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C E N T R O A F F I N E I N V A R I A N T S O F P L A N E C U R V E S 
I N C O N N E C T I O N W I T H T H E T H E O R Y O F T H E 
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1. I N T R O D U C T I O N 

Let u[u\(t), u2(t)] denote a curve of class Of given in the plane (ui, u2) 
by its parametric expression 

Mt), ut^eCl щ 
u2 = u2(t), u2(t)єC{, 

Ui(t), u2(t) 

щ(t), u2(t) ф0, tєl. 

For n ^ 0, C\ is the set of all real continuous functions defined on the 
interval / and being of continuous derivatives up to and including the 
order n; OJLoo, oo) = Cn. For brevity, let (u; u') denote a determinant 

ux(t), u[(t) 
w2v*)> U'S) 

and symbols (u; u') etc. are defined in the same manner. A centroaffine 
invariant of a curve u(u\, u2) is an operator F[t; U\(t), u2(t)] (x) if the 
two following properties are satisfied: 

(*) for every transformation r = r(t), r e Of, dT/d£ ^ 0, u*(r) = u(t) 
there holds 

F[r, u\(r), u2(r)] (r(x)) = F[t, ut(t), u2(t)] (x) 
for all x e I 
(**) for 

c = Cl1 Cl2 ^ 0 
C2i c22 

and all x e I it holds 
F[t, cnux(t) + c12u2(t), c2lux(t) + c22u2(t)] (x) = h(c) F[t, ux(t), u2(t)] (x) 
where h(c) is a real function of a real parameter. 

Remark . Usually the term ,,invariant" is reserved for the case h(c) 
== 1, and the term „semiinvariant" will be more convenient for our 
purpose. Our considerations, however, will mainly deal with h(c) =^= 1, 
and we shall use ,,invariant" only. If the case h(c) ==. 1 should be stre­
ssed, the notion ,,invariant in the strict sense" will be used. 
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Denote by U(t) a point [ui(t), u2(t)] of a curve u and | U(t) | = 
= y[#f(J) + uj(t)] its distance from the origin. 

Functions U\(t), u2(t) satisfy the differential equation 

ux u2 y 
u[ u2 y ̂  
u\ u2 y 

= 0, 

which can be written in the form y" + a(t) y' + b(t) y = 0. By the 
t 

transformation T = T0 + T0 / exp [— f a(s) ds] da, to el, T0 7-= 0 of 

parameter t, the interval I is transformed into the interval i and the 
above differential equation is in the form (again the independent variable 
is denoted by t) 

(q) y" = q(t)y> 

where q(t) e 0$ is given by the relation 
t 

q(t) = —^ b(t) . exp 2 / a(s) ds. 
To J 

h 
In other words: For every curve u there exists a transformation of 
parameter t such that the components U\ and u2 satisfy a differential 
equation (q). If a curve u has this parametric expression, we shall 
denote the curve by uq. 

Now, let us consider a differential equation (q) and its two solutions 
U\, u2. Let W = W(u\, u2) === (u; u') stand for the Wronskian of these 
solutions. Denote by cp(t) the basic central dispersion of the 1** kind 
(further only dispersion) of the differential equation (q), [3], i.e. (p(t0) is 
the first zero of a solution y(t), y(t0) = 0, of the equation (q) lying on 
the right of t0. 

If U(t0) is a point of a curve uq and if (p(tQ) exists then the point 
U[(p(to)] is again a point of uq and these two points lie on the straight 
line passing the origin; moreover, U[q>(t0)] is the first point of intersection 
of the curve uq with the straight line passing the origin and the point 
U(t0) when the curve uq is observed from the point U(t0) in the direction 
of an increasing parameter t. This fact is obvious from the following 
consideration: There exist C\, c2, c\ + c\ ^ 0 such that CiUi(t0) + 
+ c2u2(t0) = 0. Then C\U\(t) + c2u2(t) is a solution of (q) which vanishes 
at £0 and the first number on the right of t0 where the solution again 
vanishes being <p(to). Therefore U[<p(to)] is the first point of the curve uq 

from U(to) in direction of increasing parameter which lies on the straight 
line C\%i + c%u2 == 0. 
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Let oc(t) denote some of the Ist phases corresponding to the pair of 
independent solutions U\, u2 of the differential equation (q), [3], i.e. 
a continuous function oc(t) for all t e i complying with the relation 

tga(0 = tt-(0/t«2(0 

for all t e i, for which u2(t) =5-= 0. 
I t is obvious that 

oc'(t) = — W(ult u2)j[u\(t) + ul(t)] 

and then a e Of and a' does not change its sign on i. For a point U(t) 
of a curve uq one can write 

!lt(í) - 1 / — ľ a'(í) ' 

where W = TV(^i, ^2) and a is a 1 s t phase corresponding to the compo­
nents of the curve uq. 

A curve uq is simple and centrosymmetric with respect to the 
origin iff the dispersion <p(t) of (q) is defined at least on an interval 
i D [t0, <p(t0)] and the relation | U(t) | = | U[<p(t)] | is satisfied on it. As 
W = const., the last relation can be written in the form 

And, as oc' does not change its sign, the last condition is equivalent to 
the condition 

oc'(t) = oc'[<p(t)], for teiD[t0, <p(t0)]. 

The dispersion <p(t) and every 1 s t phase of the same differential equation 
(q) satisfy the relation oc[<p(t)] = oc(t) + n, [3], or oc'(t) = oc'[<p(t)] . <p'(t). 
Therefore <p'(t) == 1 and <p(t) == t + d (d > 0 as <p(t) is increasing) every­
where, where <p(t) is defined, i.e. at least on the interval (t0, t0 + d). 

The curve ua being centrosymmetric and then closed, it is possible 
to extend its parametric expression uq. At the same time the dispersion 
<p(t) must be of the form <p(t) = t + d. With respect to this, q(t) must be 
periodic with period d; it is defined at least on the interval (t0, t0 + d), 
hence the extending of parametric expression of the curve uq on the 
interval (—oo, oo) is unique. In what follows we shall suppose i = 
= (—oo, oo) for centrosymmetric curves uq without lost of generality. 

As the properties of "simplicity and centrosymmetricity,, are not 
changed by any change of parameter or any centroaffine transformation 

ux = cnui + cX2u2, 
U2 = C2\U\ + c22u2, 

C\\ c12 

C2\ c22 

Ф0, 
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the form <p(t) =.= t + d of the dispersion of a differential equation (q) is 
the sufficient and necessary condition for the curve u (with a parametric 
expression uq) to be simple and centrosymmetric. 

By the change of parameter: t = nt\d we can restrict our study only 
on the dispersion <p(t) = t + n. 

Let us summarize our considerations: 
In every simple centrosymmetric curve u (of class C2} such a para-

metrisation can be introduced that its components Ui(t), u2(t) are independent 
solutions of a differential equation (q) with the dispersion <p(t) = t + n, 
and vice versa: 

Every two independent solutions Ui(t), u2(t) of a differential equation (q) 
with the dispersion <p(t) = t + n are components of a simple centrosym­
metric curve (of class (72>. 

Analogously one can derive that a curve u (with a parametric express­
ion uq) is simply closed iff 

\U{q>[<p(t)]}\ = \U(t)\, or Vl ocf{<p[<p(t)]} | = ]/WW\. 

Thus, with respect to the relation 

oc{<p[<p(t)]} = oc[<p(t)] + n = oc(t) + 2n, 

the last condition is equivalent to 

d<p[<p(t)] 

àt 
= 0, or <p[<p(t)] = t + d (d > 0, const.). 

where <p(t) is the dispersion of the differential equation (q). 
Generally, a curve u (with the parametric expression uqy is closed iff 

<p(<p{...[<p(t)} .-.}) = <p[n](t) = t + d 

for an integer n and a positive constant d > O.Ifnis odd, then the curve u 
is also centrosymmetric. 

When a curve uq is closed we can suppose i = (—oo, oo) without lost 
of generality, because the periodicity of oc'(t) follows from relations 
<plnl(t) = t + d and oc[<pln](t)] = oc(t) + nn, and with respect to the 
relation 

*>-y(w)' + T(w)'--^ ***• 
the function q(t) is periodic with period d. At the same time q(t) is 
defined at least on the interval of the length d and, therefore, its exten­
sion on the interval (—oo, oo) is unique. 
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2. CONSTRUCTION OF ALL SIMPLE CENTROSYMMETRIC 
CURVES 

In paper [5] (or in [6], too), all the differential equations (q) with the 
dispersion (p(t) = t + n have been constructed. These functions q(t) 
satisfy 

q(t) = f"(t) + Pit) + 2/' cotg t - 1 

n 

where / 6 C\ /(0) = /'(0) = 0, f(t + .-.) = f(t), f ^ -2/(0] - i ^ 
sin2t 

= 0; the solution Ui(t) of (q) determined by the conditions ut(0) = 0, 
ui(0) = 1 is then given by the relation U\(t) = e/(<) sin t. Therefore; 
every simple centrosymmetric curve <o/ class C1} can be expressed as 

u(c\\Ui + cuu2, C2XUi -f c22u2)y 

where 
t 

cц cí2 

c2\ c22 /

e - 2 / ( ö ) 
. , åa 

sm2 a 
я/2 

and f(t) satisfies the above conditions. 

3. C E N T R O A F F I N E INVARIANTS OF CURVES 

Centroaffine arc length of a curve u[ui(t), u2(t)] from a point U(tQ) 
to a point U(t) in the sense of Blaschke [1, p. 15]1) is defined as 

t t 

(1) ll(u) = / [»'(<-); «"(cr)]V3 da = / [ « » « » - « » w ^ ) ] 1 / 3 da . 
'o 'o 

If a curve u is obtained from a curve u by a centroaffine transforma­
tion with the determinant c then 

*?.(«) = cV3i?.(»); 

especially the length is the same for c = 1. A change of parameter 
y = ?(£). T GO2, dTI&t T& 0 transforms a curve u into a new para­
metric expression u* and it holds 

*$>>(«*) = *.(») 

*) The length is an invariant in the strict sense in the group of all afine trans­
formations with determinant 1. 
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If a parametric expression uq is considered then 

t t 

(h) *?.(«-) -= w^ j [ -^r^[]1 / 3 <-* = w^ j 8 y-=^ da. 
^o 'o 

Let uq(uu u2) be a closed (or simple centrosymmetric, or simple 
closed,) curve with the parameter t introduced (according to Sec. 1) 
that the dispersion cp(t) of (q) is in the form (p[n](t) = t + n (or <p(t) = 
= t + «7r, or 9?f2](£) = £ -)- 71, resp.) where n is the first integer for which 
(p[n](t) = £ -f const. Then its length (without respect to orientation) is 
given by 

n 

(2) l(uq) = | PVV3 / r^v**) do-1 for even n 
o 

I(ttg) = 2 | WV3 / t — ^ j do-! for odd n. 
o 

O. Boruvka [3, p. 29] introduced his centroaffine arc length of a curve 
u(u\, u2) from a point U(t0) to a point l/(£) by the formula 

(3) J2« (») = sgn (»; »') /" l/j І И - ' I ^ 
./ r («*; в) 

d(T. 

If a curve u is obtained from a curve u by means of a centroaffine 
transformation with the determinant c, then 

J?l(u) = sgncJ?l(u) 

and if a change of parameter, T = JP(£), gives a new parametric expres­
sion M* of a curve u, then 

-*?$>(-**) -= -n(»). 
Therefore <5??0(M) is again a centroaffine invariant of a curve u which 

even changes only its sign under any centroaffine transformation. 
For a parametric expression uq of u there holds 

t 

(3q) J?UuQ) = sgnW. f ]/Yq(a)]da. 

If, moreover, the parameter t is introduced such as in formulas (2) 
then for a closed (or simple centrosymmetric, or. simple closed) curve 
uq, there holds (without respect to orientation) 
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(4) &(Uq) = / y hrto)T dor for even n, 
o 

jg?(i,fl) = 2 / yr^oTTdo- for odd n. 
o 

If ^i cos 0 -{- u2 sin 0 = P((9) denotes a supporting line of a closed 
curve u containing the origin, then the length L(u) in the sense of 
Santalo [9] is given by the invariant (in the strict sense with respect to 
the group of centroaffine transformations with determinant 1) measure 
of straight lines not crossing the curve: 

2?t oo 2JT 

(5) w = f*ef**lp> = j {•$>)• 
0 p(0) 0 

The tangent of a curve u[ui(t), u2(t)] at a point U(t0) is given by the 
equation , , 

ui(h) i>2 — u2(t0)] = u2(t0) [ui — ux(t0)\ or 

hence 

Then 

and 

ЩҚЏQ) — «2мí(to) __ UAҺ) u'г(k) — u\(k) uг(k) . 

У«Í-(У + u'ł(h) У«;ҷg + «;-(y 

ľ ( 0 

—«í(í)/«i(0 = t go(í), 
^ ».(<) «;<<) — «;(<) « 2 (Ѓ) 

У«;-(Í) + «І-(O 

u{ + u* 

( 5 ) L ^ = 2 j ^ o ) = 2 j -R7oF- d ' ' 
o e0 

where the values of 0(t) just fill up the whole interval <0,2jr> iit0 < t < 
< ti. The convexity of a curve u is equivalent to the relation (u; u') . 
. (u'\ u") > 0. 

If uq is a parametric expression of a convex curve containing the 
origin and the parameter t is, according to Sec. 1, introduced so that the 
dispersion (p(t) of (q) satisfies qp[q>(t)] = t + n9 then 

n 

(5q) L(ua) = __!__ J # ) d < ) 
0 

because the convexity of the curve implies q(t) < 0. 
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If the curve is even centrosymmetric and the parameter is introduced 
so that the dispersion <p(t) satisfies <p(t) = t + n, then q(t) is periodic 
with period n and, therefore, 

n 

(6) L(ua)^-j^jf q(t)dt. 
0 

The tree mentioned ways of definition of arc length of a curve as 
a centroaffine invariant yield an idea, how to introduce a more general 
definition containing the previous ones as special cases: 

Centroaffine arc length of a curve u[ux(t), u2(t)] from a point U(t0) to 
a point U(t) is 

t 

(7) «£{.(») = sgn (»; »') j ' ^ ^ Z i d° 
to 

or 

(7*) « » ( » ) - / W(*;u'l.\(u';u')\* 
(7 ) •!*.(") - J | ( u ; ^ |3«-i aa' 

to 

If u is obtained from u by a centroaffine transformation with the 
determinant c, and w* is a new parametric expression of u after a change 
of parameter r = j(t), then 

(*a)£?0(«) = Bgn c . | c I1-2" <«$£{>) and ^ f i ^ u * ) - ( * ^ » 

[where (*) means with or without the asterisk on both sides). 
Therefore, the arc length introduced by (7) or (7*) is an centroaffine 

invariant and 
ll*2t

to(u) gives the arc length in the sense of Blaschke, 
1/2£*0(w) is the arc length in the sense of Boruvka, 

—- (*)2l0(u) means the arc length in the sense of Santald. 

/ / Uq is a parametric expression of a curve, then 

t 

(7«) a £ t > s ) =^sgaW.\W I1-2- . / | q(a) |« da 
h 

or 
t 

(7q) JSif.("t) = - sgn W | W I1-2 ' . / sgn q(a) . j q(a) |« da. 
<o 
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4. E X T R E M A L P R O P E R T I E S OF CENTROSYMMETRIC CURVES 

Let uq be a parametric expression of a convex centrosymmetric curve 
and let the dispersion <p of (q) be of the form cp(t) = t + n (it is possible 
according to Sec. 1). The area bounded by the curve uq has the volume 

2n 
1 ľ 

p(ua) = I 2" / (м« ; UQ) 
n\ W dt 

I 55 ./ ' m - " ' 
0 

Let us seek a convex centrosymmetric curve with a fixed volume of 
its area which has the minimal length. 

According to the general definition of arc length of the curve uqt 

there is „ 

«2(uq) = 2 | W\1~2«.f\q(o)\«do 
0 

and this length is the same as the length in the sense of Blaschke, or 
Boruvka, or twice length in the sense of Santalo for oc = 1/3, or a = 1/2, 
or a = 1. The convexity yields q(t) < 0. 

We shall apply a result of paper [7]: 
"Suppose a differential equation (q) with the dispersion (p(t) = t + d. 

Let q < 0, and let a be a real number, 0 < a < 1. 
Then d 

f \q(t)\«dt<d(njd)2«y 
o 

the equality being reached only for q(t) == —n2ld2." 
Because of P(uq) being constant in our case, the value W is also a 

constant and, therefore, *2(uq) (0 < a < 1) reaches its maximum value 
2n | W | 1 - 2 a exactly for q == — 1 , i.e. exactly for ellipses with the centers at 
the origin. 

Thus, for a = 1/3 we have obtained Blaschke's result [1, p. 61] for 
convex centrosymmetrie curves. For a = 1 it holds P(uq) = n . \ W | 
and L(uq) = 1/2 12(uq) < n\\ W \, the last equality being reached just 
for ellipses with the centers at the origin. This is then the result of 
Santalo [9, III . 19.3]: 

"For a convex centrosymmetric curve there holds 

P(u) . L(u) < n2, 

where the equality sets in only for ellipses with the centers at the 
origin." 

Let us note that centroaffine length of a centrosymmetric curve in 
the sense of Boruvka is invariant in the strict sense with respect to any 
centroafine transformation, and then the minimal length is reached for 
ellipses without the assumption of a constant volume P(u). 
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5. FURTHER CENTROAFFINE INVARIANTS OF CURVES 

Let u[Ui(t), U2(t)] be a curve. According to W. Blaschke [1, p. 13] the 
new parameter s is introduced by the relation 

t 

s = f (u';u"Yl*do 
to 

and the centroaffine curvature of the curve w*[^*(s). u%(s)] at a point 
U*(s) is defined as1) 

def / d 2 u * d 3 » * \ 

\ ds2 "' ~ds*~)' 

In the previous parameteric expression, 

k = («"; «")/(«'; „ ' ) s / 3 _ l . * L [ ( B ' . B-)-2/3]. 

This can be rewritten as 

1 [—5(u'; umY + I2(u'; u") (u"; u») + 3(»'; »*) (*'; u I V ) ] . 
9(»'; u"fl 

A calculation verifies that the centroaffine curvature at corresponding 
points does not change when the parameter is changed, and the centroaffine 
curvature k of the curve u obtained from the curve u by a centroaffine 
transformation with the determinant c satisfies 

k = c~2l*k 

at the points of the same parameter. 
If a parametric expression uq of a curve is supposed, then 

* = - JJT--/3 . —y [9q3 + 5?<2 _ Z q q l , 

which can be rewritten as 

A = -PГ-2/3[ïV34-^-(ï-2/т]. 

R e m a r k . For the definition of curvature in Blaschke's sense the 
existence of uY, uY and ds/dt ^ 0 (hence q(t) ^ 0) must be supposed. 

*) see th not to th length in Blaschk 's s ns . 
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O. Borûvka defines his centroaffine curvature [3, p. 29] of a curve u at 
a point U(t) as 

sgn(i »;»') i/| (»; »') I T, (»;»') _ _ _ _ _ ) ! 
2 Г I (»';»') | [ (»; »') (»'; »") J' 

X = 2 

It can be simply verified that the centroaffine curvature at the correspon­
ding points does not change for arbitrary parametric expression. 

For a parametric expression u*(u*, u*) at a point U*(t) we can obtain 

sgnPf (»*,«*) 1 f q'(t).W(uX,u*2)] 
Ж 

* X 2
 VTJWT L 90 • ir(«;,« 

"""•'[Pi]' 
R e m a r k . The existence of u[, u'l and (u; u") 7-= 0 (or existence q'(t) 

and q -p-- 0) must be warranted here. 
Generally, let 3 be such a centroaffine invariant of a curve ug(ui, u2-

which can be expressed as a following function of n -f- 2 variables at 
every point U(t): 

3=f[W(uuu2),q,q',...,qW]. 

Let us deal with conditions under which these functions can be centro 
affine invariants. 

First, at the corresponding points the value of 3 must not change 
when such a transformation of parameter, r = r(t), T e 0 2 , dr/dt ^ 0 
is introduced that the components u\, u\ of a curve in new parametric 
expression are again independent solutions of a differential equation of 
the type d2y*/dr2 = q*(r) y*. This occurs only when (u*; du*/dr) = c* = 
= const. .7-= 0. At the same time 0 -?-= c = (u; du/dt) = (u*; du*/dr) . 
. dr/dt = c* dr/dt; hence r(t) = erf + c0, cx -^ 0 are all transformations 
of parameter t under which the invariant 3 must not change. At the 
corresponding points in these transformations there is W = W(u\, u2) = 
= (u; du/dt) = (u*; du*/dr). cx = dW*(u*, u*) = dW*, and further 

or generally ^ ^ V , , ) 

" d F - ~ C l dT* • 

Then the first condition on / is 

(8) f(z-i ,zo z„) = /(cz-i, c%, ..., cn+3zn) 

for every real c ^ 0 and every real vector (z_j, ..... 2„). 
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The second and last condition on 3 : After a centroaffine transforma­
tion determined by a regular matrix C the value of 3 at the points of 
the same parameter can be changed only by multiplying by a constant 
factor depending generally on the transformation but not on the para­
meter t. As q(t) does not change under any centroaffine transformation 
and W = det C . W, the condition is equivalent to satisfying the relation 

(9) f(kz-i,z0,...,zn) = h(k) .f(z-i,zQ. ...,zn) 

for a real function h and any real numbers: z-i, z0, ..., zn, k =>-= 0. 
Now, let invariant 3 be everywhere in further defined by a function f 

complying with the conditions (8) and (9). It is obvious that centroaffine curva­
tures in the sense of Blaschke and Boruvka satisfy the conditions for n = 2 
and n = 1. Invariants as q(t)/W2, q'(t)/W3, qf2(t)/q3(t) and others can be 
also considered as curvatures. 

6. CURVES W I T H A P E R I O D I C C E N T R O A F F I N E CURVATURE 

In this section we shall need the following results of paper [6, p. 292] 
(see also [8]): 

"Let q 6 C° be a periodic function with period jr. 
There exist two independent solutions of the differential equation (q) 

that may be written in the form 

(*) yi=Pi(t), yi = pz(t), 

or in the form 

(**) yi = Pi(t), yi = Pi(t) + ctptf), 

c ^ 0 real, pi, p2 periodic or half-periodic1) functions with period n, 
Pi e C2, pi 6 C2, exactly when the equation (q) has a non-trivial solution 
yi(t), periodic or half-periodic with period n. The solution yiif) is then in 
the form (*) exactly when yi(t) is oscillatory and there holds 

n n 

(10) J [~yW ~ - J y'lHot) si*2 (* - at) J ̂  = °' 
0 i = l 

where a-i, ..., an are all zeros of yi(t) on the interval 0 < t < n." 

With respect to the reference in Sec. 2, if yt(t) = eI<*> sin t, then the 
condition (10) is equivalent to the relation 

-) A function h(t) is half-periodic with period d if h(t + d) = —h(t) for every t. 
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-2/(«) _ _ 1 
__ - d í = 0 

sin2ř 

as n = 1, ax = 0, p{(t) and p2(t) are half-periodic functions. 
Now, let q(t) be a periodic function with period d, q(t) e C°. Then 3(0 

is again a periodic function with period d. According to the result of [5] 
quoted in Sec. 2, the periodicity of q(t) is not sufficient for the differential 
equation to have the dispersion in the form (p(t) = t + d, d = const. 
Especially, when / is chosen such that 

/eO 2 , / ( 0 ) = / ' ( 0 ) = 0, f(t + n)=f(t) 
and 

/ 

в x p Ь - З Д . Д - 1 
sm2 t 

then the differential equation (q) with the function q given by the relation 

(11) q(t)=f"+f'* + 2f'cotgt — l 

has the solution y{(t) = e'W sin t with zeros in the same distances n. 
If ^(£) = t + d is the dispersion of the differential equation (q), then 
necessarily d = 7t. But 99(0 = £ + n is not the dispersion of (q) as the 

condition / — r^r~~ dt = 0 is not satisfied. It means, that 
J sm21 

0 

every solution not depending on yi has not yet zeros at the same distan­
ces, and especially, it is not bounded on the interval (—00, 00) according 
to the quoted result of [6]. Hence, the curve ua(u\, u2), where ut, u2 

are independent solutions of the differential equation with q(t) given 
in (11) is not closed (because it is neither bounded), but its invariant 
3(0 is a periodic function with period n. 

As an example of a curve which is not closed (neither bounded) but 
which has a periodic invariant 3 let uq be mentioned, where 

( <*in2 t \ l + ^ - j , «>0; 
then 

/ e x P [ - 2 / W ] - l d, = _ r"_JL-L_-d# -_ 0 
J sm21 J » + sm21 
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and according to (11) 

a(3 — a) + 2(1 — 3a) sin21 — 4 snv* t 
q(t) _ (« -f sin21)2 

(there is g(£) < 0 for a > 3). 

We can summarize: 
The periodicity of an invariant 3 of a convex curve u, (then in special 

case, the periodicity of Blaschke's affine curvature or Boruvka's centroaffine 
curvature) is not sufficient condition for the curve u to be closed. 

The preceding considerations yield the assertion: 
/ / one of components of a curve uq(ux, u2) is periodic or half-periodic 

function with period n, then the curve uq is closed or non-bounded (then 
it is neither closed) iff the component satisfies (10) or not. 

Examples of non-closed curves with periodic curvatures are also curves 
which yield periodic differential equations (q) with characteristic numbers 
Ai, A2 of property | A; | ^ 1 (see Floquet's theory e.g. [4, p. 102]). 

Let us introduce some necessary conditions on curvature (k — in 
Blaschke's sense, CriC — in Boruvka's sense) for a curve uq to be closed. 

Let a parametric expression uq(ui, u2) of a closed curve is such that the 
differential equation (q) has the dispersion <p(t) satisfying qAn^(t) — t -f n 
(according to previous results, this can be always fulfilled). Further, the 
existence of necessary derivatines and q(t) - ^0 , if q is in a denominator, 
will be required. Then 

1° 3(t),k(t) and Jf(t) 

are periodic functions with period n. 

2° fX'(a)da 
o 

is periodic with period n. 
If uq is even simple centrosymmetric and n — 1 (then the last condition 

can be always arranged) then also: 

n 

3° 0 < TP/3 / k(t) dt <; n 
o 

and the equality holds just for ellipses with the centers at the origin. 

n I 

4° 0 < (\ f sgn Wjf(a) da + .. * T^df < n 

J L J Vi ?(0) i J 
o o 
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the equality being reached just for ellipses with the centers at the origin. 
t, 

5° sgn W f jf((T) d ( r 

reachesat least fourtimes the value 1 — l/]/ | g(0) | on the interval O ^ t < 7t. 
Proof: Under the given assumptions, the function q(t) is periodic with 

t 

period n, thus 1 ° must hold. And sgn W I Jť(a) da f Cť(a) 
Ví Í W i 

1 o 
— -_- . -=r- implies 2°. 

M\ g(0) I 
Further, JF*/3 / ft(e) cU = / [g1/3 + l/2(g-2/3)"] d*. According to 

o o 
the periodicity of q(ť) with period n, the last integrál is equal to 

— f <?V3W d/- As g ^ 0 and the curve itg being closed, it holds q(t) < 0. 
o 

With respect to the quoted result of [7] in Sec. 4, we háve 
n n 

0<—fqll3(t) át = f\q(t)\^dt šn, 
0 o 

the equality being reached just for ellipses with the centers at the origin. 
This proves 3°. 

Now, 
n t • * 

f \ f BgnWJť(a)áa + • _ . _ -1 *át = f\q(t)\át>0 
J L J Vl ff(0) | J J 
o o ° 

n 
and according to the mentioned result of [7], it is / | q(t) \ át S n> the 

o 
equality holds just for ellipses with the centers at the origin. Thus 4° 
is proved. 

t 

/
l 1 

Jť(a) áa = , ; — - T T T Z T . , , . 
Vl <?(<) I Vl 2(0) I 

0 
O. Borůvka [3] has proved that every two functions q, q* such that the 
corresponding difFerential equations (g), (q*) háve the samé dispersion 
(p(t) reach the samé value at least four times on any interval fo ^ t < 
< (f(to)- When g* == —1 fand then q>(t) = t + TI] is taken then the 



216 

function ljy\ q{t) | reaches at least four times the value 1 on the interval 
0 < t < n, q.e.d. 

Remark . Let us note that there are other relations in [7] not deman­
ding q 7̂  0. Let us mention also that the estimation (four times) in 5 a 

cannot be improved as an example is constructed in [5] which realizes 
the lowest limit. 

7. CONSTRUCTIONS OF ALL CURVES OF PRESCRIBED 
PROPERTIES 

Constructions of all closed (simple or not) curves which, as it has 
been shown, are characterized by the dispersion cp(t) complying with 
(pW(t) = t -f- d, and other curves connecting with those, can be derived 
from results of [6], where solutions of periodic differential equations (q) 
are studied. Especially, the construction of all differential equations (and 
then also curves) with dispersions of type (pW (t) = t -f n are given here 
and sufficient and necessary conditions warranted dispersions of the 
type are derived. 

Relations between dispersions of different differential equations and 
boundedness of their solutions (and then of corresponding curves, too) 
are studied in [8]. 
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