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D I S T I N G U I S H I N G SUBSETS OF SEMI-GROUPS 
AND GROUPS 

JOSEF ZAPLETAL 

Received March 25, 1968 

1. D E F I N I T I O N S AND SYMBOLS 

Let i be a non-void set. We shall call every finite sequence x = 
= X\Xz... xn where X\, x2, ..., xne A a string over A. We shall denote 
the void sequence by A, and the set of all strings by A*. We shall call 
| x | = | X\X2 ... xn\ = n the length of the string x. The length | A | 
of the void string is 0. We identify strings of the length 1 with elements 
of A. 

We define an operation of binary composition xy = X\x2 ... xny\y2 ... 
ym for the strings x = X\x2...xn, y = y\y2-..ym where x%, y$eA 
for i = 1, 2, ..., n and j = 1, 2, ..., m. For x = A, we put Ay = yA = y. 
We write xn instead ot x — x. 

n- times 

The operation of binary composition is associative. We shall call the 
set A* with the unit (neutral element) A together with the operation 
of binary composition a free monoid. (See [3], pages 3 and 18). 

The language is intended to mean a free monoid A* with an unary 
relation L in A*. We shall denote the language as an ordered pair 
(.A*, L) where L £ A*. 

Let (A*, L) be a language. Let x e A*, y e A*. Let axb e L be equi­
valent to aybeL for each aeA*, be A*. Then we put xSy. The 

L 

relation S is a congruence on the free monoid A*. 
L 

2. ON NOVOTNY'S PROBLEM 

Prof. M. Novotny put the following question: 
Let A* be a free monoid. Let © be a congurence on A*. What pro­
perty must 0 have in order that the language (A*, L) might exist for 
which 0 = 3 holds true? 

L 

2.1 Remark. There exist such a set A and such a congruence 0 on A* 
that 0 7-= S for every subset L g A*. 

L 
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2.2 Example. Let .A = {a, b, c}. Let {A}, {a}, {b}, {c}, n = {x \x e A*, 
\x\ ^ 2} be the classes of the equivalence relation 0 on A*. Then 0 
is a congruence relation and 0 ^ E for every L £ A*. 

L 

Proof. We shall show that 0 is a congruence. Let x 0 y. Let u e A*, 
v E A*.Ifx = A then y = A and clearly uxv = uyv and hence uxv 0 uyv. 
Let x 7̂  /I , then 3/ -^ / l . It suffices to assume the case that at least one 
of the elements u, v is non-void. (If u = v = A, then uxv = x, uyv = y 
implies uxv 0 uyv). Then \uxv\ > 1, \uyv\ > 1 and hence uxv en, 
uyv G it. We have uxv 0 uyv. 

We shall prove that 0 =£ E for every I e i * . To prove that 0.^E 
L L 

we assume conversely that there exists a set L s i * such that 0 = E. 
L 

Let .L contain at least two distinct elements of A*, of the length 1 
for instance a and b. Let uav e £ . If ^ = «; = /I then ubv = b e L and 
conversely. In other cases uav e ;r, and also ubv e n. The strings uav 
and w£w belong simultaneously to L or to A* — L. Therefore a E b 

L 

and hence a 0 b, which contradicts the assumption that {a} and {6} 
are classes. 

Let L contain at most one element of A* of the length 1. Then there 
exist two elements in A*, for intance a and b which do not belong to L. 
The proof for a E b and hence a 0 b, which contradicts the assumption 

L 

that {a} and {b} are classes, is analogous. 
2.3 Example. Let A be a finite set containing at least two elements. 

Let L = {x2\x G A*}. If x E y then x = y. 
L 

Proof. Let x S y; we have x2 e L and hence AxxeL; therefore 
L 

yx = AyxeL. There exists an element t e A* with the property yx = t2. 
Let \x\ = \y\. Then 2 \t\ = \t2\ = \yx\ = \y\ + \x\ = 2 \x\ and \t\ = 

= |a;| = \y\. It follows y = t = x. 
Let \x\ < \y\. Then 2|a?| < \y\ + \x\ = \yx\ = \t2\ = 2\t\ and 2\t\ = 

= \t2\ = \yx\ = \y\ + \x\ < 2 \y\. Thus \x\ < \t\ < \y\. From the equ­
ation yx = t2 there follows the existence of a string u ^ A with the 
property y = tu, t = ux. I t implies y = uxu. We choose an arbitrary 
v e A*,v ^ u, \v\ = \u\. Clearly vxvx e L. From x E y follows vxvy e L. 

L 

It implies the existence of an element s e A* with the property vxvx = s2. 
We have 2\s\ = \s2\ = \vxvy\ = \vxv\ + \y\ = \uxu\ + |y| = \y\ + |«/| = 
= 2\y\ and |«| = jy| = \vxv\. Thus va;t; — s = y = uxu. As we have 
|v| = \u\ it follows t; = «* which is a contradiction with the assumption 
v # u. Thus the case \x\ < \y\ is impossible and the assertion is proved. 

2.4 Definition Let 0 be a semi-group, u, v elements in 0. A mapping t 
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defined in G by the equation t(x) = uxv is called a translation determined 
by an ordered pair (u, v). (See [1] page 297). Let T be the set of all transla­
tions in G, L a subset of G. We say that L distinguishes G if for any pair 
of distinct elements x, y in G there exists an element t e T such that 
t(x) e L, t(y) eL, or conversely. 

2.5 Remark. Let 0 be any congruence relation of A*. Consider the set 
A*jO of all 0— classes of A* and denote by x(x e A*) the 0 — class 
including the element x. We define the operation of binary composition on 
the set A*\0 by the aid of the operation on A*. We assign to every pair 
x, y e A*\0 the 0 — class of A* including the element xy; in symbols 
xy = xy. (See [7] page 170). 

2.6 Theorem. Let A* be a free monoid, 0 a congruence on A*. Then 
the following statements are equivalent: 

1. There exists a subset L £ A* such that 0 = S. 
L 

2. There exists a subset L in A*\0 such that A*\0 is distinguished 
by L. 

Proof. Let (1) hold. From the assumptions xe L, and x S y it follows 
L 

that A . x . A e L hence y = A .y . Ae L and hence L = \J x where 
X€L 

xe xe A*\0. Let us denote the set {x \x e A*\0, x £ L} by L. Let 
x e A*\0 and y e A*\0 where x =£ y. Then for x e x, y e y the formula 
. r e d o e s not hold. (1) holds true,therefore xnonSy. There exist ueA*, 

_ • L 

veA* such that uxve L, uyv eL (or conversely). SinceL contains with eve­
ry element x from L the whole class x e A*\0 in which x lies too, uxv = 
= uxv eL follows from uxv eL and similarly uyv = uyv e L follows 
from uyv eh (or conversely). Therefore A*\0 is distinguished by the 
set L. 

Suppose (2). Let us put L = U B, where BeL, and let xeA*, 
ye A*. 

(a) We shall prove that x0y implies xSy. Let x0y; then uxv 0 uyv 
L 

and hence uxv = uyv. If uxv e L we have uxv £ L therefore also uyv g L 
and we obtain uyv eL. Similarly if uyv eL we have uxv eL. Hence 
xSy. 

L 

(/?) We shall prove that xSy implies x0y. We shall carry out 
the proof (/?) by the contradiction. Let us suppose that there exist x, 
ye A* such that xSy but xnon0y. According to (2) there exists 

L 

a translation t e T such that t(x) eL, t(y) eL or conversely. Let the 
first case occur. There exist u, veA*j0 such that t(x) = uxv = Uxv, 
t(y) = uyv == uyv and it holds uxv eL, uyv eL. Let ueu, vev be 
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arbitrary. Consequently there is uxv e uxv e L and similarly uyv e uyv e L. 
Since uxv gz L and uyv n L = 0 it follows Maw e L and IM/V e L. But 
this is the contradiction with the assumption xEy. Hence it holds (/?). 

L 

From (a) and (fi) we shall get that (1) holds true. 
2.7 Theorem. Let L' be the complement of L in the free monoid A*. 

Then E = E. 
L L' 

Proof. For x, y e A* there holds xEy exactly when uxv eLm equi-
L 

valent with uyv eL for arbitrary u, veA*. Let be uxv e L\ Let us 
suppose uyveL\ Consequently uyv e L and that is the contradiction 
with the assumption xEy. 

L 

2.8 Theorem. Let A and B be semi-groups, L a subset in A. Let cp 
be a homomorphism of A onto B for which (p~l(cp(L)) = L holds true. 
Let L distinguish A. Then (p(L) distinguishes B. 

Proof. Let r, s eB, r ^ s, let us choose x e cp~x (r), y e cp~l (s) arbi­
trarily. I t is x -?-: y and there exist u,v e A such that uxv e L and uyv e L 
or conversely. It is cp~l(<p(L)) = L and therefore (p(uxv) = (p(u) . r . 
. (p(v) e (p(L) and (p(uyv) = <p(u) s cp(v) e <p(L) or conversely. 

2.9 Remark. The converse statement of the theorem 2.8 does not hold 
true. 

2.10 Example. Let A be additive semi-group of nonnegative integers. 
Let us denote by L the subset of even numbers. Let B be additive semi­
group which has two elements 0 and 1 for which 1 + 1 = 0 . Let cp 
be a homomorphism of A onto B for which cp(L) = 0, q>(L') = 1. Then 
the subset cp(L) distinguishes B, but L does not distinguish A. 

Proof. I t is sufficient to choose two arbitrary even numbers a, 
b e A. For every translation teT there holds t(a) e L if and only if 
t(b)~L. 

2.11 Definition. Let G be a semi-group, I Ql G. We shall cajl the set / 
an ideal of the semi-group G when ab el and ba eI hold for a eI, b e G. 
If J is a proper non-void subset in G, then we shall call I a proper ideal. 
The proper ideal which has at least two elements is called a non-trivial 
ideal. 

2.12 Theorem. Let Gbe a semi-group, I a non-trivial ideal in G. Then I 
does not distinguish G. 

Proof. The ideal I is non-trivial, it has hence at least two elements. 
Let x, y el, x -^ y. For all u eG there is ux el, uy el and for all v e G 
there is uxv e I, uyv e I. For a chosen pair of the elements x, y there 
does not exist a translation t e T such that t(x) e I, t(y) e I or conversely. 
Thus I does not distinguish G. 

2.13 Corollary. Let G be a semi-group, L a subset in G. In order that L 
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distinguishes G, there is necessary that neither L nor & contain a non-
trivial ideal. 

2.14 Definition. (2°) A non-void subset R of a semigroup G is said 
to be a normal complex, if for arbitrary u, v e G and for arbitrary x, y G R 
always uyv e R follows from uxv e R. 

A normal complex is said to be a non-trivial one, if it contains at 
least two different elements. 

2.15 Remark. From the definition of the non-trivial complex there 
follows that it does not distinguish the semi-group G. It is sufficient to take 
x, yeR, x ^y. 

2.16 Theorem (2°) Let Gbe a semi-group, R a subset in G. The following 
statements are equivalent. 

(1) R is the normal complex. 
(2) There exists a homomorphism cp of the semi-group G such that R 

is a complete counter image of one element at the homomorphism (p. 
2.17 Remark. Let G be a group and H its normal divisor, then every 

class of the decomposition of the group G modulo H is a normal complex. 
2.18 Theorem. Let G be a group, II its normal divisor containing at 

least two different elements. Then no class of the decomposition modulo H 
(especially H) distinguishes G. 

Proof. The statement follows from the remarks 2.15 and 2.17. 
2.19 Theorem. (2°) The semi-group G is a group if and only if it does 

not contain proper ideals. 
2.20 Remark. Regarding the theorem 2.12 the condition for the distin­

guishing is not a sufficient condition. 
Proof. A group does not contain a non-trivial ideal. Let us put 

L = aH where a e G and where H is a normal divisor containing at 
least two elements. According to the theorem 2.18 the set L does not 
distinguish G. Simultaneously, neither L nor L* contain a proper ideal. 

2.21 Agreement. Let G be a semi-group, L a non-void proper subset 
in G. Let T be the set of all translations. For arbitrary t e T put T°t = 
= {x\x e G, t(x) e L} and T\ = {x\x e G, t(x) eG — L}. Let us denote 
by Gt = {T°t, T't) the decomposition corresponding to the translation t 
and to the subset L. Let us denote by GT = A @t • the least common 

teT 
refinement of the decompositions Gt, teT (See [2]). 

2.22 Theorem. Let G be a semi-group, L cz G a subset. Then L distin­
guishes the semi-group G if and only if GT is the least decomposition. 

Proof. Let GT be the least decomposition. Consequently every class 
GT contains exactly one element. Let x, yeG, x 7-= y. There exists 

(2°) The definitions and statements see for example Ljapin [4], 
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t0 G T such that t0(x) e L and t0(y) e X (or conversely). The set X distin­
guishes G. 

Let £ distinguish 0. Let x,yeG,x^y. There exists ^ 0 e T such that 
t0(x) e L and t0(y) e L (or conversely). The elements x, y are not in the 
same class of the decomposition QT • 

3. EXAMPLES 

3.1 Example. Let B be the multiplicative group of the positive rational 
numbers, N cr B the set of the natural numbers; then N distinguishes B. 

Proof. Let x, y e B, x =£ y. Without loss of generality it is possible 
to assume that x > y. 

P p' Q P 
Let x = =-, y = — . We put u = 1, v = —; then uxv = 1 . — . 

q q l p q 
q p' q p' p y 

. - i == 1 eJV and uyv == l . -± -~ .^ -=^ - 7 - :™ = — < 1 and hence 
p q p q q x 

uyv e N. 
3.2 Example. Let G = {a0, a1, a2, a3, a4, a5 = a0} be a cyclic group of 

the order 5. Let L = {a2, a3}. Then L distinguishes G. 
Proof. The cyclic group is a commutative multiplicative group. 

The system of all translations T is determined by the elements a0, a1. 
a2, a3, a4 indeed, t(x) = uxv = uvx = akx for a suitable k. Let t& be 
the translation determined by the element ak e G. Let Gtk be the decom­
position corresponding to the translation tjc, (k = 0 ,1 , 2, 3, 4). 

We shall construct Qtk corresponding to the subset L. 
Qh = K = {«2, «3}, T/0 = {a°, a\ a*}} 

0«. = {-"£ = R «2}> -".1 = K> «3, «4}} 
<?.* = K = {«°, «*»}, Tl, = {a2, a', a4}} 

<?«, = K = {<-°. «4}, ^ , = {«', «2, »3}} 

<?.. = K = {«3> «4}, < = {<*, a\ a*}} 

Let 5 r = A 0,, . Let us put 7"°w"« = . j * n T\\ n rfc n l £ n ffr. 

The non-void sets ywW« where e* has the values zero and one for 
k = 0, 1, 2, 3, 4 are the classes of the decomposition (5^. The exponents 
form a five-element sequence of the zeros and ones. The intersection 
of more than two sets T% is void. For the sequences 10*1*2*3*4> which 
contain more than two zeros the sets TWIHHH are void. Similarly the 
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sets T'«HW* whose sequences contain more than three ones are void. 
Therefore it is sufficient to consider the sequences containing exactly 
two zeros and the sets TViW* corresponding to them. 

lpoom _ /^2} 2*10101 = j0 
yoion __ 0 yiono = 0 
^onoi ^ 0 !fiiooi = {ao} 
yomo __ / a 3 | 2*11010 = 0 
^10011 _ {al} ^11100 = {a4j 

GT = {{ao}, {a1}, {a2}, {a3}, {a4}}. According to the theorem 2.21 the 
set L distinguishes G. 

3.3 Example. Let G be a cyclic group of the order 9. Let L = {a2, 
a*, a8}. 

Then L does not distinguish G. 
Proof. The set H = {a0, a3, a6} is a subgroup of the group G. Since G 

is cyclic, H is a normal divisor. But L = a2H. Thus L is a class modulo 
H. According to the theorem 2.17 the set L does not distinguish G. 

4. D I S T I N G U I S H I N G SUBSETS OF GROUPS 

4.1 Lemma. Let G be a group, L a proper subset in G. Let x, y be ele­
ments in G. Then the following statements are equivalent. 

(1) For all u, v G the condition uxveL is equivalent with uyveL. 
(2) For all u, veG the condition ux~lyv e L is equivalent with 

uv e L. 
Proof. Let (1) hold. Let us now choose UQ, v0 e G arbitrarily but fixed 

and further let us choose Uy = Uox~l, V\ = %. Then u0v0 — UoX~lxvQ = 
= uxv e L exactly when UoX~xyvQ = uyv e L. Hence UoX~xyvQ e £ is 
equivalent with UoV0 e L for all Uo, v0 e G, that means, there holds (2). 

Similarly the statement (1) can be proved from the statement (2). 
4.2 Remark. In this paragraph we denote the unit of a group by 1. 
4.3 Lemma. Let Gbea group, L a proper subset in G. Then the following 

statement are equivalent. 
(1) L does not distinguish G. 
(2) There exists an element zeG,z 7-= 1 such that for all, u v eG,uv e L 

is equivalent with uzv eL. 
Proof. Let (1) hold. There exist x, y e G x ^ y such that for all 

u, veG there holds uxv e L exactly when uyv e L. This is, however, 
according to lemma 4.1 equivalent with the statement, that ux~xyv eL 
axactly when uveL. If we put x~ly == z in the last equivalence then 
z 9-: 1 and we shall get (2). 
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Let (2) hold. Then the statement (1) follows directly from the deft-
niton 2.4. 

4.4 Definition. Let G be a group, L a proper subset in G, z -^ 1 an 
element in G. Let uv eL be equivalent with uzv e L for all u, v e G. 
We shall denote by Q(z) the cyclic group generated by the element z 
and we shall call it the oc-group of the set L in G. 

4.5 Lemma. Let Q(z) be an a-group of the set L in G. Then L = \J 
aeL 

aQ(z) holds true. 
Proof. Let aeL. Let us denote K = a~xL. Then zn eK for all 

integers n. 
Obviously l e i . We shall prove that zk e K is equivalent with z#+1 e K 

For all u, v e G it holds true that uv e L is equivalent with uzv e L. 
Let us put u = a, v = 1. We obtain that a e L is equivalent with aze L 
and hence zeK. Let us denote the last equivalence by (+)• If zk e K = 
= a~lL then azk eL. According to (+) the relations azk eL, azkzeL 
are equivalent. It is further azkz = azk+1 e L. The last relation is equi­
valent with zk+l e a~lL = K. From the preceding equivalences we 
shall get that zk e K is equivalent with z*+i e K. Considering that zeK, 
there holds zn e K for all integers. 

I t follows that Q(z) g K, hence aQ(z) g L. From this U oJQ(z) g L. 
aeL 

Since, however a e aQ(z) we have U aQ(z) = L. 
aeL 

4.6 Definition. Let G be a group, L a non-void subset in G. Then we 
define the set W(L) £ G as follows: W(L) = {z\z e G with the property 
uzv e L if and only if uv e L for all u, v e (?}. 

4.7 Theorem. Let G be a group, L a proper non-void subset in G. Then 
W(L) is a normal divisor of the group G. 
Proof. I. We shall show that W(L) is a subgroup of the group G. 

oc) From the definition of W(L) follows that 1 e W(L). 
/?) Let z\, z2e W(L). We shall show that z\z2 belongs to W(L). Since 

Z\ and z% belong W(L) the relation uv eL for all u, v e G is equivalent 
with uz\V eL and similarly uv eL is equivalent with uz2v eL. Now let 
us choose UQ, VoeG arbitrary but fixed and let us put further U\ = u0, 
vx = z2Vo. Then it holds UQVO e L if and only if UQZ2VO = U\V\ e L, which 
is equivalent with UQZ\Z2VQ = U\Z\V\ e L. From this uv e L is equivalent 
with uz\Z2v e L for all u, v e G. Hence Z\z2 e W(L). 

y) Let z e W(L). We shall show that z~x is an element of W(L). Since 
z € W(L), uv eL is equivalent with uzv e L. Let us choose u0, vQe G 
arbitrary but fixed and let us put U\ = UQ , V\ = Z~1VQ, Consequently 
it holds: UQVQ = U\zv\ e L exactly when UQZ^VQ = U\V\ e L. Hence 
uveL is equivalent with uz~lv e L for all u, v e G. Hence z~l e W(L). 
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I I . We shal show that W(L) is a normal divisor of the group G, that 
means, for z e W(L) and arbitrary element aeG there holds aza~l e W(L). 
Let us choose u0, v0 e Q arbitrary but fixed and let us choose further 
m = u0a and v = a~lv0. Since there is z e W(L) and it holds u0v0 = 
= u0a . a~x = U1V1 e L the relation u0v0 e L is equivalent with uxzv± = 
= u0(aza~l) v0 e L. Hence uv e L is equivalent with uaza~lv e L for 
all u, v eG and it holds aza~l e W(L). 

4.8 Theorem. Let G be a group, L a proper non-void subset in G. Then 
L = U aW(L). 

aeji 
Proof. W(L) is a normal divisor. We shall show that with the element 

a from the set L the whole class aW(L) is a subset of L. Let z e W(L) 
and choose a e L arbitrarily, then a . 1 e L is equivalent with a . z . 
. l e i . . Thus for all z e W(L) there is az G L and therefore aW(L) £ L. 
Hence \J aW(L) s L. Conversely if a e L then a e aW(L) so that L s 

aeL 

S U aJF(2.). 
aeL 

4.9 Definition. Let H be a normal divisor of a group G. We say that H 
is a proper normal divisor if 1 ^H ^ G holds true. 

4.10 Lemma. .Le£ H be a proper normal divisor of a group Q. If L = 
= U aH, then L does not distinguish G. 

aeL 

Proof. We shall prove that for heH, h ^ \ holds that uv e L 
is equivalent with uhv e L. Let uv e L then uvH Ql L but uvH = u(vH) = 
= ^(Ht?)and hence uhv e uHv g L. Let w t̂; e L then wi> G UVH = uHv = 
= u(hH)v = uhvH £ l . 

4.11 Theorem. Let G be a group, L a proper nonvoid subset in G. Then 
the following statements are equivalent: 

(1) L does not distinguish G. 
(2) There exists an a-group Q(z) such that 

L=U aQ(z). 
aeL 

(3) There exists a proper normal divisor H such that 

L=\JaH. 
aeL 

Proof. Let (1) hold. According to the lemma 4.3 there exists an 
a-group Q(z) generated by an element z, z =£ 1 for whichTaceording to 
the lemma 4.5 L = \JaQ(z) holds. vv 

aeL 
Let (2) hold. Then there exists the set W(L) =£ {1} in G which is 

a normal divisor (theorem 4.7) with the property L = \J aW(L) (theorem 
aeL 
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4.8). I t is L j± G and thus also W(L) ^ G because if W(L) = G held 
true then L = U aW(L) = G would be. If we put H = W(L) then holds 

aeL 

(3). 
Let (3) hold, then according to the lemma 4.10 the statement will 

hold. 
4.12 Corollary. If G is a simple group (containing no proper normal 

divisor), then an arbitrary proper non-void subset L of the group G distin­
guishes G. 

4.13 Corollary. If G is a cyclic group of the prime number order, then 
every proper non-void subset L of the group G distinguishes G. 

4.14 Corollary. Let G be a group, L a proper subset in G containing the 
unit. Let L contain no proper normal divisor of the group G. Then L 
distinguishes G. 

4.15. Corollary. Let G be a group, L a proper nonvoid subset in G. 
Let L contain no class modulo a proper normal divisor of the group G. 
Then L distinguishes G. 

4.16 Theorem. Let G be a group, L a proper non-void subset in G. 
Then £ = {aW (L) \a~L} distinguishes GjW(L). 

Proof. We shall carry out the proof by the contradiction. Let ££ 
do not distinguish G\W(L). Then there exist different elements x = 
— xW(L), y = yW(L) in G\W(L) such that the condition uxve<£ 
is equivalent with uxveJ? for all u, v eGjW(L). The relation uxv = 
= uxv W(L) e J? is equivalent with uxv W(L) g L according to the 
theorem 4.8. Hence uxv e L. Conversely if uxv e L then uxv W(L) £ L 
and this is equivalent with uxv = uxv W(L) e ££. We obtain that 
uxv = uxv W(L) 6 i ? is equivalent with uxv e L. From the preceeding 
equivalences there follows that uxv e L is equivalent with uyv e L. 
The last equivalence is, however, according to the lemma 4.1 equivalent 
with the statement ux~lyv e L if and only if uv e L. Then xy1 is an 
element of W(L) and it holds xy~*W(L) = W(L). I t holds now that 
yW(L) = W(L)y = (xy^W(L)) y = x(y~^W(L) y) = x(y-iyW(L)) = 
= xW(L). In this way we shall get the equality x = xW(L) = yW(L) = 
= y. This is, however, the contradiction. Therefore ££ distinguishes 
the factor-group GIW(L). 

The results of the theorems 4.11 and 4.16 may be formulated as 
follows. 

4.17 Theorem. Let G be a group, L a proper non-void subset in G. 
Lei L do not distinguish G. Then there exist a group G\ and a homomorphism 
<p iG-^Gi which is not an isomorphism such that L = <p~l[<p(L)] and 
<p(L) distifiguishes the group G\. 
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