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SIMULTANEOUS NONDETERMINISTIC GAMES (I)

Jan Hanék, Brno
Received*) July 16, 1968

§ 0.INTRODUCTION

In this paper so-called simultancous nondeterministic games (SN-games,
in § 0 often only “games”) are introduced and investigated. They can be
non-formally characterized as games with the following properties:

a in every game there are only two kinds of positions: final positions
(at which play necessarily ends), and non-final positions (from which
play necessarily goes on);

b at each non-final position all players move (play) mutually indepen-
dently (i.e. “simultaneously’);

¢ at each non-final position the common move of all players need not
determine the following position uniquely (the nondeterminateness
of game);

d in the notion of position the “preceding course (of play)’ need not be
included.

Further it is necessary to call special attention to:

— the cardinal number of the set of all positions of a game, and the
cardinal number of the set of all players of a game are not bounded
a priori (only it is supposed that these sets are non-empty);

— play may be infinite;

— the pay-off function to a player of a game is a real function on the set
of all plays of the game;

— there is not designated an initial position (i.e. game is non-initial);

— the nondeterminateness of game is ‘“‘essential”’ (e.g. it cannot be
weakened by means of any experiments, compare §1.3);

— the nondeterminateness of game is not “‘diminished” e.g. by defining
some probabilistic concepts; notions corresponding to the notions of
mixed or behaviour strategy are not considered.

In this paper we study mainly questions about possibilities of isolated
player to control (partially) the course of play. (From this point of view,
every game can be considered as a certain derived one-player game
at which the other players are “included in the new nondeterminate-
ness”.) We shall suppose that at each position of every play each player

*) Final version (arisen at reading the galley-proof) received March 5, 1970.
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knows the preceding course of the play, including the (momentary) posi-
tion, but there will be studied also the case at which a player uses only
& poorer information, especially when he always knows only the (mo-
mentary) position. (For several reasons we prefer this conception, although
it would be possible to use the more usual way, i.e. to construct to
a given game the new game in which positions are initial parts of
plays of the given game. Compare also § 7.) In the latter case, which is
characterized from the formal point of view by using so-called plain
strategies, among others a very important problem is studied, namely,
(roughly speaking) when player can use a suitable plain strategy for
enforcing some aims from each position of a certain set of positions (§ 3).

As it is shown in the following, some questions usually studied e.g. at
two-player games with perfect information (e.g. values of games, saddle
points, ete.) can be studied also at two-player SN-games, even if only the
separate possibilities of players are considered (compare §§9, 4, et al).
Even also in investigations relating to only one player it is often advant-
ageous “to add” (in a suitable way, see § 4) one more player, at which
strategic properties derived at certain situations for one (so-called
active) of the players often enable to construct suitable strategies for
the other (so-called passive) player.

In the introductory part of this paper considerable attention is devoted
to the exact formalization of basic concepts. The notion of SN-game —in
the above mentioned sense — can be easily formalized: an SN-game is
a nondeterministic automaton with multiple input (each player controls
one ‘“‘component’’ of the input), together with a system of pay-off functions
(each player receives one pay-off function). (This way is realized in § 1.)
Here the term “(nondeterministic) automaton’ is used mainly because
the usual idea of the working of automaton (by affecting the input some
process is partly controlled) corresponds to the dynamics of SN-game;
nevertheless, our definition of nondeterministic automaton (in §1) and
its role in our considerations are rather unusual from the point of view
of the Automata Theory.

It is easy to see that that formalization of SN-game is too “rich”
from the point of view of the study of the above mentioned pro-
blems (which can be exactly characterized by means of “tactic predi-
cates” and graphs, see §1.) Therefore, so-called reduced SN-games
(RSN-games), and the notion of reduction of SN-game are introduced
in § 2, of course in such a way that
— the reduction of every SN-game is an RSN-game,

— the reduction of SN-game maintains the informations essential from
the above mentioned point of view,

— every RSN-game is the reduction of an SN-game.
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The author took it for necessary to devote relatively considerable
attention to the choice of elementary concepts (which appear besides
others in the definition of RSN-game): there were several ways, e.g. to_
use expressing in terms of so-called general topologies (i.e. mappings of
the set exp P *) into itself (where P is interpreted as the set of positions,
see § 2.8), which would be advantageous especially in § 6, opposite this
to characterize some local properties mappings of P into exp exp P
would be suitable. But expressing in terms of correspondences between P
and exp P (by which the corresponding general topologies, and also
mappings of P into exp exp P can be naturally expressed) was preferred,
for their advantageous formal properties. (See § 2a.)

Let us note that the connection between RSN-games and general topo-
logies gives a very interesting possibility to interprete some general
topologies (and concepts defined to them, e.g. certain modifications,
may they be considered as extreme solutions of certain fixpoint problems,
or as limits of transfinite sequences of “‘successive approximations”) from
the game point of view; this can be used e.g. for proving some equalities
(with general topologies and modifications of them) by means of “game
methods™. (See §§ 5, 6, et al.)

Results of this paper can be applied to games with perfect information
(without chance influences). Namely, these games can be considered as
special (R)SN-games, in which at each non-final position there is always
a player (depending on the position) who determines the following
position (and thus, the other players play at this position “emptily”).
Especially, some Berge’s results (of chapters 1,2 of [1]), and also results
belonging to the so-called descriptive theory of games (see e.g. [11], [12])
follow from our theorems, too; the same may be said about Pears’ results
on topological games ([8]). At these considerations so-called complete
games (or derived objects) have an important role; complete games are
special two-player (R)SN-games in which for each non-final position z,
for each player, and for every set 4 of positions there holds: either the
player can enforce that the following position will belong to 4, or the
other player can enforce that the following position will not belong to 4.
(Clearly, this is satisfied especially for two-player games with perfect
information.) This condition can be considered as a certain local version
of the “strict determinateness’ (see e.g. [12]).

It is clear that, besides the formalizations of the notion of simultaneous
nondeterministic game which are introduced in this paper, it is possible
to use some others, especially in certain special cases, e.g. if the number

*) Instead of the usual denotation 24 for the set of all subsets of a set 4 we use
the symbol exp 4. A5 means the set of all mappings of B into 4.
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of players of a game is finite (then by defining auxiliary positions it is
possible to reach that at each non-final position only one player moves;
_ then the connections with games with perfect information can appear in
another light, see § 10). But we may be of the opinion that the formali-
zations introduced in this paper are most adequate to the given problems,
and they make easy orientation possible (e.g. many investigations
of two-player games with perfect information simplify if these games are
considered as a special case of more general complete games; conveniently
(R)SN-games with the same strategic properties but with distinct graphs
are investigated; etec.), apart from this that the used formalizations
allow also the mentioned applications to general topologies, and “back-
applications” to games (§ 7). Our conception has also some methodic
priority: we proceed from a game which is given (as RSN-game) by its
rules, not by some more abstract mathematical model.

With respect to the considerable extent of this work it is necessary
to publish it in parts. Research Memoranda [4], [5], which were cyclo-
styled as materials of the Seminar of Mathematical Theory of Political
Decisions, (UJEP, Brno) can be considered as a preliminary version
of some parts of this paper. The author would like to thank especially
doc. dr. Véclav Poldk, CSc., the head of this seminar, to whom he is
indebted for the numerous important suggestions, advice, a.nd critical

remarks, which were used for this work.
¢

§ 1. NONDETERMINISTIC AUTOMATA AND SN-GAMES

1. Let (P, P,) be a pair of sets such that Py < P 3£ (J; we shall call
such a pair a type. By a variant of the type (P, Po) (or shortly: by a va-
riant) we mean every sequence X = (2x)o < k < 1 + i(x) Of elements of P such
that 0 < I(x) £ wo (where wy is the first infinite ordinal number, thus
1 4+ wo=uwp), and zx e P — Py <>k < I(x) (for 0 = k <1 +(x)). If
we deal with a variant x, then the symbols k, k; and similarly will
denote nonnegative integers being smaller than 1 4 I(x). Instead of the
symbols x, zy we shall sometimes use the symbols y, yx; X7, z}; y/, v},
respectively. P (or P(p,p,) denotes the set of all variants (of the type
(P, Py)). We call I(x) the length of x € P; x;, is the kth element of x.
Le,pyz = Lr: ={x|xeP, xy =ax}*) is the set of all variants

*) The denotations of the type “s/ := %" are used in three distinct meanings
in this paper: “‘the symbol & will mean #” (definition ), ‘‘as &/ we now choose %"
(substitution ), <o/ is now replaced by #” (replacement).
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which start from x. Evidently, {Lz |z e P} is a decomposition on the
set P, (Lx)zep is a partition*) of P.

Elements of exp P will be called aims (of the type (P, Py)) . A
will always be an aim.

2. Let Z be a set. By a Z-segment (or shortly: by a segment) we mean
every finite sequence z = (zx)o<k<i(z) Of elements of Z.[(z) is the length
of z. (We shall denote segments in the analogous manner as variants.)
Z (or Zz) will be the set of all segments.

If a =(ao,...,as) is an arbitrary finite sequence, then we put
%x(a@) : = ay (i.e. x(a) is the last element of a). We say that ~ is a memory
relation (at Z) iff ~is an equivalence relation on Z such that there
holds: if z! ~ z2, then x(z!) = x(z2). (Therefore, the relation © on Z
defined by: z! 2 z2 <> »(z!) = »(2z?) is the greatest memory relation,
and the equality on Z is the smallest memory relation.)

3. Bya(nondeterministic) automaton we shall understand a triple
A = (P, R, p), where P is a non-empty set, R is a mapping of P such
that R(x) is a set for all xe€ P, and p is a mapping of the set D :=
:={(x,r) |z € P, re R(x)} into (exp P) —{0}. We put Py :={x|ze P,
Rx) =0}, Z :=P — Py. P, Py, Z is the set of all states, final states,
non-final states (of Z), respectively. R(x) is the set of all inputs at the
state x. If at a (non-final) state x some r € R(x) occurs on the “input
place” of #, then after x an arbitrary state y € g(z, 7) may immediately
follow (and some state of g(z,7) must immediately follow after x), but— as
A is considered as nondeterministic — there is not given any information
about the “internal device (of #)” which chooses this state y. (And e.g.
if the input » occurs at this x in some two cases, then the states y may be
in these two cases distinct.) We say that % is deterministic iff o(z, r)
is a one-element set for all (x, r) € D.

4. Let Z be an automaton (with the same denotations as above).
(P, Po) we call the type of Z, and at Z we define P to (P, Po), and Z to Z.
By Z-tactics we mean a mapping © of Z such that v z € R(x(z)) for all
ze Z. We say that #-tactics T are ~-acceptable iff T z! =7 z2 holds
for all segments such that z! ~ z2. The set of all ~-acceptable Z-tactics
is non-empty.

*) By a collection we mean a set;such that each of its elementsis a set (the existence
of a set which is not a collection depends on the choice of an axiomatic set theory).
A decomposition on a set P is a collection of mutually disjoint non-empty sets
(classes) such that P is the set-theoretical union of them. A partition of a set P
is a system (Pj)jes (i.e. & mapping of J) such that P;, n P;, = # for all distinct
j],j;,EJ, and U P;=P.

jeJ
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For Z-tactics T we define ty(t) :={x| x € P, 2+ € p(xx, (%o, .., 7x))
for all k < I(x)}; ta(t) is the set of all variants which comply with <
(at #). Further we denote tg(z,7t):= ta(t)n Lz for x e P. Clearly,
(ta(x, T))zep is a partition of ta(t). ta(z,T) < A can be interpreted in
such a way: T enforces the aim A from z. Consequently, tz(t) — A
means that © enforces A from each position. Clearly, ta(t) < A iff*)
ta(r,T) = A NLzx for each z€ P..On the other hand, if & is a mapping
of P into exp P, then tg(x, T) c a(z) for each zeP iff tg(t)c (J a(z) N La.

xeP

Further tg(x0 t) < A (for some z°) iff tz(T) < AU (P — L2°).

b. At # we define the tactic-predicate T4 on the cartesian product
of the set of all memory relations and the set of all aims: Tg(~, A)
means the assertion: there exists ~-acceptable Z%-tactics t such that
ta(t)< A for all x € P. The simple remarks mentioned in 4 have obvious
corollaries in terms of tactic predicates.

6.1. In the following in § 1 let J be a non-empty set.

We say that an automaton # = (P, R, g) is a J-automaton iff for all
z € P the set R(z) is a cartesian product of a system (of sets) having J as
the set of all indices.

Let # = (P, R, o) be a J-automaton; then the conditions

R(x) = X Rj(x) **)

jed

R(x) =0 = Rj(x) =0

(x € P, j € J) determine the sets Ej(r) uniquely. Let us put Dj:=
:={(z, r) | x € P, r € Ry(x)}; then we define g; : D; — (exp P) — {0} by

o, ) := U o 1)
reR(x)
pryr =1°

Then
Ry := (P, Ry, o))

is an automaton of the type (P, Po); we call it the j-pseudocomponent
of #. 1t can be simply proved that there holds

(1) U @)= U o) (zeP, jelJ)
%€ Ry(2) re R(z)

*) Instead of “if and only if”’ one says shortly ‘‘iff”’.

**) X is the symbol of the cartesian product, x denotes the binary cartesian
product, pry r is the denotation of the jth projection of r (i.e. the image of j under
the mapping r which is considered as an element of a cartesian product).
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2) oz, r) < n, oj(x, pr;r)  (xeP, reR()).
je

A J.automaton # need not be determined by the system (%)es of its
pseudocomponents, as it follows from the following lemma:

6.2. Lemma. The following assertions are equivalent:
(A) P £ Py Acardd 2 2 A card P = 2.%)

(B) There exist J-automata #* = (P, R*, on) (n = 1, 2) of the type
(P, Po) such that R} = R} for all j € J, but B* # R>.

(C) There exist J-automata X" = (P, R, o) (n = 1, 2) of the type
(P, Po) such that @1 Q} for all j € J, but R is deterministic while X2
18 not deterministic.

Proof. 1. Let #n = (P, R", g") (n =1, 2) be arbitrary J-automata of
the type (P, Po) such that #} = %} for all je J. Then R' = R2. If P =
= Py, thenfor n =1, 2 {(x, r)]xeP r € R*(x)} = (J, and thus p! = g2
(because there exists exactly one mapping of the empty set into (exp P) —
—{0}). If J ={j}, then pn(x, (r)) = o}(x, r), where pry(r) =r (for
r € Ry(x), i.e. pr; can be considered as the canonical mapping of Ry(x)
onto R(x)), hence p! = g2 (because g} = o?). If P = {x}, then elther P =
= Py, then p! = g2, or P # P,, then Rl(x) Rx) £ 0, o™z, ) = {x}
for n =1, 2, r € R*(x), i.e. p! = g% )

Thus, if (A) does not hold, then #1 = %2, i.e. both (B) and (C) do not
hold.

2. Let (A) hold. Let 20 € P — Py, yo € P —{a0} be arbitrary. We define
x € Po
Ry(a) := < 1f< , jeJ, R@) := X Ryx). The
{z°, y°} xe P — Py jeJ
mappings o® : {(x, 7) | x € P, r € R(x)} - (exp P) —{0} are defined in
{xo} if £ = a0, and all pryr are equal
the following way: gl(x,7) :\
{y°} otherwise
/{zo, yo}  if 2 = ao.
\{xﬂ} otherwise
J-automata of the type (P, Po), A" is deterministic, #2 is not deter-
ministic, but o} = o} (since of(x, ) —{yo} for n=1, 2, reP —
— (Po U {0}), jEJ r € By(z), of(x0, r) ={a0, yo} forn =1, 2, jeJ,
r € Ry(z)). Hence (B), (C) hold.

’

oz, r) = . Now #n = (P, R, o") (n =1, 2) are

Sor'.

*) card A is the cardinal number of a set A. /\ means “and”, \/ means “or
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Q. E. D.

7. Let Z = (P, R, g) be an automaton of the type (P, P,). Then we
define the set Xz of all variants which can occur at Z:

Xy :={x|xeP,zxyne U olxx, ) forall k < I(x)}.
r€ R(zx)

From (1) we conclude

(3) If Z is a J-automaton, then X4 = Xg, for all j e J.

8.1. By a simultaneous nondeterministic game (SN-game) of the
type (P, Poy) we shall understand a pair

Y = ('@’ (f:'f)fé.])’

where Z is a J-automaton of the type (P, Py), and f; is a real function
on X, for all jeJ. The inferpretation is natural: the automaton %
describes the “dynamics’” of the game, P is the set of all positions of F,
Pyis the set of all final positions, X4 is the set of all plays of &, J is the
set of all players, and f; is the pay-off function of the player j in Z.
A player j controls the j’s “input place’ of #: we assume that at every
moment of a play the player j knows the preceding course of the play
including the momentary position z (nevertheless, we often consider
the case in which the ‘“memory of the player 5’ is bounded by a memory
relation ~, and then the player j knows only that class of the decomposi-
tionon Z (Z: = P — P,) determined by ~ which contains the segment
which characterizes the preceding course of the play; here we suppose
that the momentary position is non-final), and at xj plays such that he
chooses some input r; € Bj(x) (if « is non-final), and all players play
at- ¢ ‘“‘simultaneously” (i.e. mutually independently); the position y
which immediately follows after z in this play is given by 7 = (rj)e, €
€ R(x) in the sense mentioned in 3. Ty, is called the player j’s tactic
predicate (at the game).

8.2. In this paper only the questions which can be expressed in terms
of the tactic predicates of players and sometimes questions which deal with
the set of all plays, will be studied. For these purposes it is sufficient to
know (at a game %) e. g. only (%);e, instead of #, but we shall show
that it is possible to study stronger “reductions” of % than ((%;)se;,

(fj)k.r)-

8.3. Let us note that our conception of tactics, segments, memory
relations and strategies (see §2c) is in a certain sense ‘“‘redundant”,
e.g.7z must be defined also for such a segment z which at an automaton %
- (7 is an H-tactics) cannot “‘occur”, but it is clear that this redundance
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does not matter, and on the contrary, it is useful, as it facilitates
expression. Similarly, we judge that the introduction of the notion of
variant is well justifiable, especially for the study of games with the
same ‘“‘strategic properties” but with distinct sets of plays (compare e.g.
with § 2.26.3).

§ 2. BASIC CONCEPTS
a) Collections. Correspondences. General topologies

1. The letters A, B, € will always designate collections (see p. 33).
For a collection A we define its norm || A || := |J 4. We say that A
A€

is a collection in a set @ iff || A || = Q. So, exp exp @ is the set of all
collections in Q. We say that 2 is a collection on @ iff || A || =Q or
A = (. Hence every collection on @ is a collection in Q. Collections
in @ we shall also call (@)-collections.

2. In the following let E, F, G, P, Q, J be sets. We define
Corr (E, F) :={(u, E,F)|p< E X F};

elements of Corr (&, F) we call correspondences (between E and F). Our
definition is the same as Bourbaki’s definition of the ‘“‘correspondences”
([2], 1L, § 3.1). The other basic notions which we use without defining
them (e.g. the composition of two correspondences; mappings (functions)
as & certain kind of correspondences etc.) we understand also in the
same sense as Bourbaki ([2]). By the letters u, v, w we shall always
denote correspondences.

3. For u = (u, E, F) € Corr (E, F) and for any x, y we write
2uy
iff (@, y) € u; further we put

vu:={y|yeF, zuy}
uy :={x|xckE, zuy}

Thus for all z, y there holds
(1) TUY <> TUD Y < T E Uy,
and for v € Corr (K, F)
(2) . u =v < for all ze€ E, y € F there holds: a;:uy iff woy.
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4. We can define certain one-to-one mappings among the sets
exp (E x F), Corr (E, F), (exp E)F, (exp F)E: the trivial mapping of
exp (E x F) onto Corr (E, F) under which (u, E, F) is the image of u <
< E X F, and the canonical mappmgs of Corr (E F) onto (exp E)¥

and onto (exp F)E under which » € (exp E)F and u € (exp F)E are the
1ma.ges of u € Corr (E, F) if and only if

zuy <> u(z) EYy<>2xE€E u(y)
holds for all e E, ye F. We shall always use the denotations ue

€ (exp E)F, and we (exp F)E for the images of u € Corr (E, F) under the
canonical mappings. Thus there holds

(3) U = 17(2:), uy = 'Z(y) (for all z € E, y e F).

5.1. Let o be an operation of the type J in a set M, A be a relation
of the type J in M, ie. o : MV - M, A€ exp MJ. (How it is often done,
we shall not distinguish between (unary) operations and relations in M
on the one side, and operations and relations of the type {1, 2} ({1}) in M
on the other side. Further, properties defined for elements of M we
consider as unary relations in M or directly as elements of exp M.)

If M =exp (E >< F), then we define the induced opemtwn o and the
induced relation \ of the type J in Corr (¥, F) by the following conditions:

(") ((uj)je‘]) i((‘)((,u])fe.l)y Er F)y
(ug)1eg €N <> (Ug)seg €A,

where (u;)jey € (Corr (E, F)), u; = (4, E, F) (jeJ). If M =exp E,

then we define the induced operation @ and the induced relation  of the
type J in Corr (£, F) by the conditions

o((U)yes) y = o((u)ye,) forall y e F,

(%5)jeg er< (wsy)je €N forall ye F.
If M = exp F, then we define the induced operation w and the induced
relation X of the type J in Corr (E, F) by the conditions

ro ((ug)ses) = o((xuy)ze,) for all x € E,

(%5)sea enre (xus)jese A forall ze E.

(The before-mentioned construction of induced operations and relations
are well-known in other terms in general algebra.)
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5.2. Let us consider the set-theoretical operations ) (J # @), U, —
jed

jed

(the set-theoretical difference) as operations, and the inclusion < and
the equality = as relations in a set M. For M :=exp(E X F), M :=
:=-exp £, M := exp F we get three kinds of induced operations (rela-
tions) in Corr (E, F') (according to 5.1), but it is easily seen that for each
of those operations (relations) all these three induced operations (rela-
tions) are equal. (Moreover, the “induced equality’”’ is equal to the
equality considered only on elements of Corr (£, F) as certain ordered
triples.) Since we shall not apply the above mentioned set-theoretical
operations and the inclusion to correspondences (which can be introdu-

ced as certain sets), we shall use the symbols () , \J , — for the induced
R jeJ jed
operations, and < for the ‘“‘induced inclusion’‘ (without regard to E, F).

5.3. Let &1, w; be unary operations in exp F; we can take (forj =1, 2)

wj:exp F—exp F (instead of «y: (exp F){} - exp F), and wy:

: Corr (E, F)— Corr (E, F). From 5.1 there immediately follows
A—— -« -

(4) W2 © W] = W2 o M1,

where o denotes the composition of mappings.

6.1.Forue Corr (E, F)and v € Corr (G, exp E) we define their productv .
(or vu) as the element of Corr (&, F') which is determined by the condition
—_—

v u=vo ;; this definition is correct because « € (exp E)¥, ve (exp Gyexp E
vo u € (exp @)F. We can characterize v . u also by the condition
(5) (v.u)a = v(ua) for all a e F;

we shall write vud instead of (v . u) 4 (or v(ud)), too.

6.2. If w is one of the operations () , |J ,—(see 5.2), then there
jedJ jed
holds a certain distributive law:

(6) o((vg)1ed) - u = (v . Wjey),
where J is the type of , u € Corr (E, F), v; € Corr (G, exp E) forallje J.
Further, for all v;, v; € Corr (G, exp E) there holds

(7) ¥ S vy < v . % < v;.u for all we Corr (B, F).

7. Let E =P, F =exp@Q, u, veCorr (E, F) = Corr (P, exp Q). Then
exp F = exp exp @ is the set of all (Q)-collections; according to 5.1 we
define the induced operations and relations (including properties) to
operations and relations in the set of all (Q)-collections. Since we denote
correspondences and collections in different ways, we shall use the same
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symbols (or terms) for the induced operations and relations as for the
corresponding operations and relations in exp exp Q. E.g. “u is an
R-correspondence’” means the same as “zu is an R-collection for all
xe P’, u v is the element of Corr (P, exp @) for which z(u M v) =
= (au) [ (2v) for all z € P (see part b of this paragraph), and similarly.
According to 5.3 the composition of induced unary operations is the
same as the operation induced by the composition of those unary
operations. E.g. ™ is the composition of certain unary operations ’, ~

which are defined in the set of all (@)-collections (see § 4.2), hence (v') =1i;
we may use denotations as u” ((u)") = (u')'), ', ete.

’

8. (exp P)exP P is known as the set of all general topologies (on P).
{In the following we shall often say ‘‘topology’ instead of ‘‘general
topology”’.) Concepts dealing with general topologies (on P) can be
expressed in terms of Corr (P, exp P), or Pexp exp P or exp (P X exp P)
by means of the canonical mappings and the trivial mapping (see 4 with
E :=P,F:=expP); cf. also J. Schmidt’s approach in [9]. E.g. the
composition of the trivial mapping and-the canonical mapping ~ is an
isomorphism of (exp (P X expP), <) (as a partiall v ordered set, where
< is the set-theoretical inclusion) onto ((exp P)e¥P P, <), where < is
the usual partial ordering of the set of all general topologies on P (see
{6], [10]), and the canonical mapping ~ is an isomorphism of (Corr (P,
exp P),<) (where < is the “induced inclusion”) onto ((exp P)exP P, <),
Further, the canonical mapping ~ is an isomorphism of Corr (P, exp P)
as  semigroup with - (as the binary operation) onto the semigroup of
all topologies on P (as mappings of exp P into itself) with the compo-
sition as operation( see 6.1 with £ := @ := P, F := exp P). In the fo-
llowing we shall sometimes not distinguish between a (general) topology
and its original under the canonical mapping ~ of Corr (P, exp P) onto
(exp P)exp P,

b) Special collections and correspondences. Some operations. Graphs

9. In part b let A, B be (Q)-collections, (W;);c; be a system of
(@)-collections, u, v € Corr (P, exp @), (4);es be a system of elements of
Corr (P,exp @), Po < P # (). We shall consider with every operation
(relation, property) in exp exp @ the corresponding induced operation
(relation, property) in Corr (P, exp @) (according to 7).

10. A collection € we call regular (singular) or shortly an R-collection
(S-collection) iff 0 ¢ € (0 e €). For a collection € we define
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| N PYG |
cH .— < if<ﬁ . Thus €# is regular; € = €# iff €is regular.
0 eC

Hence CH¥# — g,

Evidently 0 is the set of all z € P such that zu is an S -collection,
hence

(8) u is an R-correspondence (S-correspondence) < uf) =@ (u@d = P).
Further x e u# 4 < (zu®) 3 4 < (wu)¥ 3 4 < (xu) 3 4 A (zu) 3
PO zcud Ae¢ud) < zecud —ufl ie.

(9) u¥ A =ud —uf forall 4 < Q.

11. For X < P let X be the element of Corr (P, exp @) for which
XA = X for all 4 = Q. Now we can e.g. the equality (9) express in the

form u® = u — uf.

12. We put
[Wlg:= {B|B< @, AN exp B0} *)
it is easy to see that the operation [ Jo (see §1.5.2) has the following
properties*)
(10) [Pl =9
A < [Ag
A< B = [Ulg < [Ble
[[Alele = [Ule,
moreover there holds
(11) (U Wle = U [Wles
jedJ jeJ
therefore, exp @ and the operation [ Jo form a Kuratowski topological
space (see e.g. [7], p. 44).
We say that U is an M(Q)-collection (or shortly: an M-collection) iff
the conditon
A< BcqQ, AeUNA = BeN

is satisfied. Every M-collection is a collection on @, because if it is non-
empty, then it contains . Since

(12) A = [A]p < Wisan M(Q)-collection

*) namely, [ Jo in exp exp @ is a particular case of that transformation
which at a partially ordered set (M, <) transforms 4 < M to the smallest end
containing A (i.e. {m|meM, a < m for some a€ A}); here M = exp @ and < is
the (rastricted) inclusion.
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holds, M-collections are exactly closed sets of that topological space.
Hence the set of all M-collections is closed under the general intersection,
but it is closed under the general union (according to (11)), too, i.e.
the set of all M-collections is a complete lattice with respect to <, J, ().
exp @ (@) is the greatest (the smallest) element of this lattice.

exp @ is the only singular M-collection (SM-collection); (exp @) — {0}
is the greatest regular M-collection (RM-collection); {Q} is the smaillest
non-empty M-collections. Clearly the set of all RM-collections is a comp-
lete lattice with respect to <, {J, ).

We shall not present in particular the results which follow from the
above for the induced concepts, i.e. the induced operation [ ]g in
Corr (P, exp @), and M(Q)-correspondences — or shortly M-correspon-
dences (M — monotony, cf. [9], p. 313). Let us only note that

13) u is an M-correspondence < if A < B < @, then u4 < uB

(14) [ulgd = |J uB forall 4 <@
BCA

hold. (To prove it is simple, e.g. for (14): z € [ulod <> z[ulgs 4 <
<> [aulg 3 A < there exists B = A such that xu 5 B <> there exists

B < A such that xreuB <2ze |J uB.)
BC4A

13. By the type of a correspondence » we understand (P, {x|z € P,
zu = @}). If » is an M-correspondence, then for every xe P au is an
M-collection, thus zu % (J iff zu 3 @, hence

(15) u is an M-correspondence = (P, P — u@) is the type of u.

14. We say that collections 2, B are M-equivalent (or M(Q)-equivalent)
— and we write W~ B —iff [l =[Blg. That decomposition on
exp exp @ which is determined by the equivalence relation &~ will be
called the M-decomposition or M(Q)-decomposition (on exp exp Q).
Clearly {0} is a class of the M-decomposition, hence each of the other
classes of this decomposition contains only non-empty collections.
Further, the set of all singular (@)-collections is a class of the
M-decomposition, hence each of the other classes of this decomposition
contains only regular collections.

Each class of the M-decomposition contains exactly one M-collection
(because [[Ulgle = [Ulg), thus M-collections are certain natural ‘“repre-
sentatives” of classes of the M-decomposition on exp exp Q.

Let us mention the following corollaries which deal with the corres-
ponding concepts for correspondences — with the induced equivalence
relation &~ (on Corr (P, exp @)), and with the M-decomposition (or
M(Q)-decomposition, i.e. the decomposition on Corr (P, exp €) which is
determined by this ~):
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(16) u ~ v = % and v have the same type;
17) u ~ v, u is regular = v is regular;

each class of the M-decomposition on Corr (P, exp ) contains exactly
one M-correspondence, i.e. M-correspondences are certain natural
“representatives” of classes of the M-decomposition on Corr (P, exp Q).

15. The operation [] is defined by
0 C:={ N C;|(Cphese X &}
jeJ jeJ jeJ
for every non-empty system (&;)jes of collections. Naturally we denote
0:1 ﬂ 0:2 Z={01 n 02 l 0160:1, Czeﬁz}.
Clearly there holds

(18) [ M Wle = UJ [Wle  (forJ #0)
JE€

jed
(similarly for the induced operation [] in Corr (P, exp @)). Clearly

(19) (1w is regular < if (4;);es € (exp @)/, N 4; =0,
Ry

jed j
then (\ wd; =0 (for J = @)
. jedJ .
We say that a system (Wj)jes ((%5)jes) with J £ @ is conjugate iff
M Wy ( 1 uy) is regular. From 14, and from (18) we conclude
jed jeJ
(20) (W)ses ((w)ses) is conjugate <> ([Ujlg)ses ([wsle)ses) is conjugate
(where J # 0).

16. The norm || || applied only to (@)-collections can be considered
as a mapping of exp exp @ into exp Q. Now we introduce the corresponding
notion for Corr (P, exp @) : we define to u e Corr (P, exp Q) its generalized
graph T, as the element of Corr (@, P) which satisfies the condition

Fa=|2u| forall zeP.

In the following elements of Corr (@, P) are sometimes called gene-
ralized graphs, and T' denotes a generalized graph. We say that I' is
Py-ended iff {x|xeP, T'zx =0} =Po. Every Py-ended generalized
graph T" is that of some correspondence » having the type (P, Po);
and if u is a correspondence having the type (P, P,), then the generalized
graph of u is Po-ended. Let us put L := (@ X (P — Po), @, P); clearly, L
is the greatest (under < in Corr (@, P)) Po-ended generalized graph:



44

Q /w: eP —P,
Lr = < for\ . Hence, if » is an M(Q)-corres-
7] xe P,y

poxidence of the type (P, Py), then L is its generalized graph.

17.1. In the following let Y, Y; < Q. We say that A is Y-generable
iff there exists B such that || B || = Y, [Blg = U. Hence, if A is Y-gene-
rable, then U is an M-collection; and if U is some M-collection, then 2
is Q-generable for A £, and it is J-generable for A =@ (A = [A]g).
Clearly, an M-collection 2 is Y-generable iff the class of the M-decom-
position which is represented by 2 (see 14) conta,ms a collection having
the norm Y. Further there holds:

(21) A is an M-collection = (U is Q-generable <> A # @ V @ = )
(22) U isan M-collection = (A is (-generable <A =@ V A = exp @)
(23) 0 is Y-generable <~ ¥ =0

17.2. Lemma. A4 (Q)-collection W is Y-generable if and only if
W is an M-collection AN W {Y}<=UA (U=0=Y =0).

Proof. It follows from (23) that the lemma is valid for A = 0.
Now let A#0. If||B|| =Y, [Blg =AU, then Ais an M-collection,
AT {Y}< Bl {Y}He=[B 1 {Y}le =[Blg =AU (see (18)). On
the other hand, if U is an M-collection, A 7] {¥Y} < A, then Qe A,
and thus A = [Alo > [T 1{Y}o =[We 1 [{Y}log o AN {Q}=U
(see (10),(18)), ¥ > || AC1{Y}|| > | {Q} 1 {Y}|| = ¥. QE.D.

17.3. From lemma 17.2 there follow some corollaries, e.g.
(24) U is Yo-generable, A £ @, Yo < Y = WA is Y-generable,

(25) A is Y;-generable for j =1, 2 = Wis (¥Y; n Y,)-generable
(where Y; < Q). (E.g. from A 1{Y;} < A (j = 1, 2) there follows
N 1 {Yl n Yz} = (QI 1 {Yl}) l_]{Yz} < QI[_I{Yz} < Q[, etc.) But the
analogue of (25) with infinitely many j does not hold:

17.4. Example. Let @ = {1, 2, ...}, A be the collection of all infinite
subsets of @, Y; ={j,j + 1, j +2,..}(j=1,2,...). Then A is Y;-gener-
able for j =1, 2, .. , but n Y; = @, and U is not (J-generable.

i=1 .

17.5. Lemma.

(i) AeA=>An Ye¥uA
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(ii) A (Y} A
(iii) AnexpY =Ar{¥}

are equivalent assertions. If W is an M-collection, then each of the following
conditions is equivalent to (i) — (i23):

(iv) A =[A1{Y}e (= A [{T}e)
(v) AU@—Y)eU=>A4eU
(vi) AU@—Y)eUA=4n Yel

Proof. Clearly (i) and (ii) are equivalent, from (iii) (ii) follows, and
(iii) follows from (ii) by means of A n exp ¥ < A1 {Y} < exp Y. Now
let A be an M-collection. Then from (iv) (ii) follows (U = [A [1{Y}]g o
> A {¥}), and (iv) follows from (ii) (A = [Ale > [A 1 {Y}]e =
= [WleT1[{¥}g > A 71{Q} = A). From (vi) there immediately follow

(i), (v) (as A is an M-collection); if we substitute 4 :=A4 y (@ —
— Y)(A:=An Y)in (i) ((v), respectively), then we get (vi). Q.E.D.

17.6. We say that u is I'-generable iff for each z € P the collection zu
is (I'z)-generable (i.e. — in other words — iff there exists » such that I"
is the generalized graph of », and [v]g = %). From 17.1—17.5 there
follow e.g. the following corollaries:

(26) wis I'-generable < (xeud = xeu(d n I'z) (forallze P, 4 < Q)),
(27) u is To-generable, 'y = T" = » is I'-generable,

(28) w is I'j-generable for j = 1, 2 = u is (I'y n I';)-generable,

where u is an M-correspondence of the type (P, Po), and I', I'y, I';,I';
are Py-ended generalized graphs.

18.0. In 18.1—18.3 we shall deal with the case P =@, especially
with correspondences of Corr (P, exp P); according to 8 we call them
(general) topologies (on P). u, v € Corr (P, exp P) in 18.1—18.3.

18.1. We define 1, (—1) € Corr (P, exp P) by the conditions

14 = A for all 4 < P,
(—1)4=P—Aforall4 < P

(hence the identical mapping of exp P onto itself is the image of 1 under
the canonical mapping —>; (—1) is considered as one symbol). There holds

(29) l.u =u.1 = u (for all u)

(30) 1 is an M-correspondence
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(31) (—1. (=) =1
18.2. We say that u is a Cech topology (see [9], 2.1, or [3]) iff
(R) uld =0
(M) A< Bc P=ud cuB
(E) 1cu

holds, i.e. iff u is an RM(P)-correspondence such that 4 < uA for all
A < P.Eg. 1is a Cech topology.

One says that u is a Cech derivative iff u is an RM-correspondence
satisfying the condition

(D) zeud = xeu(d —{x}) (for all ze P, A < P).

It is known that the mapping of the set of all Cech derivatives under
which 1 U u is the image of « is a one-to-one mapping onto the set of all
Cech topologies (see [3], pp. D 253—254).

The following lemma deals with Cech derivatives and with the
notion of generability. By graphs elements of the set Corr (P, P) are
meant (i.e. generalized graphs in the case P = ). A graph without
loops is & graph I' such that « ¢ I'z for all z € P.

18.3. Lemma. Let u be an RM-correspondence. Then there holds: u is
a Cech derivative if and only if there exists a graph T without loops such
that u is I'-generable.

Proof. If v is a I'-generable RM-correspondence and I'is a graph
without loops, then according to (26), (13) zev4d =>xev(d n Tz) =
< (A —{=}), i.e. v is a Cech derivative. On the other hand, let u be
a Cech derivative. We define a graph I', without loops by the condition

P —{x} reuP
I‘ox=< . if<
0 xeP —uP

then xew(P —{x}), hence P—{x}#0 (as uld =¢), (P, P —uP) is
the type of u (see (15)), and if x € u4, then x € u(4 —{x}) = uw(4 n Tz);
hence u is I'p-generable ((26)). Q.E.D.

; Tois (P —uP)-ended: if z € uP,

19. Now let us mention some properties of the product of correspon-
dences. Let

u, Uy, Uz, u; € Corr (E, F), v, v; € Corr (G, exp E)

for jedJ (J # 0). (Hence e.g. “vis an M-correspondence’” means ‘v is
an M(E)-correspondence”, and similarly.) Clearly, there holds
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(32) v is an M-correspondence <> (u; < %z <> .%; < v. u,) for each uy, uz
Further let
‘ F = exp Q.

Then

(33) wu, v are R-correspondences = v . u is an R-correspondence;

(34) wu, v are M-correspondences => v . u is an M-correspondence;

35) (wy)jes, (v5);e g are conjugate systems = (v;. uj)jes i8 & conjugate
system.

((32)—(34) are trivial, (35) follows from (19).)

c) Strategies and automata

20. All notions introduced in this part ¢ are defined for a fixedly
chosen type (P, P,). We put Z := P — P,. Elements of P, Py, Z are
sometimes called positions, final positions, non-final positions, respecti-
vely. P is the set of all variants of the type (P, Po) (§1.1). We shall
denote by L the generalized graph L of 16 in the case @ := P; hence the
denotation Lz (see 16; x € P) has the same sense as in § 1.1. The sym-
bols Z, ~, 2 have the senses introduced in § 1. Further in partcu, v e
€ Corr (P, exp P).

21.1. We put z
S := ((exp P) —{ Q]}) ;

elements of S are called strategies (or: free strategies of the type (P, Py)).
The letter ¢ always means a strategy, oz is the image of z € Z under o.
Further we define the set of all strategies which are ~ -acceptable:

~8:={c|oe8, ifz!,z22e Z, 21 ~ 22, then 62! = 022}
~ 8 is considered as one symbol). Instead of 2 S we write SO, too; So is
the set of all plain strategies.
21.2. We denote
S VA
:= ((exp P) —{0})7,
o will always be an element of S. We can define a one-to-one mapping

of S onto S such that the image of ¢ is the element 6 € S (we denote
o < @) for whichez = ox(z) for all z € Z. Often we shall not distinguish

[+}
between an element o € S and its image & (e.g. 8(¢) is the same as s(o)
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o
for 6 <— @, and similarly), and elements of S we shall call plain stra-
tegies, t00.

21.3. Now we introduce

s(®) :={x | xeP, xxs, eo(xo, ..., ax) forall k < l(x)};
hence
8(c) = {x | x € P, 24, € axy for all & < I(x)}.

8(o) is the set of all variants which comply with o. The set of all variants
which comply with 6 and which begin in a position z is denoted by
s(z, @), i.e.

s(z, ) = s(e) N Lz;

(8 (%, 8))zep is & partition of s(o) (cf. § 1.4). It is easy to prove that
always s(z, 6) % (3, cf. lemma 21.4.

We say that a non-empty system (o;);cs of strategies is conjugate iff
N oz+#0 for all zeZ. (E.g., if (w)jes is a game system (29.1)
jeJ
and o;€ S(u;) (23.1) for all jeJ, then (6;)jes is a conjugate system
of strategies.) By an induction a variant belonging to [} s(z, o5) can

jeJ
be constructed if (67);es is conjugate:

21.4. Lemma. If (0j);cy is a (non-emply) conjugate system of stra-
tegies, then .

r.]l 8(z, oj) #* 7}
je
for all x € P. Especially s(z, 6) 5~ () for all strategies .

22. Let # = (P, R, 9) be an automaton of the type (P, Po). We

define the mapping X4 Which maps the set of all Z-tactics into S by the

condition
X2(%) Z = o(x(2), T2)

for all z e Z. Evidently there holds

(36) < is ~ -acceptable = y4(T) is ~ -acceptable

B7) ta(z, ) = (2, Xu(7)) > talt) = 8(Xa(¥)
for all Z-tactics T (x € P)
Now it is natural to introduce the following notions.

23.1. Let u be a regular correspondence of the type (P, Py). We call
S(u) :={c|o€S, ozecx(z)u forall zeZ}

the set of all u-strategies. Then
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~ S(u) :=(~8) n S(u)

is the set of all ~-acceptable u-strategies; analogically to the “free
case’” we define

S(w) := 2 S(u),
g’(u)::{c]ceg', oz € zu for all ze Z},

henceforth, if 6 < — @, then 6 € So(u) iff ge §(u). There holds (for all
memory relations ~ ) ~ S(u) # @.

23.2. Let u be a regular correspondence of the type (P, Py). At u we
define the strategic-predicate Z,, on the cartesian product of the set of all
memory relations and the set of all aims: Z (~, A) means the assertion:
there exists a ~ -acceptable u-strategy o such that s(e) = A. Cf.§ 1:4—5.

24.1. Let Z = (P, R, g) be an automaton of the type (P, Py). Under
the correspondence of 2 there is meant the correspondence u, €
€ Corr (P, exp P) such that

zZuzyA <> there exists r € R(x) such that gz, r) = 4

for all ze P, A < P. Clearly, uy, is a regular correspondence of the type
(P, Py), and evidently there holds

24.2. Lemma. The restriction *) of Y4 on the set of all ~ -acceptable
R-tactics is a mapping onto ~ S(ug). Especially, Y4 s @ mapping of the
set of all R-tactics onto S(ugy).

24.3. (A corollary of (37) and lemma 24.2.)
(38a) Ty = Zu,

for every automaton # of the type (P, Py), where = means that
(T (~, A) <Zy 2~ A)) for every memory relation ~ and each A < P.

25. Let u be a regular correspondence of the type (P, FPo). We
construct the automaton %y = (P, Ry, pu) in this way: Ru(z) = zu,
ou(x, r) =1 for all x € P, r € Ry(x). Evidently, #, is an automaton of
the type (P, Py) such that

U= Ug .
From this and from (38a) there follows
(38Db) 2, =Ty

*) By the restriction of a mapping f: A — Bon C < A the mappingf|C:C —> B
such that (f| C) (x) = f(z) (for all € C) is meant.
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26.0. For x € P, A < P we define
Az, 4) :={x|xeP, zo =z = (I(x) >0, z€d)}

'26.1. Theorem. Let both w and v be reqular and have the type (P, Po). Then

(i) 2[ulPA4 <y (~, Az, 4))
(forall xe P, A < P and every ~),
(i1) ole ~S(u), u~ v = there exists 62 € ~ S(v) such

that o?z< o'z for eachze Z
(for every ~ ),
(iii) Ry =Ty =,

Proof. (i) and (ii) are simple. — If u &~ v and e. g. Zy(~, A) is
valid for some A, then s(e')<A for a suitable 6! e ~ S(u), hence
s(6?) « s(o!) = A for a suitable o2e ~ S(v) (cf. (ii)), therefore
Zy(~, A) is valid. By exchanging u := v, v:= u we obtain Z,(~, A) =
= Zy (~, A). Thus ua v implies X, = X,. On the other hand, if
2, = Zy, then from this and (i) [u]p = [v]p follows, i. e. u A&~ v. There-
fore, (iii) holds. Q.E.D.

26.2. Let I" € Corr (P, P) be a Py-ended graph; we put
Xy :={x|xeP, gy € l'zforallk < i(x)}

(if I' is fixedly chosen, then we often use the denotation X instead
of Xr). Evidently for arbitrary graphs I';, T'; there holds

(39) Fl = Pz < X['l = sz.

By the graph T'; of an automaton # the graph of u, is meant. Clearly
(see 7 of §1)

(40) Xy = Xpy
for every automaton Z.

26.3. If at an automaton # only questions which can be expressed
in terms of T, and I', are studied (compare with 8.1—8.2 in § 1), then
it is sufficient to know only the correspondence u, of Z#, since Ty =
=2y, I'g = Iug. Moreover, from that point of view it is sufficient to
know only I', and the class of the M-decomposition (on Corr (P, exp P))
which contains ug4, since all correspondences of that class are regular
(and they have the same type), and the strategic predicates of them
are equal (theorem 26.1). Instead of “regular” classes of the M-decom-
position we can take RM-correspondences as their natural representatives
(see 14). We shall call RM-correspondences (of Corr (P, exp P)) game
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correspondences. From the above (especially from 24.1, 25) there
immediately follows

26.4. Lemma. Let v be a correspondence, 1" be a graph. Then v isa I'-gener-
able game correspondence if and only if there exists an automaton X =
= (P, R, o) such that v = [uglp, I' = I'y.

d) Regular systems. RSN -games

27.1.In27.11et € = (C)jes be a non-empty system of collections. If ¢
is conjugate, then either some §; is empty or all €; are non-empty and
regular; and if moreover all €; have the same norm C, then either C £ 0,
hence all €; are non-empty and regular, or C =@, hence %;e {4,
{0}} for all je J. We say that ¥ is regular iff it is conjugate, all €; have
the same norm (we call this norm the norm of €), and all €; are regular;
from the above we get

(41) € is regular <~ % is conjugate, all §; have the same norm, and
if 0 =0, then €; =0 forall jeJ

Further, clearly there holds

(42) J ={j} = (¥ is regular <> €; is regular)
(43) % isregular = @; ~ P foralljeJ V& =0 foralljeJ
(44) % is regular, 0 = J, < J = (€))se, is regular

27.2. Lemma. Let .of = (Wy)jes be a non-empty system of (Q)-collections,
let J, be a set. Then there holds

(45) If < is regqular, J < J, then there exists a regular system (By)jed,
of (Q)-collections such that W; = By for all je J

(46) & is regular = ([Wslg)jes is regular

Proof. Clearly (46) holds (see (20) etc.). Under the suppositions of (45)
we put B; := @ for all jeJ if the norm 4 of o is empty, and we
put B;:={A4} forjeJ, —J (and B;:= A; for jeJ) if 4 # (. Clearly
(45) holds. Q.E.D.

27.3. The property “to be regular” for systems of (@)-collections with
a (non-empty) set J of all indices can be considered as a relation of the
type J in exp exp Q. According to 7 the induced property (i.e. “to be
regular’” for systems of elements of Corr (P, exp @) with the set J of all
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indices) can be introduced. Let in 27.3 % = (uj);ey be a non-empty
system of elements of Corr (P, exp ). Then

(47) 9 is regular <> % is conjugate, all u; are regular
and have the same graph

Thus, if % is regular, then all u; have the same type, and the (com-
mon) type of all correspondences of % is called the type of #%.

Evidently, the other properties (42), (44) — (46) hold analogously
for systems of correspondences (instead of systems of collections).

28, Theorem. Let (P, Po) be a type, U = (u3)j e be a non-empty system
of elements of Corr (P, exp P). Then the following assertions are equivalent:

(A) There exists a J-automaton £ = (P, R, o) of the type (P, Po) such
that uj = ug, for all jeJ.

(B) U is a reqular system of the type (P, Po).

Proof.

1. Let (A) hold. Then all uj(= ug ) are regular (24.1), and all u; have

the same graph, namely the graph of # (26.2; (1) of §1). Now let
(45)jes € (exp P)Y, n A;=40, z€ n usA;. Then there exists r =

= (r7)1eg € R(x) such that 4; = gj(x, r;) for all jeJ (24.1; 6.1 of §1),

hence 0 = N 4;= N o, r5) o oz, ) # 0 ((2) of §1) from this
jeJ jeJ

contradiction and from (19) it follows that the system % is conjugate.

Consequently, % is regular, i.e. (B) holds.

2. Let (B) hold. If 4;e zu; for all jeJ and for some x € P, then
N 4; # 0, since % is conjugate (see (19)). Now we may define the

jed

mapping o : D —> (exp P)—{0}, where D :={(x,7) |x€P, re Xxuj}
by o(z, ) := ﬂ pryr. We put R(z) := X zu; (x € P), then 92

= (P, R, 0) IS a, J-automaton of the type (P Py). Accordlng to (42)
Rj(x) = zuy for je J (see 6.1 of §1).

Let xe P, ieJ, A€ Ry(x). Then 4 > U N pryr=olx 4). If
reR(zi jed
porir =

yed, then yell@usll for all jeJ, and hence re X zu; = R(z)

. jeJ
cxista such that BT =4 prusy for all jeJ, and thus ye
n i Sequently g(a, 4) = 4 for all zeP, jeJ,
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A € By(z). Now zus ={o(z, 4)| A€ Ry(x)} ={4 | A € zus} = zu; for
allze P,je P, ie. uy —u;foralljeJ Thus (A) holds.
Q.E.D.

29.0. We say that a non-empty system of collections (correspondences)
is an RM-system iff this system is regular and all its elements are M-col-
lections (M-correspondences).

We say that a system of correspondences is I'-generable iff all elements
of this system are I'-generable.

29.1. If at a J-automaton & there are studied only questions which
can be expressed in terms of (Ta,)jes, I's, then it is sufficient to know
only (ug,)jes (since Ta, = Z, a° I'a=Ta,= P"a,); moreover, it is even
sufficient to know only ([ug,])p);e,;, I'a (see theorem 26.1). We shall
call RM-systems of elements of Corr (P, exp P) game systems. (Compare
with 26.3.) Clearly, all elements of & game system are game correspon-
dences. By means of theorem 28 we get

29.2. Lemma. Let ¥ = (vj)jes be a non-empty system of elements of
Corr (P, exp P), I be a graph. Then ¥ is I'-generable game system if and
only if there exists a J-automaton R = (P, R, o) such that v; = [ua,lp
(for all jeJ), I' = T'y.

30.1. By the reduction of an SN-game ¥ =(Z, (fi)jeJ) (see 8.1 of § 1)
the triple
%(g) = (([uQ;]P)jEJ, Fﬁy (.fj)je‘,)

is meant. From 29.1 it follows that from the point of view of § 1.8.1 it is
possible to consider only S#(¥) instead of ¥.

30.2. By a reduced simultaneous nondeterministic game (RSN-
game) of the type (P, P,) we shall understand a triple

H = ((ws)jes, T\ (fHed)

where I' e Corr (P, P) is a Po-ended graph, (us);es is a I'-generable game
system, and all f;are real functions on Xr. From lemma 29.2 it immedia-
tely follows that a triple is an RSN-game if and only if it is the reduction
of some SN-game. From this we get the natural inferpretation of that
RSN-game #: J is the set of all players, u; is the game correspondence
of the player j (ru;A means: at x the player j can immediately enforce
the set 4), I' is the graph of 5, Xr is the set of all plays of 5, f; is
the pay-off function of the player j in .

30.3. A J-automaton (of the type (P, Po)) will be also called an
SN game structure (of the type (P, P,)); under an RSN game structure
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of the type (P, Po)) there will be meant a pair (%, T) where I'e
€ Corr (P,P) is a Po-ended graph and % is a I'-generable game system.
The interpretations in both the cases are natural, cf. § 1.8.1, § 2.30.2.
(Thus a game structure is a ‘“‘game without pay-off functions”.)

§3. ~-STRATEGIC CORRESPONDENCES.
“ABSOLUTE” STRATEGIES

0. In §3 we suppose the same as in §2.20, especially u,ve
€ Corr (P, exp P) are regular correspondences of the type (P, Po). I
will be a graph. For I we define the corresponding generalized graph
Ty (or only T) by

T e Corr (P, P)
Te =XnLxforallze P,

where X := Xp. (Hence I'z can be considered as the set of all plays
which begin from z, if I' is the graph of a game under consideration.)

a) ~v-strategic correspondences. ~-strategic collections

1. We have called elements of exp P atms. We say that an aim A can be
enforced by a (free) strategy o from x(c P) iff s(x, 6) = A. Thus [{s(z, 6)}]s
is the collection of all aims which can be enforced by ¢ from z. Hence A
can be enforced by o from all positions iff s(6) < A (since |J s(z, 6) =

zeP

= qJ (s(o) n Lz) = s(e)). (Cf. § 1.4.)

T €

We say that A can be (~, u) -enforced from x iff there exists 6 € ~S(u)
such that A can be enforced by o from .

2. For a memory relation ~ and for regular correspondences of
Corr (P, exp P) we define the corresponding ~-strategic correspondences
(we shall denote them by the symbol ~ of the memory relation and by
the corresponding thick small Latin letter, e.g. ~v for ~, v) in the follow-
ing way:

‘ ~ ue Corr (P, exp P)

z(~u) A < 8(z, 6) < A for some o € ~ S(u)

for all ze P, A< P (ie. z(~u)A iff A can be (~, u)-enforced from ).
Clearly

1) USCTVvT=>~uc ~v

(since ~ S(u) = ~ S(v) if u < v),
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(2) z(~u) = [{s(z, 6)loc € ~S(u)}lp
for all x € P, hence

(3) ~u is an RM-correspondence,
) ~uP = P,

(5) (P, 0) is the type of ~u

(§ 2 (15)). Because s(z,6) < X n Le =Tz for 6 € S(uw), I' =T,
(6) u has the graph I' = ~ u is I'-generable
(see (2), and § 2 (27)); we can also say
(7) wisa I'-generable game correspondence =~ ~ u is I'-generable
(see (6), (9)). Clearly
(8) z(~u)A < Zy(~, AU (P—Lx).
For all x < P, A< P there holds
A(z, A) = Az, A) U (P— Lx).
From this and from (8) the assertion
9) UR V< ~U=~D

follows by means of theorem 26.1 of §2. Therefore, a ~-strategic
correspondence may be considered as an object defined for a regular
(i.e. only regular correspondences containing, compare § 2.14) class
of the M-decomposition on Corr (P, exp P), and for distinct regular
classes of this decomposition these objects are distinct.

3. For a memory relation ~ and for regular correspondences of
Corr (P, exp P) we define the coresponding ~ -strategic collections (we
shall denote them by the symbol ~ of the memory relation and by
the corresponding thick great Gothic letter, e.g. ~ B for ~, v) in the
following way :

~1U:= {A| A c P, there exists 6 € ~ S(u) such that s(e) < A},

ie. Ae ~U iff Ty(~, A). Analogous results (to those in 2) hold for
~ -strategic collections:

(10) uc'l):>~uc~ﬂ;
(11) ~ U =[{(so) | 6€ ~ S(u)}lp,
hence

(12) ~ U is a non-empty RM-collection
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(13) u has the graph I' = ~ U is X-generable,

where X :=Xp (8(6) = X for o S(y), I':= T'y; see (11), §2 (24)),
(14) u is a I'-generable game correspondence => ~ U is X-generable
(see (13), (17)). It is possible to express easily ~ u by means of ~ U:
(15) 2(~u) =[{Lx}]p M ~ U

(for all z € P); namely z(~u) = [{s(z, 0) | 6 € ~ S(u)}lp = [{Lz}
T{s0) | o e~ St = ({Lafl [1({50) @ ~ St} = L)l 1
M ~ MU (see (2), (11), § 2 (18)). Similary can be derived

(16) u has the graph I' = a(~u) = [{Tz}lp 1~ WU
From § 2.26.1 we obtain
17) U V< ~U=~D.

b) “Absolute’ strategies

4. Under an aim-collection an element of exp exp P is meant. (E.g.
~-strategic collections are aim-collections.) Aim-collections will be
denoted by letters 2, B, €. The phrase “ is (well) ordered’’ means that A
is (well) ordered under the set-theoretical inclusion.

b. We say that 6 is a (~, U)-absolute u-strategy iff ¢ is & ~-accept-
able u-strategy such that if x(~ u)A, A€, then A can be enforced
by o from z. Clearly, 6 € ~ S(u) is a (~, 2)-absolute u-strategy iff s(z, ) <
< N A() A:=P) for each x e P. Therefore, the assertion

AcANz(~u) A€l
“a (~, A)-absolute u-strategy exists” can be expressed by means of the
strategic predicate Z,, . :

6. Let = mean the equality on Z here.

We shall write also ‘A can be u-enforced”, “u”, “U” (and similarly),
“‘-absolute’ instead of “A can be (=, u)-enforced”, “=wu", “=U"
(and similarly), “(=, A)-absolute”’, respectively.

We shall write also “A can be plainly u-enforced”, “;”, “ (and
similarly), .“plainly A-absolute’” instead of “A can be (2, u)-enforc-
ed” “2u”, “2 U’ (and similarly), “(2, A)-absolute”, respectively.
2,( is the greatest memory relation, compare § 3,0, § 2.20, § 1.2.).

7. Lemma. Let U be an aim-collection, ~ be a memory relation. If an
A-absolute u-strategqy exists, then exactly one of the following cases occurs:
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(i) ~ S(u) and the set of all W-absolute u-strategies are disjoint.

(ii) The set of all (~, W)-absolute wu-strategies is the intersection of
~ S(u) and the set of all U-absolute u-strategies.

(The proof is simple.)

8.0. In the following (in § 3) we shall investigate those two ‘“‘extre-
me’”’ cases: W-absolute, and plainly W-absolute wu-strategies. There is
a trivial sufficient condition for the existence of an 2-absolute u-strategy:

8.1. Lemma. Let A be a well ordered aim-collection. Then an W-absolute
u-strategy exists.

Proof. Without loss of generality we shall assume P e . For each
x € P we put A(z) := min {A | A€ U, zuA} (where the minimum is taken
under the set-theoretical inclusion), and we choose some 6, € S(u) such
that s(z, 6;) < A(x). Let a° be the u-strategy which satisfies the condition:
0%z =0,z for all ze Z. If xe P, aeS(u), Ac ¥, s(z,0) = A, then
evidently s(z, 6%) = s(z, 67) < A(z) < A, i.e. o0 is an W-absolute u-stra-
tegy. Q.E.D.

8.2. Simple examples show that for the existence of an U-absolute
u-strategy it is not sufficient to suppose only that U is ordered, and
further, if A is finite, then the supposition that U is (well) ordered must

not be omitted; namely in both the cases [} A =0 can happen for
AeANau
some z.

From 8.1 there follows

8.3. Corollary.

(18) U= ) zu.
repP
Proof. From (15) we conclude (| zu o> U, since xu = U]
reP
M {kx}lp > UTT{P} = U. Let Ac () xu; from 8.1 there follows the

zeP
existence of an {A}-absolute u-strategy o°. Because xuA holds for all
z € P, s(x, 6°) = Aholds for each z,i.e. Ae . Hence (18) is valid. Q.E.D.

8.4. The direct analogue of Lemma 8.1 for plainly 2-absolute u-stra-
tegies does not hold, even for a one-element aim-collection 2 a plainly
A-absolute u-strategy need not exist. (E.g. P ={1, 2}, Po=0, priu =
={1,{1}), 4, hH, 2, {1H} L, A={1,1,1,1,..),(2,1,2,1,...)}, A =

— {A}. Evidently Ae( ) zu)— L)
zepP

8.5. It is important to give some non-trivial sufficient conditions
for the existence of a plainly -absolute u-strategy. This problem is
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solved (for our purposes) by the main result of § 3 —Theorem 11. But
first of all we introduce three definitions; let us note that the property
(I, T") and several othér ones are investigated in § 6.

'9.1. For xeP, 0 = m <1 +1(x), we define the sequence ximl =
= (@™ 0 <k <1+ xim) (the mth remainder of x): IU(xIml) :=
1=1(x) —m (wo —m 1= wofor 0 £ m < wo), 2™ : = xpmfor0 < k< 1 +
+ U(xtm1). Clearly x[ml¢e P, xlol = x.

9.2. We say that an aim A has the property (I, I) iff for all x,ye X,
and for each k, 0 < £ < 1 + min (I(x), {(y)), there holds

[XEAA (To,. o) = (Yo, -, Yi) A (XK ¢ AV ylkl e A)] = y € A.

9.3. We say that an aim-collection has the property (I, I') iff each
of its elements has the property (I, I').

Let us present a useful result:

10. Theorem. Let an aim A have the property (I, I'), where T" is the
graph of u. Let oo, o be plain u-strategies such that coz = czforallze Z n A,
where A = {x |z € P, 8(z, 0o) = A}. Then s(x, c) < Afor all x€ 4.

Proof. Let x€ A, xes(x, c) — A. There exists m, 0 = m <1 +
~+ U(x), such that ax € A for each k, 0 < k < m, and zp ¢ A (if such m
does not exist, then x € s(x, 6o) = A, which would be a contradiction),
and there exists y € s(xm, 6o) — A. Consequently (zo, ..., Tm, Y1, Y2, -..) €
€ 8(x, 0p) < A, and hence x € A (since A has the property (I, I')), which
is a contradiction. Therefore s(z, 6) = A for € A. Q.E.D.

11. Theorem. Let A be a well ordered aim-collection with the property
(1, T"), where T' is the graph of u. Then a plainly W-absolute u-strategy
exists.

Proof. Without loss of generality we shall assume Pe 2. Let us

o
“mark” all elements of the set §(u) by ordinal numbers: S(u) =

={0,10= 5 < & (n, & will always be ordinal numbers). For each

xz € P we denote A(x) := min {A| Ae ¥, x;A} (where the minimum is
taken under the set-theoretical inclusion), and we put 7(z) :=
:=min{n |0 £ 5 < &, s(x, 5,) < A(z)}. Let o be the plain u-strategy
such that 6% = o,z for all z¢€ Z.

Let z € P, x € 8(z, o) be chosen fixedly for the remaining part of this
proof. For each A€ U the following assertions (i) — (42¢) (in which
0 £ m <1 +(x)) hold:

() Ifm>0, xm_lch, xlml € A, then xIm~11 ¢ A

(Namely, under the suppositions there exists yes(g, ,, 6zy_p) ©
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< A(xm-1) < A such that y; = x,; thus xim-11 ¢ A, since A has the pro-

perty (I, I'). —If we besides suppose xsz for all k, 0 £ k < m, then
from (z) it follows that x(m-r1 ¢ A for r = 0, ..., m; hence there holds):

o
(23) If ximl € A, zxuA for each k, 0 < k < m, then x € A.
Further

(@i)) I m > 0, tm1uA, 8@m, Oy, ) & A, then xim-11 ¢ A.

(Namely, under the suppositions there exists y € s(¥m-1, 6yzn_,)) < A
such that y, = zp, ylll ¢ A; thus x(m-1 ¢ A, since A has the property
(I T).)

Now, there occurs exactly one of the following cases (), (5):
(o) Foreach k,0 < k < 1 4 (x), there holds s(z, 6,(z,_,)) = A(@x—1). Then
A(x;) < A(xg-,) for these k, and —because W is well ordered— there
exists », 0 £ % < 1 + I(x), such that A(z;) = A(x,) forallj,n < j <1 +
+ U(x). Hence, the sequence (7(¥)),<j<1+i(x) IS non-increasing, conse-
quently there exists m, j £ m < 1 4 {(x), such that #(x;) = n(xy) for
all j, m £ j <1+ l(x). But then ximl € s(x, 6,(z,)) < A@m).
(B) There exists n, 0 < n < 1 4 I(x), such that s(z;, o,(z,,) < A(®s-1)
for all j, 0 < j < n, but 8(xn, 6,(z,_,)) ¢ A(@n-1). Then A(z;) < A(zs_.)
for all j, 0 < j < n. If we put A := A(z,-1) in (¢i2), then we get ximl e
€ A(xp), where m :=mn — 1.

Thus in both the cases (), () there exists m, 0 £ m < 1 4 I(x),
such that x(7] € A(zy,), and A(z;) = A(zy-1) for all j, 0 < j < m. Let us

choose A := A(x,) (= A(x)); then ximle A, xk;A forall k, 0 £ &k < m.
From (i?) it follows that x € A = A(x).
Therefore we conclude: s(z, 60) < A(x) for all xe€ P, but A(z) < A

for each A € U such that vuA. Consequently, o0 is a plainly A-absolute
u-strategy.
Q.E.D.

12. Let us give a simple example of well ordered (even one-element)
aim-collection 2 such that a plainly -absolute u-strategy exists, but
i ha-s not the property (I, I'), where I is the graph of u:

P={0,1,2} P, = (5 pr1 u = {(0, {0}), (L, {0}), (1, {1}), (2, {1})},
A= {x]xerz—O} Al
From Theorem 11 there 1mmedlately follows

13. Corollary. Let u be a I'-generable game correspondence, let U be
a well ordered aim-collection with the property (I, I'). Then a plainly
U-absolute u-strategy exists.

(To be continued.)
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