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DISTINGUISHING SUBSETS OF SEMI-GROUPS
AND GROUPS

JOSEF ZAPLETAL

Received March 25, 1968

1. DEFINITIONS AND SYMBOLS

Let A be a non-void set. We shall call every finite sequence x =
= 21%3 ... Ty Where z;, 22, ..., ¥y € 4 a string over A. We shall denote
the void sequence by A, and the set of all strings by A4*. We shall call
|2 | = | ... 2y | = n the length of the string x. The length | A |
of the void string is 0. We identify strings of the length 1 with elements
of A. '

We define an operation of binary composition ay = z12; ... Tuthy: ...
ym for the strings e =@z, ... 2n, ¥y = y1Y2 ... Ym where x;, y;€ A
fori=1,2,..,nandj=1,2,...,m. Forz = 4, we put Ay = yA = y.
We write 2# instead of x .... z.

‘—.\fd
n-times

The operation of binary composition is associative. We shall call the
set A* with the unit (neutral element) /1 together with the operation
of binary composition a free monoid. (See [3], pages 3 and 18).

The language is intended to mean a free monoid 4* with an unary
relation L in A*. We shall denote the language as an ordered pair
(4*, L) where L & A*.

Let (A*, L) be a language. Let x € A*, y € A*. Let axb € L be equi-
valent to aybe L for each a € A*, be A*. Then we put » £y. The

L

relation = is a congruence on the free monoid 4*.
L

2. ON NOVOTNY'’S PROBLEM

Prof. M. Novotny put the following question:
Let A* be a free monoid. Let @ be a congurence on 4*. What pro-
perty must @ have in order that the language (4*, L) might exist for

which @ = Z holds true?
L

2.1 Remark. There exist such a set A and such a congruence © on A*
that @ # E for every subset L = A*.
L
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2.2 Example. Let 4 = {a, b, c}. Let {4}, {a}, {8}, {c}, ® = {x |z € 4%,
|| = 2} be the classes of the equivalence relation @ on A*. Then @
is a congruence relation and @ # £ for every L < A4*.

L

Proof. We shall show that @ is a congruence. Let 2 @ y. Let u € A%,
ve A*. If x = A then y = / and clearly uav = uyv and hence uzv O uyv.
Let x # A, then y s /1. It suffices to assume the case that at least one
of the elements u, v is non-void. (If u = v = A, then uxw = », uyv = y
implies wxv @ uyv). Then |uazv| > 1, |uyv] > 1 and hence uavem,
uyv € . We have uav @ uyv.

We shall prove that @ # £ for every L < A*. To prove that @ 5 &

L
we assume conversely that there exists a set L £ A* such that @ =

Let L contain at least two distinct elements of A*, of the length 1
for instance @ and b. Let wave L. If u = v = /A then ubv = be L and
conversely. In other cases uav € 77, and also ubv € n. The strings wav
and wbv belong simultaneously to L or to A* — L. Therefore a Z'b

L

and hence a @b, which contradicts the assumption that {a} and {b}
are classes.

Let L contain at most one element of 4* of the length 1. Then there

exist two elements in A*, for intance @ and b which do not belong to L.

The proof for a = b and hence a @ b, which contradicts the assumption

that {a} and {b} are classes, is analogous.
2.3 Example. Let 4 be & finite set containing at least two elements.
Let L ={a?jxe A*}. If =2 y then z = y.

Proof. Let a:..d y; we have 22e L and hence A xx € L; therefore

yx = Ayze L. There exists an element t € A* with the property yz = t2.

Let |z| = Jyl. Then 2 [t = |&2| = lyx| = ly| + |=| = 2 |o] and |t =
= |z| = |y|. It follows y =t = .

Let |z| < lyl. Then 2la| < [yl + la] = lyz| = |2] = 2Jt] and 2Jf) =
= |t?| = |yz| = |y| + |#| < 2 |y|. Thus |z| < |¢t| < |y|. From the equ-
ation yx = 2 there follows the existence of a string w % A with the
property y = tu, t = ux. It implies y = uzu. We choose an arbitrary

ve A* v # u, |v] = |u|. Clearly vavz € L. From z =F y follows vavy € L.
L

It implies the existence of an element s € 4* with the property vave = s2.
We have 2|s| = |s?| = |vavy| = |vaw| + |y| = luau| + ly| = ly| + ly| =
= 2|y| and |s| = |y| = |vav|. Thus vav = s = y = uzu. As we have
|v] = |u] it follows v = » which is a contradiction with the assumption
v #* u. Thus the case |z| < |y| is impossible and the assertion is proved.

2.4 Definition Let @ be a semi-group, %, v elements in . A mapping ¢



243

defined in @ by the equation #(x) = uxv is called a translation determined
by an ordered pair (u, v). (See [1] page 297). Let T' be the set of all transla-
tions in @, L a subset of G. We say that L distinguishes G if for any pair
of distinct elements x, y in G there exists an element £ e 7 such that
t(x) € L, t(y) € L or conversely.

2.5 Remark. Let @ be any congruence relation of A*. Consider the set
A*|O of all @ — classes of A* and denote by I(x € A*) the @ — class
including the element x. We define the operation of binary composition on
the set A*|O by the aid of the operation on A*. We assign to every pair
T, € A*|O the @ — class of A* including the element xy; in symbols
xy = xy. (See [7] page 170).

2.6 Theorem. Let A* be a free monoid, @ « congruence on A*. Then
the following statements are equivalent:

1. There exists a subset L < A* such that @ = =.

L

2. There exists a subset L in A*|@ such that JA*/@ 18 distinguished
by L.
Proof. Let (1) hold. From the assumptions z € L, and « £ y it follows

L
that A.x.AeL hence y=A.y.AeL and hence L = {J £ where

zel,
xeZe A*/O. Let us denote the set {Z |Te A*/@, & < L} by L. Let
Z € A*|O and § € A*/@ where & # §. Then for x € &, y € § the formula
2@y does not hold. (1) holds true, therefore 2nonZy. There exist ucA*,

; L
v€ A* such that uxv e L, uyv € L (or conversely). Since L contains with eve-
ry element x from L the whole class & € A*/® in which « lies too, 456 =
= uav € L follows from uave L and similarly @§5 = uyv € L follows
from uyv € L (or conversely). Therefore 4*/@ is distinguished by the
set L.

Suppose (2). Let us put L = U B, where Be L, and let z € A*,
yed*. °
(x) We shall prove that @y implies 5y. Let x@y; then uzv @ uyv
L

and hence uzv = uyv. If uxv € L we have uzv < L therefore alsouyy £ L
and we obtain wyv € L. Similarly if uyv € L we have uav € L. Hence
zEy.

L

(f) We shall prove that xSy implies x@y. We shall carry out

the proof (8) by the contradiction. Let us suppose that there exist z,

y € A* such that 25y but xnon@y. According to (2) there exists
L

a translation t e T such that (%) € L, {() € L or conversely. Let the
first case occur. There exist u, » € A*/@ such that {(f) = #&0 = v,
t(§) = yo = uyv and it holds uwv e L, ugv e L. Let ue i, ved be
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arbitrary. Consequently there is uzv € uzv € L and similarly uyv € uyv € L
Since uzv < L and uyv n L = @ it follows uaw € L and wyv € L. But
this is the contradiction with the assumption = y Hence it holds (f).

From («) and (f) we shall get that (1) holds true
2.7 Theorem. Let I’ be the complement of L in the free monoid A*.
Then £ = Z.
. L I
Proof. For z, y € A* there holds zZy exactly when uav € L is equi-
L

valent with wyv € L for arbitrary u, ve 4*. Let be uave L’. Let us
suppose uyv € L. Comequently uyv € L and that is the contradiction
with the assumption x_y

2.8 Theorem. Let A (md B be semi-groups, L a subset in A. Let ¢
be a homomorphism of A onto B for which ¢~ (¢(L)) = L holds true
Let L distinguish A. Then @(L) distinguishes B.

Proof. Let r, se B, r # s, let us choose x € ¢~ (1), y € p~1 (s) arbi-
trarily. It is « # y and there exist u, v € 4 such that uav € L and uyv € L
or conversely. It is ¢~1p(L)) = L and therefore g(uwv) = p(u).r

@) € p(L) and g(uyv) = @(u) s p(v) € p(L) or conversely.

2.9 Remark. The converse statement of the theorem 2.8 does mot hold
true.

2.10 Example. Let 4 be additive semi-group of nonnegative integers.
Let us denote by L the subset of even numbers. Let B be additive semi-
group which has two elements 0 and 1 for which 1 41 =0. Let ¢
be a homomorphism of 4 onto B for which ¢(L) = 0, ¢(L’) = 1. Then
the subset ¢(L) distinguishes B, but L does not distinguish 4.

Proof. It is sufficient to choose two arbitrary even numbers a,
be A. For every translation t e T' there holds (@) € L if and only if
t(b) e L.

2.11 Definition. Let & be a semi-group, I £ G~ We shall call the set I
an tdeal of the semi-group G when ab e I and ba € I hold forae I, be@.
If I is a proper non-void subset in G, then we shall call I a proper ideal.
The proper ideal which has at least two elements is called a non-trivial
tdeal.

2.12 Theorem. Lét @ be a semi-group, I a non-trivial ideal in Q. Then I
does not distinguish Q.

Proof. The ideal I is non-trivial, it has hence at least two elements.
Let #,yel, x £ y. Forall ue G thereisuz eI, uye I and for all v € @
there is uazv € I, uyv € I. For a chosen pair of the elements z, y there
does not exist a translation ¢t € 7' such that ¢(x) € Z, {(y) € I or conversely.
Thus I does not distinguish G.

2.13 Corollary. Let G be a semi-group, L a subset in G. In order that L
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distinguishes @, there is necessary that neither L nor L’ contain a non-
trivial ideal.

2.14 Definition. (2°) A non-void subset R of a semigroup G is said
to be a normal complez, if for arbitrary u, v € G and for arbitrary z, y € R
always uyv € R follows from uav € R.

A normal complex is said to be a non-trivial one, if it contains at
least two different elements.

2.16 Remark. From the definition of the mon-trivial complex there
follows that it does not distinguish the semi-group G. It is sufficient to take
x, ye R, x #y.

2.16 Theorem (2°) Let @ be a semi-group, R a subset in G. The following
statements are equivalent.

(1) R is the normal complex.

(2) There exists a homomorphism ¢ of the semi-group G such that R
is a complete counter image of one element at the homomorphism ¢.

2.17 Remark. Let G be a group and H its normal divisor, then every
class of the decomposition of the group G modulo H is a normal complex.

2.18 Theorem. Let G be a group, H its normal divisor containing at
least two different elements. Then no class of the decomposition modulo H
(especially H) distinguishes G.

Proof. The statement follows from the remarks 2.15 and 2.17.

2.19 Theorem. (2°) The semi-group G is a group if and only if it does
not contain proper ideals.

2.20 Remark. Regarding the theorem 2.12 the condition for the distin-
guishing is not a sufficient condition.

Proof. A group does not contain a non-trivial ideal. Let us put
L = aH where a € @ and where H is a normal divisor containing at
least two elements. According to the theorem 2.18 the set L does not
distinguish @. Simultaneously, neither L nor L’ contain a proper ideal.

2.21 Agreement. Let G be a semi-group, L a non-void proper subset
in @. Let T be the set of all translations. For arbitrary ¢t € 7' put 7% =
={zjre@ tx)e L} and T} ={zlre @, t(r)e G — L}. Let us denote
by G; = {T, T;} the decompomtlon corresponding to the translation ¢
and to the subset L. Let us denote by Gp = A G. the least common

refinement of the decompositions Gy, t € T (See [2])
2.22 Theorem. Let G be a semi-group, L = @ a subset. Then L distin-
guishes the semi-group G if and only if Gp is the least decomposition.
Proof. Let Gy be the least decomposition. Consequently every class
Gr contains exactly one element. Let x, y € G, x # y. There exists

(2°) The definitions and statements see for example Ljapin [4].
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to € T such that to(x) € L and to(y) € L (or conversely). The set L distin-
guishes G.

Let L distinguish @. Let z, y € G, « # y. There exists t, € T' such that
to(x) € L and #o(y) € L (or conversely). The elements x, y are not in the
same class of the decomposition Gy.

3. EXAMPLES

3.1 Example. Let R be the multiplicative group of the positive rational
numbers, N < R the set of the natural numbers; then N distinguishes R.

Proof. Let z, y € R, @ # y. Without loss of generality it is possible
to assume that z > y.

Let x—-.]—’, Y= p’. We put u =1, v=l; then uxv:l.g-
q q , , p q
2 _1eN and uyv:l.—z—),—-gz-p—,:?i:—y—<l and hence
P 9 P 7 9 z
uyv € N.

3.2 Example. Let G = {a°, a!, a2, a3, a4, a° = a®} be a cyclic group of
the order 5. Let L = {a?, a3}. Then L distinguishes G.

Proof. The cyclic group is a commutative multiplicative group.
The system of all translations 7' is determined by the elements a°, al.
a?, a3, ot indeed, t(x) = uxv = uvxr = afx for a suitable k. Let ¢ be
the translation determined by the element a* € @. Let G4, be the decom-
position corresponding to the translation #, (k = 0,1, 2, 3, 4).

We shall construct @;, corresponding to the subset L.

G, = {Thy = {a, ¥}, T), = (a0, at, a*}}
G, = T ={a\, a?}, T\ ={ao a3 a%}}
Gy, =A{Ta={a% a1}, T, ={a a* at})
G, =A{Ty ={a% a*}, T} ={a!, a? a3}
G,‘ = {T}: = {a3, a4}, T’,i = {a®, al, a,z}}

Let Gp =téT Gy, Let us put T — T o 7o n T n T2 n T
k

k=0,1,2,3, 4 are the classes of the decomposition Gr. The exponents
form a five-element sequence of the zeros and ones. The intersection
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oo111 — {a?} 70101 — ()
01011 — (§ 10110 — ()
01101 — () 11001 — {a°}

01110 {(13} 711010 — ﬁ

Twoit — {q1} T11100 — {g4}

Gr = {{a%}, {a1}, {a?}, {a®}, {a*}}. According to the theorem 2.21 the
set L distinguishes Q.

3.3 Example. Let G be a cyclic group of the order 9. Let L = {a?,
as, ad}.

Then L does not distinguish @.

Proof. The set H = {a°, a3, aS} is a subgroup of the group @G. Since ¢
is eyclic, H is a normal divisor. But L = a2H. Thus L is a class modulo
H. According to the theorem 2.17 the set L does not distinguish G.

4. DISTINGUISHING SUBSETS OF GROUPS

4.1 Lemma. Let @ be a group, L a proper subset in G. Let x, y be ele-
ments tn Q. Then the following statements are equivalent.

(1) For all », v G the condition uav € L is equivalent with uyv € L.

(2) For all », ve G the condition uz~lyv € L is equivalent with

wve L.

Proof. Let (1) hold. Let us now choose %y, v € @ arbitrarily but fixed
and further let us choose u; = uox~1, v, = vo. Then uywy = upr—l2vy =
= uxv € L, exactly when wgr—lyvo = uyv e L. Hence upz—lyvoe L is
equivalent with wugvg € L for all g, vo € G, that means, there holds (2).

Similarly the statement (1) can be proved from the statement (2).

4.2 Remark. In this paragraph we denote the unit of a group by 1.

4.3 Lemma. Let G be a group, L a proper subset in G. Then the following
statement are equivalent.

(1) L does not distinguish G.

(2) There extsts an element z € G, z # 1 such that for all, wv e G, wve L
is equivalent with uzv € L.

Proof. Let (1) hold. There exist z, y€ @ z # y such that for all
u, v € G there holds uxv € L exactly when uyv € L. This is, however,
according to lemma 4.1 equivalent with the statement, that uz-1yv e L
axactly when uv e L. If we put 21y = z in the last eqmvalence then
2 # 1 and we shall get (2).
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Let (2) hold. Then the statement (1) follows directly from the defi-
niton 2.4.

4.4 Definition. Let @ be a group, L a proper subset in @, 2 % 1 an
element in G. Let uv € L be equivalent with wzv e L for all u, ve G.
We shall denote by @(z) the cyclic group generated by the element 2
and we shall call it the a-group of the set L in G.

4.5 Lemma. Let Q(z) be an a-group of the set L in G. Then L = U

ael
a@)(z) holds true.

Proof. Let ae L. Let us denote K = a'L. Then 27 e K for all
integers n.

Obviously 1 € K. We shall prove that 2¥ € K is equivalent with zk+1 e K
For all u, ve @ it holds true that wv e L is equivalent with wzv € L.
Let us put ¥ = a, v = 1. We obtain that a € L is equivalent with aze L
and hence z € K. Let us denote the last equivalence by (+). If 2* € K =
= a~1L then az¥ € L. According to (+) the relations az*¥ € L, azkz e L
are equivalent. It is further az¥z = az¥+1 ¢ L. The last relation is equi-
valent with 2*¥*1eq-1L = K. From the preceding equivalences we
shall get that 2 € K is equivalent with 2k+1 ¢ K. Considering that z € K,
there holds 27 € K for all integers.

It follows that Q(z) = K, hence a@(z) £ L. From this U aQ(z) < L.
aeL
Since, however a € a@(z) we have UJ a@(z) = L.
a€eL

4.6 Definition. Let G be a group, L a non-void subset in &. Then we
define the set W(L) & @ as follows: W(L) = {z|z € @ with the property
uzv € L if and only if uv € L for all u, v € G}.

4.7 Theorem. Let @ be a group, L a proper non-void subset in G. Then
W(L) is a normal divisor of the group Q.

Proof. I. We shall show that W(L) is a subgroup of the group Q.

o) From the definition of W(L) follows that 1 € W(L).

B) Let 21, z, € W(L). We shall show that zyz, belongs to W(L). Since
2, and 2, belong W(L) the relation uv € L for all u, » € G is equivalent
with uzw € L and similarly uv € L is equivalent with uz;v € L. Now let
us choose g, 99 € G arbitrary but fixed and let us put further u; = uo,
v; = 230p. Then it holds ugv, € L if and only if 4oz, = u,v, € L, which
is. equivalent with %g212;90 = 12191 € L. From this uv € L is equivalent
with uz;z;0 € L for all u, v € G. Hence 2,2, € W(L).

%) Let z € W(L). We shall show that z~1 is an element of W(L). Since
ze W(L), wwe L is equivalent with uzv € L. Let us choose u,, vo€ @
arbitrary but fixed and let us put u; = uy, v; = 2719, Consequently
it holds: wugvp = ui2v; € L exactly when wu¢z~lvy = uyv, € L. Hence
wv € L is equivalent with uz—1v € L for all %, v € G. Hence 2~1 € W(L).
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II. We shal show that W(L) is a normal divisor of the group G, that
means, for z € W(L) and arbitrary element a € @ there holds aza~1 € W(L).
Let us choose ug, vo € G arbitrary but fixed and let us choose further
u; = uo and v = a~lv,. Since there is z € W(L) and it holds vy =
= uoa . a1 = uyv; € L the relation ugv, € L is equivalent with u2v, =
= up(aza—1) vo € L. Hence wuv € L is equivalent with wuaza~-ve L for
all 4, v € G and it holds aza—1e W(L).

4.8 Theorem. Let G be a group, L a proper non-void subset in G. Then
L = U aW(L).

aelh
Proof. W(L) is a normal divisor. We shall show that with the element
a from the set L the whole class aW(L) is a subset of L. Let ze W(L)
and choose a € L arbitrarily, then ¢ .1 € L is equivalent with a.z.
.1 e L. Thus for all z e W(L) there is az € L and therefore aW(L) € L.
Hence U aW(L) £ L. Conversely if a € L then a e aW (L) so that L

aeL
c UaW().
a€L
4.9 Definition. Let H be a normal divisor of a group G. We say that H
is @ proper normal divisor if 1 # H # @ holds true.

4.10 Lemma. Let H be a proper normal divisor of a group Q. If L =

= U af, then L does not distinguish Q.
acL

Proof. We shall prove that for heH h #1 holds that wv e L
is equivalent with uhv € L. Let wv € Lthen uvH < Lbut uvH = u(vH) =
= u(Hv)and hence uhv € uHv £ L. Let uhv € L then uv € uvH = uHvy =
= u(hH) = uhvH g L.

4.11 Theorem. Let @ be a group, L a proper nonvoid subset in G. Then
the following statements are equivalent:

(1) L does not distinguish G. .

(2) There exists an a-group Q(z) such that

L = U aQ(2).

ael,

(8) There exists a proper normal divisor H such that

L=y aH.
ael
Proof. Let (1) hold. According to the lemma 4.3 there exrs’(;s -an

a-group @(z) generated by an element z, z % 1 for whlch a.ccordmg to
the lemma 4.5 L = UaQ( 2) holds. :

Let (2) hold. Then there exists the set W(L) #:{1} in @ which is
a normal divisor (theorem 4.7) with the property L = U aW (L) (theorem
. ael,
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4.8). Tt is L # @ and thus also W(L) # @ because if W(L) = G held
true then L = {J aW(L) = @ would be. If we put H = W(L) then holds

aeL
(3).
Let (3) hold, then according to the lemma 4.10 the statement will
hold.

4.12 Corollary. If G is a simple group (containing no proper mormal
divisor), then an arbitrary proper non-void subset L of the group G distin-
guishes Q.

4.13 Corollary. If G is a cyclic group of the prime number order, then
every proper non-void subset L of the group G distinguishes Q. |

4.14 Corollary. Let Q be a group, L a proper subset in G containing the
unit. Let L contain mo proper normal divisor of the group G. Then L
distinguishes G.

4.15. Corollary. Let @G be a group, L a proper nonvoid subset in G.
Let L contain no class modulo a proper normal divisor of the group G.
Then L distinguishes G.

4.16 Theorem. Let G be a group, L a proper non-void subset in G.
Then & = {aW(L) | a € L} distinguishes G|W(L). _

Proof. We shall carry out the proof by the contradiction. Let %
do not distinguish Q/W(L). Then there exist different elements % =
= gW(L), § =yW(L) in G/W(L) such that the condition %5 e ¥
is equivalent with 4Z5 € % for all @, ¥ € G/W(L). The relation 4%5 =
= uxv W(L) e ¥ is equivalent with uaxv W(L) € L according to the
theorem 4.8. Hence uxv € L. Conversely if uav € L then uav W(L) S L
and this is equivalent with @it = uawv W(L) e ¥. We obtain that
a&d = uxv W(L) e ¥ is equivalent with uxv e L. From the preceeding
equivalences there follows that wuaw e L is equivalent with wuyv € L.
The last equivalence is, however, according to the lemma 4.1 equivalent
with the statement uz—lyv € L if and only if uv € L. Then zy-! is an
element of W(L) and it holds zy—1W(L) = W(L). It holds now that
yW(L) = Wy = @y W) y = sy W(L) y) = a(y-yW(L)) =
= zW(L). In this way we shall get the equality £ = W (L) = yW(L) =
= ¢. This is, however, the contradiction. Therefore .# distinguishes
the factor-group G/W(L). '

The results of the theorems 4.11 and 4.16 may be formulated as
follows.

4.17 Theorem. Let G be a group, L a proper non-void subset in Q.
Let L do not distinguish G. Then there exist a group Gy and a homomorphism
¢ : G — Gy which i3 not an isomorphism such that L = ¢~ '[p(L)] and
@(L) distinguishes the group G, .
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