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A NOTE ON THE CRITERIA OF U N I Q U E N E S S 
OF THE SOLUTION OF EQUATION y'=f(x,y) 

JAN CHRASTINA, Brno 

To Professor OTAKAR BORUVKA for his 70th birthday 

(Received December 2, 1968) 

1. Say that the function Q(x, z) (0 < x ^ a, 0 :g z) has the property 
(U), if it is continuous, if Q(x, 0) = 0 (0 < x ^ a), and if the only 
solution z = z(x) (0 < x ^ h) of the equation z' = Q(x, z), fulfilling the 

z(x) 
condition lim = 0 is the function z(x) = 0. In further considerations 

x-+0 x 

we suppose that f(x, y) (0 ^ x ^ a, —co < y < oo) is the given real 
function. 

This criterion of uniqueness of the solution of equation y' = F(x, y) 
is known ([1]): 

Theorem 1. Let \f(x, yi)—f(x,y2) \ g Q(x, | yt — y2 \) (0 < x ^ a, 
—oo < yi < oo, —oo < y2 < co), where the function Q(x, z) has the 
property (U). Then the equation y' = f(x, y) has at most one solution 
y = y(x) (0 g x S h), for which y(0) = 0. 

There exist functions Q\(x, z), Q2(x, z) (0 < x ^ a, 0 S z) which have 
not the property (U), but such that the function Q(x, z) = min (Q\(x, z), 
Q2(x, z))) has the property (U). An example of such a couple is Q\(x, z) = 

k 
= Azx, Q2(x, z) = — z, where 0 < A, 0 < a < 1, 1 < k, k(\— a) < 1. 

x 
I t may be easily proved in such a way: 

The solution of equation z' = Qi(x, z) is z = ((1 — a) ^4# + const.)-l(---a), 
the solution of equation z' = $2(#, 2:) is z = const. xk. Furthermore 
there is Q(x, z) = Qx(x, z) (Ax < kz1-*), Q(x, z) == Q2(x, z) (Ax ^ k z1-*) and 
from the inequality k < ~ easily follows that every solution z = z(x) 

of the equation z' = Q(x, z) has the form z(x) = ((1 — a) Ax + &i))1//(1~a.) 
(0 < ti ^ h), z(x) = ^2 • xk(h :g # ?g a), where ^, ^1 , h2 are the suitable 
constants. And then, for h2 > 0 there is also h > 0. Consequently the 
function Q(x, z) has the property (U) and the following criterion ([2]) holds: 

Theorem 2. Let | f(x, y) —f(x, y2)\^A\yx — y2 |a, | f(x, yx) ~ 
k 

~f(x, yz)\ ^ — 12/i — 2/2 I, where 0 < .A, 0 < a < 1,1 < k, k(\ ~ a) < 
x 
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< 1. Then the equation y' — f(x, y) has at most one solution y = y(x) 
(0 S x S h), for which y(0) = 0. 

It is known ([1]) that if the function f(x, y) is continuous and fulfils 
the supposition of the theorem 1, then the sequence yo(x), yi(x), . . . , 

X 

where yo(x) = 0, yn+i(x) = ff(x, yn(x)) dx uniformly converges to the 
o 

solution of the equation y' = f(x, y). From our considerations there foll­
ows the theorem ([2]): 

Theorem 3. If the continuous function f(x, y) fulfils the suppositions 
of theorem 2, then the mentioned sequence yQ(x), yi(x), . . . uniformly 
converges to the solution of the equation y' = f(x, y). 

2. I t is interesting that the theorem 2 may be likewise deduced from 
the following criterion:*) 

Theorem 4. Let p(x, yx, y2), q(x, y, z) (0 < x <; a, —oo < y2 = yt < 
< oo, —oo < y < oo, —co < z < oo) be continuous real functions 
such that: 

a) p(x, y\,y2) > 0 (yx > y2), p(x, y, y) = 0, 
b) inside of its definition domain the function p(x, yx, y2) the dif­

ferential dp exists and there hold px(x, yi, y2) +pyi(x, yx, y2) f(x, Hi) + 
+ pyzfa y\, yz) /(#, 2/2) S q(%> y\, p(%> yi, 2/2)), 

c) for every two solutions y = y\(x), y = y2(x) (0 S x ^ h) of the 
equation y' = f(x, y) fulfilling the relations y\(0) = y2(0) = 0, y\(x) ^ 
^ y2(x) (^ S x -S h) there is lim p(x, y\(x), y2(x)) = 0. 

d) for every solution y = y(x) (0 S x ^ h) of the equation y' = 
.= f(x, y) fulfilling the relation y(0) == 0, the function z(x) === 0 is the 
only solution of the equation z' = q(x, y(x), z) defined in the interval 
of the type 0 < x < hy for which lim z(x) = 0. 

Then the equation y' = f(x, y) has at most one solution y = y(x) 
(0 g x S A), for which y(0) = 0. 

The theorem is proved in [3], but in a somewhat modified form, 
Therefore we outline its proof: 

Suppose that the assertion of the theorem does not hold and that, 
consequently, there exist the solutions y = y\(x), y = y2(x) (0 ^ x ^ h) 
of the equation y' = f(x, y) such that y\(h) -?-. y2(h). I t may be supposed 
that y\(x) ^ y2(x) (0 % x S h), thus p(x, yt(x), y2(x)) ^ 0, p(h, yx(h)t 

*) This was also noted by prof. M. Zlamal. 
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y2(h)) > 0. Consider that according to b) there is [p(x, yi(x), y2(x))]' S 
<; q(x, yi(x), p(x,yi(x), y2(x))). Therefore there exists the solution 
z = z(x) (0 < x ^ h) of the equation z' = q(x, yi(x), z) such that z(h) = 
= p(h, yx(h), y2(h)), z(x) £ p(x, yx(x), y2(x)). There is lim z(x) ^ lim 

x->0 x-+0 

p(x, yi(x), y2(x)) = 0, which is a contradiction with d). By this the 
theorem is proved. 

Show the way of following the theorem 2 from the theorem 4: Choose 

p(x, yi, y2) = ——r— • The claim of a) from theorem 4 then evidently 
x* 

holds. Furthermore choose q(x, y, z) = 0. The claim of b) is fulfilled 

if the function f(x, y) fulfils the inequality — k Vl ~J2 + ^°^~ — 
— l^LpL g o, thus also then if there is \ f(x, yi) — f(x, y2)\ ^ —. 

x10 - x 
• (yi — 2/2) (yi > 2/2)- This is one of inequalities of theorem 2. If there 
hold the inequalities | f(x, yx) —f(x, y2)\ ^ A\yl — y2 |a, i ( l — a) < 1, 
then the claim of c) is fulfilled as. well. Really, in this case it may be 
easily stated that for every two solutions y = yi(x), y = y2(x) of the 
equation y' = f(x, y) fulfilling the relations yt(0) = y2(0) = 0 there is 
1 yi(x) — y2(x)\ g ((1 — a) Axyi^-<* and therefore lim ' Vl(pC) ~ ^2 - = 

x-+0 XK 

= 0. The relation d) is fulfilled trivially. 

More generally, we could choose q(x, y, z) == Cz. Hence it follows that 
the theorem 2 remains to hold if there, instead of inequality | f(x, yt) — 

k 
— f(x, y2)\ ^ — I yx — y2 |, we take the inequality | f(x, yv) — f(x, y2)\ £ 

x 

x 
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