen der Gruppoid- und Gruppentheorie. VEB Deutscher
Verlag der Wissenschaften, Berlin 1960.

[6] J. Schmidt, Uber die Dimension einer partiellen Algebra mit endlichen oder
unendlichen Operationen. Zeitschr. f. math. Logik und Grundlagen d. Math. 11
(1965) 227—239.

Department of Mathematics
J. E. Purkyné University, Brno
Czechoslovakia



		webmaster@dml.cz
	2012-05-09T13:43:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




