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ON THE EXISTENCE OF A BOUNDED SOLUTION 
OF A NON-LINEAR DIFFERENTIAL EQUATION 

M . JAKUBI&KOVA, BBATISLAVA 

Received March 16, 1968 

In this paper the existence of a solution of the differential equation 

(i) y" — y=f(x,y,y') 

wThich is bounded together with its first derivative on the whole real 
line, is proved under the condition that the function / is continuous and. 
bounded. 

Let us consider first the existence of a bounded solution of the linear 
differential equation 

(2) y" — y=f(*)> 
where f(x) e C°(I), I = (—oo, oo) and \f(x) \ __ K on / . It is clear that 
this equation has at most one such solution. We are going to give the 
proof of the existence of a bounded solution of the equation (2) as 
follows. A hint of this proof was given in an exercise in the book [1], 
p. 297. 

Homogeneous boundary-value problem 

y" — y = 0, x 6 <—a, a) 
(3) y(—a) = y(a) = 0, 

where a > 0, has only a trivial solution. Therefore the inhomogeneous 
boundary-value problem (2), (3) has one and only one solution 

a 

(4) ya(x) = / Ga(x, t)f(t)dt, xe <-«, a> 
—a 

where 
(_e-2tx+e _|_ e-<) (_e2a+.r _]_ e-*) 

(5) a(x, t) 
2(e2a — e~2a) 

(_e2a+* _|_ e-í) (_e-2a+.r + e- .z) 

2(e2a — e~2a) 

a < x __ t 

t < x < a 

is the Green's function of the problem (2), (3). The solution ya(%) can 
be continued to the whole interval / . Further there exists 

(6) y(x) = \imya(x)=—- / e" '* -" .f(t) át I/в-«-. l 
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where the convergence is uniform on every closed interval <—b, b>, 
b > 0. For x G <—b, b>, a g b the inequality 

a oo a 

I f Ga(x,t)f(t)dt + \ f e-l*-" ./(0clt _ I f Ga(x,t)f(t)& + 

«—a —oo — a 

a oo a 

+ i. f e-|.--*| . / ( 0 d J + 1 1 L-l *-. I . / ( o d* - i r e-l̂ -'l . /(O df I 
— a —oo — a 

is true. Assuming that a _̂  2b > 0 we estimate first the first term on 
the right side of the inequality. 

a a 

I f Ga(x, 0/(0 d* + \ f «->*-*' ./(O d< I ^ 
— a — a 

* I /'^•%::.'^::r+ e" )/"><»+! /«-•/<')<" 
— a — a 

| ; <—- .»* + e - e ) ( - ^ + Q j / , _ , 
^ I J 2(e2 a — e~2a) JW^-r 2 J JK' 

X X 

= 2 ( e 2 a - e - 2 a ) i / ' e ' + * + e-<f+a;) - e - 2 a ( e ^ - ^ + e-<*-*>) | dl + 

+ f | e * + * + e-<*+*) _ e-2<*(e*-z 4. e -(*-s)) | d^| = 

x 

K 

+ 

2(e2 a — e-2 a) 

2ІГe& 

(ea + e~зa —2e~ a) (e* + e-*) á 

£(e2a — e-2 a) 

K.eь 

(ea + e~3a — 2e~a) == 

( l _ e - 4 a ) 
e- a + e~5a — 2e-3a) < --

for a sufficiently great a. 
Similarly we get for a sufficiently great a, that for the second term 

the inequality 

1. f e-is-íi ./(o dt — f в-i*-*i /(Odť <<Г 
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holds. Since (6) fulfils the conditions of the theorem on the differentiating 
of the parametric integral the following relation 

(?) 

X 00 

y'{x) = j J e<-* • fit) At - 1 j e-«+* . fit) dt = 
—oo x 

X 

-f e*-*f(t) d* + y(x) 

is true. Applying the same theorem to (7) we get 
x oo 

»*(*) = - \ j e~*+< • fit) to-jf e~t+x • fit) <-* + /(*) =2/1*) + /(*)• 
—oo x 

We see that (6) is a solution of the differential equation (2). This ends 
the proof of 

Lemma: Letf(x) e C°(—oo, oo) and \f(x) | ^ K, K > 0, x e (—oo, oo). 
Then there exists one and only one solution y(x) of the equation (2) which 
is bounded together with its first derivative in (—oo, oo). This solution is 
given by the formula 

? (* )= — i [ <rl*-4./(«)d* 

and on each interval <—b, by is a uniform limit for a -> oo of the solutions 
ya(x) of the boundary-value problem (2), (3). 

Theorem: Let f(x, y, y') be a continuous bounded function of x, y, 
y' e (—oo, oo). Then there exists at least one solution of the equation (1) on 
the interval (—oo, oo) which is bounded together with its first derivative 
in (—oo, oo). 

P r o o f: On the basis of the lemma the solution of the integro-differential 
equation 

(8) </(*) = - i f e-l*-«.f(t,y{t),y'(t))dt 

will be a bounded solution of the equation (1) which has a bounded first 
derivative. The existence of the solution (8) we shall prove with the 
help of Tychonoff fixed point theorem. 

Let E = Cx(—oo, oo) be the space of functions on which a countable 
system of semi-norms 

Pn[y(x)] = max [ max | y(x) |, max | y'(x) |], n = 1, 2, ... 
a;e<—«,n> $€<—n,n} 
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is defined. By the family of these semi-norms E is complete locally 
convex space. Let M = {y(x) e E : \ y(x) | ^ K, | y'(x) \ g 2K? x e 
e (—oo, oo)}, where the constant K is such that \f(x, y, y')\ g K for all 
x, y, y'. The set M is closed, convex and bounded. Let 

00 

) = - j f e-i*-«.f[t,y(t),ý(t)]dt (9) Ty(x 

be the operator defined on the set M. We shall prove that it is continuous 
and compact on the set M and TM cz M. Let e > 0 and the natural n 

10) n > In 

be arbitrary numbers. Then for the y(x), yo(%) e M and x e <—n, n} the 
inequalities 

—2n 

( 1 1 ) | Ty(x)—Tyo(x) \ S ~[j^x+t • I /fc»(*)> y'(01 —/[*, SfoW, y0Wl i * + 
00 

2n 

+ eH*-«l. f I fit, y(t), y'(t)] -fit, y0(t), y'0(t)] \ &t + 

—2n 
oo 

+ J ex-< • \f[t, y(t), y'(t)] -f[t, y0(t), y0(t)] | d*} ^ 
2n 

—2n 2n oc 

< -I U.K f e-x+l &t + ~ f e - l ^ l . &t + 2K f e*-« dlj ̂  
—oo —2n 2« 

SK.e-" + ~ + Ke-n < | 

hold if i>2n(2/ — 2A>) < d, where d > 0 is sufficiently small. Using the 
relation (7) we get 

00 X 

[Ty(x)]' = — j Te-l^-'l .fit, y(t), y'(t)] dt + J e-*+*./[«, */(*), y'(t)] d*. 
00 00 

Then under the assumption (10) and considering (11) 

(12) \[Ty(x)]'-[Ty0(x)]'\gj + 
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X 

+ J e-*+< \f[t, y(t), y'(t)] -f[t, y0(t), y'0(t)] \ dt < J- + 
00 

00 

+ J e-'*-" . \f[t, y(t), y'(t)] -f[t, y0(t), y'0(t)] \ dt < J- + | s = e. 

00 

It follows from the relations (11) and (12) 

Vn[Ty(x) — Ty0(x)] < e, if p2n[y(x) — y0(x)] < d 

and thus continuity of the operator (9) is proved. 

The compactness of the operator (9) will be proved by the application 
of the Ascoli-Arzela theorem. It is therefore sufficient to show that 
Ty(x) are equi-bounded and equi-continuous on each of the intervals 
<-—*&, n). 

Let y(x) e M. Then 

oo oo 

! Ty(x) [ = | - I / e-l*-«l .f[t, y(t), y'(t)] dt j < ~ J «H*-*I dt = K 
— o o 00 

X 

I [Ty(x)]' | <. I f e-*+« .f[t, y(t), y'(t)] dt\ + K<2K. 
I J I 

00 

Hence TM c= M and at the same time also the set TM is equibounded. 
The equi-continuity of the functions from TM on the interval <—n, n) 

will be proved in the following way: Let e > 0 be an arbitrary number 
and let 

I xi — x2 I < ——, xi < x2, xt,x2e(—ntn). 

Then 
xx 

I Ty(x1)- Ty(x2) | = 11 (e~*- - e~**) j e< ./[*, y(*), »'(*)] & + 
00 

+ j (e^-* - e-*+«) ./[.*, y(0, y'(t)] d* + 

00 

+ (e*i — e*.) / e-«. /[<, y(t), y'(t)] dt 
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-š \ \e~Xl \xl — x2\K J etát + K i (e*--« + e-*-+*) dt + 
00 xx 

00 

+ e*i I.-! — .e2 I f e-« d<] š I ( Z | an — z2 | + 2K \ xx — x2 \ + 
r* 

+ K\xx — x2\) = 2K\xt—x2\<j, 

| [Ty(xx)]' — [Ty(x2)]' \ * ^\ f (e-'*--"—e-l*»-«i) ./fcy(f), y'(ť)]dí 

+ 
^ 1 

f (e-^+í _ e-*.+<). /[«, J,(Í), y'(t)] dř 

•oo 

* 3 

+ | f er**f.flt,y(t),ý(t)]ůi\ S 
i •/ I 

+ 

^ 2K\xt — x2\ + K\xx — x2\ + K \xl — x2\=4K \Xi — x2\ < e, 

what ends the proof of the equi-continuity of TM. It follows from what 
was proved that all assumptions of the Tyehonoff fixed point theorem 
are fulfilled, so that there exists a fixed point of the operator (9) on M, 
which means that there exists at least one solution of the equation (1) 
which is bounded together with the first derivative on the whole real 
axis. 
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