Archivum Mathematicum

Květomil Stach

Die Kummerschen Transformationen in Räumen mit abgeschlossenen Phasen. Teil A: Allgemeine Eigenschaften

Archivum Mathematicum, Vol. 4 (1968), No. 3, 141--156

Persistent URL: http://dml.cz/dmlcz/104662

Terms of use:

© Masaryk University, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

DIE KUMMERSCHEN TRANSFORMATIONEN IN RÄUMEN MIT ABGESCHLOSSENEN PHASEN

Teil A: Allgemeine Eigenschaften

Květomil Stach, Ostrava Eingegangen am 18. März 1968

EINLEITUNG

O. Borůvka beschäftigte sich in seiner Arbeit [2] mit dem Studium der vollständigen Kummerschen Transformationen der Systeme von Integralen der Differentialgleichungen

$$y'' = q(t) y;$$
 $Y'' = Q(t) Y$

aufeinander. Eine wesentliche Rolle spielte dabei der Begriff der Phasis und der Begriff der fundamentalen Folgen von konjugierten Zahlen.

Das Lösungssystem der linearen Differentialgleichung y'' = q(t) y bildet einen zweidimensionalen Raum von stetigen Funktionen. Deshalb hatte mich O. Borůvka beauftragt, mich mit der-Frage zu beschäftigen, ob solche Transformationen in beliebigen zweidimensionalen Räumen möglich sind.

Den ersten Teil dieses Studiums bildeten meine Arbeiten [3] und [4]. In diesen habe ich gezeigt, daß es auch in allgemeinen zweidimensionalen Räumen möglich ist, den Begriff der Phasis sehr einfach einzuführen und die allgemeinen Eigenschaften der sogenannten Kummerschen Transformationen zu untersuchen. Es hat sich gezeigt, daß in solchen Räumen die Phasen nicht notwendig monoton sein müssen und das gerade die Extrempunkte eine Hauptrolle bei den Kummerschen Transformationen spielen. In diesen Arbeiten habe ich gezeigt, daß es vorteilhaft ist, die Räume in drei Typen einzuteilen: die Räume mit abgeschlossenen, offenen und unbestimmten Phasen. Dabei habe ich festgestellt, daß die Integrale der Differentialgleichungen vom endlichen Typ zu den Räumen mit abgeschlossenen Phasen und die Integrale der oszillierenden Gleichungen zu den Räumen mit offenen Phasen gehören.

In der vorliegenden Arbeit beschäftige ich mich mit den Räumen mit abgeschlossenen Phasen. Sie ist also eine direkte Verallgemeinerung der Arbeit [2]. Am Anfang habe ich gezeigt, daß in jedem zweidimensionalen Raum von stetigen Funktionen ein dreiparametrisches System von Phasen existiert (Satz 1,1), was eine Verallgemeinerung des Satzes aus [2] ist (Seite 238, Punkt 11).

Weiter habe ich den Begriff der charakteristischen Punkte eingeführt. Es ist in Wirklichkeit eine Analogie der Fundamentalfolge von konjugierten Zahlen. Ein kleiner Unterschied in dieser Definition gab mir die Möglichkeit die Räume vom Typus 1 in der Gesamtheit mit den Räumen vom Typus m>1 zu studieren.

Im ersten Teil dieser Arbeit, der die Paragraphen 1 und 2 enthält, beschäftige ich mich mit den allgemeinen Eigenschaften aller Räume mit abgeschlossenen Phasen und ihren Transformationen.

Im zweiten Teil, der die Paragraphen 3—5 enthält, beschäftige ich mich mit den Transformationen in Räumen einer gegebenen Klasse. Im § 3 untersuche ich die Räume ohne Extrempunkte. Es zeigt sich, daß die Transformationen in diesen Räumen sehr ähnliche Eigenschaften, wie die Transformationen der Lösungen von obenerwähnten Differentialgleichungen, haben. Z. B. der Satz 3,8 ist ganz analog dem Satz aus [2] auf der Seite 251. Im § 4 studiere ich die Räume, deren Extrempunkte charakteristisch sind und im § 5 beschäftige ich mich mit den übrigen Fällen.

Die Hauptergebnisse sind besonders in den Sätzen 3,8; 4,7 und 5,1 enthalten.

Da ich sehr oft auf die Sätze und Definitionen aus [3] und [4] hinweisen muß, mache ich es so, daß ich vor die Nummer des Satzes resp. der Definition aus [3] die Vorzahl 3 und aus [4] die Vorzahl 4 setze. Also z. B. S. 3,2,5 bedeutet den Satz 2,5 aus [3]; D. 4,2,1 bedeutet die Definition 2,1 aus [4].

Ich möchte mich bei S. Trávníček von der Palacký-Universität in Olomouc für seine wertvollen Ratschläge bezüglich dieser Arbeit herzlichst bedanken.

§ 1: DIE CHARAKTERISTISCHEN PUNKTE

Vereinbarung 1,1: In der ganzen Arbeit werden wir die folgenden Bezeichnungen benützen: S, S_1 , S_2 sind lineare zweidimensionale Räume von stetigen Funktionen [D. 3,1,2], die in den Intervallen i=(a,b), $i_1=(a_1,b_1)$, $i_2=(a_2,b_2)$ definiert sind. Dabei sind a, a_1 , a_2 reelle Zahlen oder $-\infty$; b, b_1 , b_2 reelle Zahlen oder $+\infty$. Mit (u,v), (u_1,v_1) , (u_2,v_2) werden wir die Basen der Räume S, S_1 , S_2 [D. 3,1,3] und mit a, a_1 , a_2 die Phasen dieser Räume [D. 4,1,1; D. 3,2,5] bezeichnen.

Zuerst werden wir einen Satz beweisen, der für alle zweidimensionale Räume von stetigen Funktionen (und nicht nur für die Räume mit abgeschlossenen Phasen) gilt.

Satz 1,1: Es sei ein Raum S gegeben. Es seien $t_1 < t_2 < t_3$ drei nicht miteinander konjugierte Punkte des Intervalls i, die so gewählt sind, daß in dem Intervall (t_1, t_3) keine Extrempunkte und keine mit t_1, t_2, t_3

konjugierten Punkte existieren. Ferner seien $x_1 < x_2 < x_3$ ($x_1 > x_2 > x_3$) beliebige reelle Zahlen, die so gewählt sind, daß $|x_3 - x_1| < \pi$ ist. Dann existiert genau eine Phase α des Raums S, für die

Beweis: (wir werden ihn für den Fall $x_1 < x_2 < x_3$ vorführen). a) Setzen wir zuerst voraus, daß $x_i \neq \pi/2 + k\pi$ (k ganz) ist. Dann können wir schreiben:

R. 1,2
$$ext{tg } x_i = k_i ext{ ($i = 1, 2, 3$)}$$

Da $0 < x_3 - x_1 < \pi \text{ ist, ist}$

R. 1,3
$$k_1 \neq k_2 \neq k_3 \neq k_1$$
.

Setzen wir voraus, daß eine Phase α , die die von uns verlangten Eigenschaften hat, existiert. Bezeichnen wir mit (u, v) eine Basis, zu der die Phase α gehört. Nach S. 3,2,4 gilt für alle $t \in (a, b)$, für die $\alpha(t) \neq \pi/2 + k\pi$ ist, die Gleichheit

$$\operatorname{tg} \alpha(t) = \frac{u(t)}{v(t)}.$$

Deshalb muß für $t = t_i$ (i = 1, 2, 3)

$$\mathbf{R.} \ \mathbf{1.4} \qquad \qquad k_i = \frac{u(t_i)}{v(t_i)}$$

sein.

Nach S. 3,1,5 existiert genau eine Basis (\bar{u}, \bar{v}) des Raums S so, daß

R. 1,5
$$\bar{u}(t_1) = \bar{v}(t_3) = 0, \quad \bar{u}(t_2) = \bar{v}(t_2) = 1$$

ist. Nach S. 3,1,2 können wir u, v eindeutig in der Form

R. 1,6
$$u = c_{11}\bar{u} + c_{12}\bar{v}$$
$$v = c_{21}\bar{u} + c_{22}\bar{v}$$

schreiben. Dabei sind c_{ik} feste reelle Zahlen, deren Determinante von Null verschieden ist. Aus R. 1,6, R. 1,5 und R. 1,4 bekommen wir nach einer einfachen Umformung

$$\begin{array}{ccc} c_{12} & -k_1c_{22} = 0 \\ c_{11} + c_{12} - k_2c_{21} - k_2c_{22} = 0 \\ c_{11} & -k_3c_{21} & = 0. \end{array}$$

Folglich

$$c_{11}:c_{12}:c_{21}:c_{22}=k_3(k_1-k_2):k_1(k_2-k_3):(k_1-k_2):(k_2-k_3)$$

Die Koeffizienten c_{ik} (i, k = 1, 2) sind also bis auf einen Proportionalitätskoeffizienten eindeutig bestimmt, und deshalb ist auch das Verhältnis u/v eindeutig bestimmt. Da die Phase α , für die die Gleichungen R. 1,1 erfüllt sein sollen, eine Phase der Basis (u, v) sein muß und da alle Phasen der Basis (u, v) sich voneinander durch eine feste Konstante unterscheiden, kann höchstens eine Phasis, die die erforderten Eigenschaften hat, existieren.

Konstruieren wir jetzt die Funktionen

R. 1,8
$$u = k_3(k_1 - k_2) \overline{u} + k_1(k_2 - k_3) \overline{v}$$
$$v = (k_1 - k_2) \overline{u} + (k_2 - k_3) \overline{v}.$$

$$\left| \begin{array}{ccc} k_3(k_1 - k_2) & k_1(k_2 - k_3) \\ k_1 - k_2 & k_2 - k_3 \end{array} \right| = (k_1 - k_2) \; (k_2 - k_3) \; (k_3 - k_1) \neq 0$$

ist, ist (u, v) eine Basis. Da $\frac{u(t_1)}{v(t_1)} = \operatorname{tg} x_1$ ist, existiert eine Phase α der Basis (u, v) so, daß $\alpha(t_1) = x_1$ ist. Da weiter

$$\frac{u(t_2)}{v(t_2)} = \operatorname{tg} x_2, \qquad \frac{u(t_3)}{v(t_3)} = \operatorname{tg} x_3,$$

d. h.

$$\operatorname{tg} \alpha(t_2) = \operatorname{tg} x_2, \qquad \operatorname{tg} \alpha(t_3) = \operatorname{tg} x_3$$

, gilt, müssen ganze Zahlen n_1 und n_2 so existieren, daß

R. 1,9
$$\alpha(t_2) = x_2 + n_1 \pi$$
, $\alpha(t_3) = x_3 + n_2 \pi$ ist.

Da in dem Intervall (t_1, t_2) keine Extrempunkte existieren, muß die Funktion α in $\langle t_1, t_3 \rangle$ entweder steigend oder fallend sein. Wäre α in $\langle t_1, t_3 \rangle$ fallend, so ware

$$\alpha(t_1) > \alpha(t_2) > \alpha(t_3),$$

d. h.

$$x_1 > x_2 + n_1 \pi > x_3 + n_2 \pi.$$

Wegen

$$x_1 < x_2 < x_3$$

d. h.

$$-x_1 > -x_2 > -x_3$$

erhalten wir durch subtrahieren: $0 > n_1 \pi > n_2 \pi$, also $n_1 \leq -1$, $n_2 \leq -2$.

Weiter ist nach der Voraussetzung

R. 1,10
$$x_3 - x_1 < \pi$$
 d. h. $x_1 - x_3 > -\pi$.

Aus R. 1,9 und R. 1,10 wäre

$$\alpha(t_1) - \alpha(t_3) > -\pi + 2\pi = \pi,$$

also

$$\alpha(t_1) > \alpha(t_1) - \pi > \alpha(t_3).$$

Deshalb müßte in dem Intervall (t_1, t_3) ein Punkt t_0 existieren, für den $\alpha(t_0) = \alpha(t_1) - \pi$ gälte. Folglich wäre t_0 mit t_1 konjugiert [S. 4,1,2], was aber unmöglich ist. Deshalb ist α wachsend, d. h. $\alpha(t_1) < \alpha(t_2) < \alpha(t_3)$. Folglich ist $x_1 < x_2 + n_1\pi$, wovon:

$$-n_1\pi < x_2 - x_1$$

Da nach der Voraussetzung $x_2 - x_1 < x_3 - x_1 < \pi$ ist, muß $-n_1\pi < \pi$ sein und deshalb ist: $n_1 > -1$.

Setzen wir voraus, daß $n_1 \ge 1$ wäre. Dann gälte:

$$\alpha(t_1) = x_1 < x_2 < x_2 + n_1 \pi = \alpha(t_2).$$

Deshalb müßte auf dem Intervall (t_1, t_2) ein Punkt t_0 existieren, für den $\alpha(t_0) = x_2$ wäre. Dann wären t_0 und t_2 miteinander konjugiert [S. 4,1,2], was aber unmöglich ist. Darum ist $n_1 = 0$. Auf ähnliche Weise finden wir, daß $n_2 = 0$ ist. Also wir haben bewiesen, daß $\alpha(t_i) = x_i$ (i = 1, 2, 3) ist.

b) Wenn z. B. $x_1=\pi/2+k\pi$ (k ganz) ist, so muß $v(t_1)=0$ sein und deshalb muß nach R. 1,6 und R. 1,5 $c_{22}=0$ sein. Deshalb müssen wir die erste Gleichung in R. 1,7 durch die Gleichung $c_{22}=0$ ersetzen und weiter können wir wie in a) fortfahren. Ähnlicherweise können wir den Beweis auch in Fällen $x_2=\pi/2+k\pi$ oder $x_3=\pi/2+k\pi$ führen.

Damit ist unser Satz bewiesen.

Vereinbarung 1,2: Wir werden immer voraussetzen, daß S, S₁, S₂ regulär [D. 3,1,4; D. 3,1,5] und von einem bestimmten Typus [D. 3,2,1; D. 3,2,2] sind. Weiter werden wir voraussetzen, daß S, S₁, S₂ die Räume mit abgeschlossenen Phasen sind [D. 4,2,4].

Vereinbarung 1,3: Die Funktion $y\equiv 0$ wollen wir aus unseren Erwägungen immer ausschließen.

Nach Bemerkung 4,2,1 existieren für jede Phase $\alpha(t)$ die endlichen Grenzwerte $\lim_{t\to a+} \alpha(t)$ und $\lim_{t\to b-} \alpha(t)$. Deshalb können wir die Definition der Funktion α folgendermaßen erweitern:

Definition 1,1: Es sei α eine Phase des Raums S. Wir setzen $\alpha(a) = \lim_{t \to a+} \alpha(t)$ und $\alpha(b) = \lim_{t \to b-} \alpha(t)$.

Satz 1,2: Die Funktion $\alpha(t)$ ist im Intervall $\langle a, b \rangle$ stetig.

Beweis: Die Stetigkeit in (a, b) folgt aus S. 3,2,4, die Stetigkeit in den Punkten a und b folgt aus D. 1,1.

Definition 1,2: Wir sagen, daß die Funktion h(t) im Punkt t_0 von rechts resp. links einen unendlichen Grenzwert ∞ hat und schreiben $\lim_{t\to t_0+} h(t) = \infty$, resp. $\lim_{t\to t_0-} h(t) = \infty$, wenn

- 1. eine gewiesse rechte resp. linke Umgebung O des Punktes t_0 existiert, in der die Funktion h mit höchstens abzählbar vielen Ausnahmen definiert ist,
- 2. zu jedem reellen K eine gewisse rechte resp. linke Umgebung $O_K \subset O$ des Punktes t_0 so existiert, daß für alle $t \in O_K$, für die h(t) definiert ist, die Ungleichheit |h(t)| > K gilt.

Satz 1,3: Es sei (u, v) eine Basis des Raums S und α ihre Phase. Dann existiert der Grenzwert $L = \lim_{t \to a+} \frac{u(t)}{v(t)}$. Wenn $\alpha(a) \neq \pi/2 + k\pi$ (k ganz) ist, so ist $L = \operatorname{tg} \alpha(a)$. Wenn $\alpha(a) = \pi/2 + k\pi$ (k ganz) ist, so ist $L = \infty$.

Ähnlicherweise für $\lim_{t\to b-}\frac{u(t)}{v(t)}$.

Beweis: Der Satz ist eine unmittelbare Folgerung der Sätze S. 3,2,4 und S. 1,2.

Satz 1,4: In jedem Raum S existiert eine Funktion u so, daß für jede Funktion $v \in S$, die an u unabhängig ist, der Grenzwert

$$\lim_{t \to a+} \frac{u(t)}{v(t)} = 0$$

ist. Wenn \overline{u} eine andere Funktion mit derselben Eigenschaft ist, so sind u und \overline{u} abhängig. Eine ähnliche Behauptung gilt auch für den Punkt b.

Beweis: I. Es sei (u_1, v_1) eine beliebige Basis des Raums S. Zufolge S. 1,3 existiert der Grenzwert $\lim_{t\to a+} \frac{u_1(t)}{v_1(t)} = k$.

a) Es sei zuerst k endlich. Wählen wir $u(t)=u_1(t)-kv_1(t)$. Es sei v(t) eine beliebige, an u(t) unabhängige Funktion des Raums S. Dann existieren reelle Zahlen c_1 , c_2 , für die

R. 1,11
$$v(t) = c_1 u_1(t) + c_2 v_1(t) \quad \text{und} \quad \begin{vmatrix} 1 & -k \\ c_1 & c_2 \end{vmatrix} \neq 0$$

ist. Da k endlich ist, existiert eine rechte Umgebung O_a des Punkts a so,

daß für $t \in O_a v_1(t) \neq 0$ ist. Nach R. 1,11 ist auch $c_2 + kc_1 \neq 0$. Nach S. 1,3 existiert $\lim_{t \to a+} \frac{u(t)}{v(t)}$. Folglich

$$\lim_{t \to a+} \frac{u(t)}{v(t)} = \lim_{t \to a+} \frac{u_1(t) - kv_1(t)}{c_1u_1(t) + c_2v_1(t)} = \lim_{t \to a+} \frac{\frac{u_1(t)}{v_1(t)} - k}{c_1\frac{u_1(t)}{v_1(t)} + c_2} = \frac{k - k}{c_1k + c_2} = 0$$

b) Es sei $\lim_{t\to a+} \frac{u_1(t)}{v_1(t)} = \infty$. Aus S. 1,3 folgt, daß der Grenzwert

 $\lim_{t\to a+} \frac{v_1(t)}{u_1(t)}$ existiert und da $k=\infty$ ist, muß er gleich Null sein. Deshalb

können wir $u(t) = v_1(t)$ setzen und weiter wie in a) fortfahren. Damit ist der Beweis des ersten Teils der Behauptung beendet.

II. a) Es sei $\overline{u} = c \cdot u$, wobei $u \in S$ eine Funktion ist, für die $\lim_{t \to a+} \frac{u(t)}{v(t)} = 0$ für jede an u unabhängige Funktion v ist. Dann ist

$$\lim_{t\to a+}\frac{\overline{u}(t)}{v(t)}=c\cdot\lim_{t\to a+}\frac{u(t)}{v(t)}=0.$$

b) Setzen wir jetzt voraus, daß zwei unabhängige Funktionen u und \overline{u} existieren, die die von uns geforderte Eigenschaft haben. Dann wäre $\lim_{t\to a+}\frac{u(t)}{\overline{u}(t)}=\lim_{t\to a+}\frac{\overline{u}(t)}{u(t)}=0$, was aber ein evidenter Widerspruch wäre. Damit ist unser Satz bewiesen.

Definition 1,3: Es sei $u \in S$ so, daß für jede, an u unabhängige Funktion v gilt:

$$\lim_{t \to a+} \frac{u(t)}{v(t)} = 0 \qquad \left[\lim_{t \to b-} \frac{u(t)}{v(t)} = 0 \right].$$

Dann sagen wir, daß u eine linke (rechte) Randfunktion ist. Wenn u gleichzeitig die linke und die rechte Randfunktion ist, so sagen wir, sie ist eine Randfunktion.

Definition 1,4: Es sei u eine linke (rechte) Randfunktion. Der Punkt a (b) und alle Nullstellen der Funktion u heißen die linken (rechten) charakteristischen Punkte.

Definition 1,5: Es seien u eine linke und v eine rechte Randfunktion des Raums S. Wenn u und v unabhängig (abhängig) sind, so sagen wir, daß S ein allgemeiner (spezieller) Raum ist.

Satz 1,5-a: Es sei $t_0 \neq a$ ein linker charakteristischer Punkt. Der Punkt t_0 ist genau dann ein rechter charakteristischer Punkt, wenn S ein spezieller Raum ist.

Der Beweis folgt unmittelbar aus D. 1,5 und S. 3,1,4.

Bemerkung 1,1: Nach S. 1,5 fallen in speziellen Räumen die linken und rechten charakteristischen Punkte des Intervalls (a, b) zusammen. Deshalb ist es vorteilhaft in speziellen Räumen den Punkt b (a) zu den linken (rechten) charakteristischen Punkten zu zählen. Nach dieser Vereinbarung können wir den Satz 1,5 folgendermaßen erweitern:

Satz 1,5-b: Die linken und rechten charakteristischen Punkte fallen gerade dann zusammen, wenn S ein spezieller Raum ist.

Satz 1,6: Es sei $\alpha(t)$ eine Phase des Raums S. Der Punkt t_0 ist genau dann ein linker (rechter) charakteristischer Punkt, wenn

$$\alpha(t_0) = \alpha(a) + k\pi \quad [\alpha(t_0) = \alpha(b) + m\pi]$$

gilt. Dabei ist k(m) eine gelegene ganze Zahl.

Beweis: (Wir werden ihn für den Fall des linken charakteristischen Punktes führen).

- A. Für $t_0 = a$ ist unser Satz evident.
- B. Jetzt werden wir zeigen, daß der Satz für $t_0=b$ gilt. Bezeichnen wir mit $(u,\,v)$ irgendeine Basis der Phase α und mit y eine linke Randfunktion.
- I. Es sei b ein linker charakteristischer Punkt. Nach S. 1,5-a ist S speziell und y ist die rechte Randfunktion.
- a) Es seien v, y unabhängig. Nach S. 1,4 ist $\lim_{t\to a+} \frac{y(t)}{v(t)} = \lim_{t\to b-} \frac{y(t)}{v(t)} = 0$ und es existieren reelle Zahlen $c_1 \neq 0$ und c_2 so, daß

$$u(t) = c_1 y(t) + c_2 v(t).$$

Nach S. 1,3 existieren die Grenzwerte

$$egin{aligned} L_1 &= \lim_{t o a+} rac{u(t)}{v(t)} = \lim_{t o a+} rac{c_1 y(t) + c_2 v(t)}{v(t)} = c_2 \ L_2 &= \lim_{t o b-} rac{u(t)}{v(t)} = c_2. \end{aligned}$$

und es ist tg $\alpha(a) = c_2 = \text{tg } \alpha(b)$ und deshalb $\alpha(b) = \alpha(a) + k\pi$.

b) Es seien v, y abhängig. Dann ist v eine linke und gleichzeitig eine rechte Randfunktion. Nach S. 1,3 und S. 1,4 ist

$$\lim_{t\to a+}\frac{u(t)}{v(t)}=\lim_{t\to b-}\frac{u(t)}{v(t)}=\infty$$

und deshalb — wieder nach S. 1,3

$$\alpha(a) = \frac{\pi}{2} + m_1 \pi, \qquad \alpha(b) = \frac{\pi}{2} + m_2 \pi \qquad (m_1, m_2 \text{ ganz})$$

d.h.

$$\alpha(b) = \alpha(a) + k\pi$$
 (k ganz).

II. Es sei $\alpha(b) = \alpha(a) + k\pi$. Nach S. 1.3 ist

R. 1,12
$$\lim_{t\to a+}\frac{u(t)}{v(t)} = \lim_{t\to b-}\frac{u(t)}{v(t)} = L$$

a) Wenn y und v unabhängig sind, so ist $L \neq \infty$ und es existieren reelle Zahlen k_1 und k_2 so, daß

$$\lim_{t \to b^{-}} \frac{y(t)}{v(t)} = \lim_{t \to b^{-}} \frac{k_{1}u(t) + k_{2}v(t)}{v(t)} = \lim_{t \to b^{-}} \left[k_{1} \frac{u(t)}{v(t)} + k_{2} \right] = \lim_{t \to a^{+}} \left[k_{1} \frac{u(t)}{v(t)} + k_{2} \right] = \lim_{t \to a^{+}} \frac{y(t)}{v(t)} = 0.$$

y(t) ist also eine rechte Randfunktion, S ist speziell und b ist ein linker charakteristischer Punkt.

b) Wenn y und v abhängig sind, ist v eine linke Randfunktion und $L=\infty$. Nach R. 1.12 ist

$$\lim_{t \to a+} \frac{v(t)}{u(t)} = \lim_{t \to b-} \frac{v(t)}{u(t)} = 0$$

und v(t) ist gleichzeitig eine rechte Randfunktion. S ist wieder speziell und b ist ein linker charakteristischer Punkt. Damit ist unser Satz für $t_0 = b$ bewiesen.

C. Es sei $t_0 \in (a, b)$. Bezeichnen wir mit S_1 den Raum, der im Intervall (a, t_0) definiert ist und dessen Basis (u_1, v_1) ist, wobei $u_1(t) = u(t)$, $v_1(t) = v(t)$ für alle $t \in (a, t_0)$. Der Raum S_1 hat die Funktion α_1 , für die $\alpha_1(t) = \alpha(t)$ für $t \in \langle a, t_0 \rangle$ gilt, für seine Phasis. Offensichtlich ist t_0 ein linker charakteristischer Punkt des Raums S_1 gerade dann, wenn er ein linker charakteristischer Punkt des Raums S_1 ist. Nach S_1 ist es gerade dann, wenn eine solche ganze Zahl S_2 existiert, daß

$$lpha_{1}(t_{0})=lpha_{1}(a)+k\pi,$$
d. h. $lpha(t_{0})=lpha(a)+k\pi$

ist. Damit ist unser Satz bewiesen.

Definition 1,6: Es sei u eine linke und v eine rechte Randfunktion eines allgemeinen Raums S. Die Basis (u, v) heißt die linke und die Basis (v, u) die rechte Randbasis. Die Phasen, die zu (u, v) gehören, heißen die linken Randphasen. Die Phasen, die zu (v, u) gehören, heißen die rechten Randphasen.

Definition 1,6-a: Es sei u eine Randfunktion eines speziellen Raums S. Es sei ferner $v \in S$ eine auf u unabhängige Funktion. Die Basis (u, v) heißt die Randbasis und die zu ihr gehörigen Phasen heißen die Randphasen des Raums S.

Satz 1,7: Es sei $\alpha(t)$ eine linke (rechte) Randphase eines allgemeinen Raums S. Dann ist

$$\alpha(a) = k\pi, \qquad \alpha(b) = \frac{\pi}{2} + m\pi \qquad \left[\alpha(a) = \frac{\pi}{2} + m\pi, \qquad \alpha(b) = k\pi\right],$$

wobei k, m ganze Zahlen sind. Und umgekehrt.

Beweis: I. Es sei (u, v) eine linke Randphase. Dann ist $\lim_{t\to a+} \frac{u(t)}{v(t)} =$

 $= \lim_{t \to b^{-}} \frac{v(t)}{u(t)} = 0. \text{ Daraus } \lim_{t \to b^{-}} \frac{u(t)}{v(t)} = \infty. \text{ Aus S. 1,3 folgt also unsere}$ Behauptung.

II. Es sei α die Phase der Basis (u, v) und dabei gelte $\alpha(a) = k\pi$, $\alpha(b) = \frac{\pi}{2} + m\pi$. Dann ist $\lim_{t \to a+} \frac{u(t)}{v(t)} = 0 = \lim_{t \to b-} \frac{v(t)}{u(t)}$. Deshalb ist u die linke und v die rechte Randfunktion und α ist die linke Randphase.

Satz 1,8: Der Satz 1,1 tritt nicht außer Kraft, wenn wir $t_1 = a$ $(t_3 = b)$ setzen. Dabei müssen wir aber alle linken (rechten) charakteristischen Punkte als miteinander konjugiert betrachten.

Der Beweis kann auf ähnliche Weise wie der des Satzes 1,1 verlaufen. Anstatt der Funktion u aus diesem Beweis müssen wir eine linke Randfunktion u wählen, für die $u(t_2) = 1$ ist.

Satz 1,9: Jeder Raum mit abgeschlossenen Phasen, der zu einer endlichen Klasse (D. 4,3,2) gehört, ist auch ein Raum vom endlichen Typus (D. 3,2,1).

Beweis: Es sei S ein Raum einer endlichen Klasse. Setzen wir voraus, daß er z. B. vom Typus $-\infty$ ist. Dann existiert eine Funktion $u \in S$, die nach links oszilliert (D. 4,2,1). Folglich existiert eine unendliche Punktfolge $t_1 > t_2 > \dots$ so, daß t_i die Nullstellen der Funktion u sind, $\lim_{t \to \infty} t_i = a$ ist und auf dem Intervall (a, t_1) keine weiteren mit t_i konjugierten Punkte existieren. Wählen wir eine beliebige an u unabhängige

Funktion v und konstruieren wir irgendeine Phase der Basis (u, v). Für jedes i ist $\frac{u(t_i)}{v(t_i)} = 0$ und deshalb existiert nach S. 3,2,4 eine ganze

Zahl k_i so, daß

$$\mathbf{R. 1,16} \qquad \qquad \alpha(t_i) = k_i \cdot \pi$$

ist. Da die Funktion α im Punkt a von rechts stetig ist, existiert eine rechte Umgebung O des Punktes a so, daß für $t \in O$

$$\alpha(a) - 1 < \alpha(t) < \alpha(a) + 1$$

ist. In Hinsicht auf R. 1,16 und darauf, daß $\lim_{i\to\infty}t_i=a$ ist, muß ein solches i_0 existieren, daß für $i>i_0$ ist:

R. 1,17
$$\alpha(t_i) = \alpha(a).$$

Daraus folgt, daß für jedes $i>i_0$ ein solcher Punkt $\xi_i\in(t_{i+1},t_i)$ existiert, daß ξ_i ein Extrempunkt ist, und ξ_i nicht mit t_i konjugiert ist. Es ist offenbar lim $\xi_i=a$. Da S einer endlichen Klasse ist, muß eine unendliche

Punktfolge i_1, i_2, \ldots so existieren, daß $\{\xi_{i_n}\}_{n=1}^{\infty}$ miteinander konjugiert sind. Deshalb muß nach D. 3,1,6 eine Funktion $y \in S$ existieren, für die $y(\xi_{i_n}) = 0$ für jedes natürliches n ist, d. h. y oszilliert nach links. Da ξ_{i_n} und t_i nicht konjugiert sind, sind nach S. 3,1,4 y und u unabhängig. Das ist aber ein Widerspruch mit S. 4,2,1.

Auch die Voraussetzung, daß S vom Typus $+\infty$ oder $\pm\infty$ ist, führt zum ähnlichen Widerspruch. Damit ist unser Satz bewiesen.

§ 2: DIE VOLLSTÄNDIGEN TRANSFORMATIONEN

Satz 2,1-a: Es sei T(z, x) eine vollständige Transformation (D. 4,3,1) des Raums S_1 auf S_2 mit einer wachsenden Amplitude x (D. 3,4,1). Es sei $t_0 \in i_2$. Der Punkt $x(t_0)$ ist genau dann ein linker (rechter) charakteristischer Punkt, wenn t_0 ein linker (rechter) charakteristischer Punkt ist.

Beweis: Es sei (u_1, v_1) irgendeine Basis des Raums S_1 . Nach S. 3,4,1 ist $[u_2 = T(u_1), v_2 = T(v_1)]$ eine Basis des Raums S_2 . Bezeichnen wir mit α_1 resp. α_2 die Phasen der Basen (u_1, v_1) resp. (u_2, v_2) . Zufolge S. 4,3,2 existiert eine ganze Zahl k so, daß

R. 2,1
$$\alpha_2(t) = \alpha_1[x(t)] + k\pi$$

für jedes $t \in (a_2, b_2)$ ist. Da T eine vollständige Transformation mit einer wachsenden Amplitude x ist, gilt:

R. 2,2
$$\lim_{t \to a_1 +} x(t) = a_1, \quad \lim_{t \to b_2 -} x(t) = b_1.$$

Aus der Definition D.1,1 folgt:

R. 2,3
$$\alpha_2(a_2) = \alpha_1(a_1) + k\pi, \quad \alpha_2(b_2) = \alpha_1(b_1) + k\pi.$$

Nach S. 1,6 ist der Punkt t_0 ein linker charakteristischer Punkt genau dann, wenn eine solche ganze Zahl m existiert, daß

R. 2,4
$$\alpha_2(t_0) = \alpha_2(a_2) + m\pi$$

ist. Aus R. 2,1, R. 2,3 und R. 2,4 bekommen wir

R. 2,5
$$\alpha_1[x(t_0)] = \alpha_1(a_1) + m\pi$$
.

Nach S. 1,6 ist $x(t_0)$ ein linker charakteristischer Punkt.

Auf ähnliche Weise verläuft der Beweis auch, wenn t_0 ein rechter charakteristischer Punkt ist.

Für die Transformationen mit fallenden Amplituden können wir ähnlicherweise den folgenden Satz beweisen:

Satz 2,1-b: Es sei T(z, x) eine vollständige Transformation des Raums S_1 auf S_2 mit einer fallenden Amplitude x. Es sei $t_0 \in i_2$. Der Punkt $x(t_0)$ ist genau dann ein linker (rechter) charakteristischer Punkt des Intervalls i_1 , wenn t_0 ein rechter (linker) charakteristischer Punkt des Intervalls i_2 ist.

Satz 2,2: Es sei S_1 auf S_2 vollständig durch die Transformation T(z,x) transformierbar. Dann sind S_1 und S_2 gleichzeitig entweder allgemein oder speziell.

Beweis: Der Satz ist eine Folgerung der Sätze S. 2,1 und S. 1,5-a.

Satz 2,3: Es sei S_1 auf S_2 durch die Transformation T(z, x) vollständig transformierbar. Es sei S_1 vom Typus k (k natürlich, $+\infty$, $-\infty$, $\pm\infty$) [D. 3,2,1].

Wenn k natürlich oder $\pm \infty$ ist, so ist auch S_2 vom Typus k.

Wenn $k = +\infty$ und x wachsend (fallend) ist, so ist S_2 vom Typus $+\infty$ ($-\infty$).

Wenn $k = -\infty$ und x wachsend (fallend) ist, so ist S_2 vom Typus $-\infty$ $(+\infty)$.

Beweis: Wenn k natürlich ist, so existiert mindestens eine Funktion $y_1 \in S_1$, die gerade k Nullstellen t_1, t_2, \ldots, t_k hat. Nach S. 3,4,5 sind die Punkte $x(t_1), x(t_2), \ldots, x(t_k)$ die Nullstellen der Funktion $T(y_1)$. Deshalb ist S_2 vom Typus $m \geq k$. Wäre m > k, so müßte eine Funktion $y_2 \in S_2$ mit m Nullstellen x_1, x_2, \ldots, x_m existieren. Nach S. 3,4,5 müßte die Funktion $T^{-1}(y_2)$ (S. 3,4,7) die Nullstellen $x^{-1}(x_1), \ldots, x^{-1}(x_m)$ haben, was aber unmöglich ist, da $T^{-1}(y_2)$ höchstens k Nullstellen haben kann. Daher: m = k.

In anderen Fällen verläuft der Beweis ähnlicherweise.

Bemerkung 2,1: Nach S. 2,2 müssen zwei aufeinander vollständig transformierbare Räume gleichzeitig allgemein oder speziell sein. Nach S. 4,3,4 müssen sie zu derselben Klasse gehören (D. 4,3,2). Und nach S. 2,3 müssen sie im gewissen Sinn desselben Typus sein.

Satz 2,4: Es existiere eine vollständige Transformation T(z, x) des Raums S_1 auf S_2 mit der wachsenden (fallenden) Amplitude x. Es sei (u_1, v_1) eine linke Randbasis. Die Basis $[T(u_1), T(v_1)]$ ist eine linke (rechte) Randbasis.

Beweis: Der Satz folgt unmittelbar aus S. 2,1 und S. 3,4,5.

Satz 2,5: Es seien (u_1, v_1) und (u_2, v_2) beliebige Basen der Räume S_1 und S_2 . Dann existiert höchstens eine vollständige Transformation T(z, x) des Raums S_1 auf S_2 , für die $T(u_1) = u_2$, $T(v_1) = v_2$ und x(t) wachsend ist, und höchstens eine Transformation $\overline{T}(\overline{z}, \overline{x})$, für die $\overline{T}(u_1) = u_2$, $\overline{T}(v_1) = v_2$, \overline{x} fallend ist.

Beweis: I. Im Verlauf dieses Beweises werden wir folgende Terminologie und Bezeichnungen benützen:

Wenn $t_0 \in i_2$ ist, so bezeichnen wir mit $\{t_i\}_{i=-r}^s$ alle mit t_0 konjugierten Punkte, und zwar so, daß

$$\dots < t_{-1} < t_0 < t_1 < \dots$$

ist. Dabei kann r oder s Null, eine natürliche Zahl oder $+\infty$ sein. Wenn r sowie auch s endlich sind, so werden wir sagen, daß t_0 von einem endlichen Typus ist. Wenn $r=+\infty$ $(s=+\infty)$ ist, so werden wir sagen, daß t_0 vom Typus $-\infty$ $(+\infty)$ ist. Die Punktfolge $\{t_i\}_{i=-r}^s$ werden wir die Begleitpunktfolge des Punktes t_0 nennen.

II. Nach S. 4,2,1 sind alle Punkte vom Typus $-\infty$ (wenn sie existieren) miteinander konjugiert. Dasselbe gilt auch für die Punkte, die vom Typus $+\infty$ sind. Folglich können die Punkte vom Typus $+\infty$ $(-\infty)$ höchstens die Punkte b(a) als Häufungspunkte haben. Daraus folgt, daß zu jedem Punkt $t_0 \in i$ eine solche Umgebung O existiert, daß alle Punkte $t \neq t_0$ aus O vom endlichen Typus sind.

III. Setzen wir voraus, daß $\mathbf{T}_1(z_1, x_1)$ und $\mathbf{T}_2(z_2, x_2)$ vollständige Transformationen sind, für die gilt: $\mathbf{T}_1(u_1) = \mathbf{T}_2(u_1) = u_2$, $\mathbf{T}_1(v_1) = \mathbf{T}_2(v_1) = v_2$; x_1, x_2 sind wachsend.

IV. Es sei $t_0 \in i_2$ ein Punkt von einem endlichen Typus. Konstruieren wir die Begleitpunktfolge $\{t_i\}_{i=-r}^s$. Es sei $y_2 = c_1u_2 + c_2v_2$ eine Funktion, deren Nullstellen gerade die Punkte t_i sind. Bezeichnen wir weiter $y_1 = c_1u_1 + c_2v_1$. Nach S. 3,4,2 ist $\mathbf{T}_1(y_1) = \mathbf{T}_2(y_1) = y_2$. Aus S. 3,4,5 und aus der Vollständigkeit der Transformationen \mathbf{T}_1 und \mathbf{T}_2 folgt, daß $\{x_k(t_i)\}_{i=-r}^s$ (k=1,2) alle Nullstellen der Funktion y_1 sind. Da x_k wachsend sind, ist

$$x(t_{-s}) < \ldots < x_{s}(t_{0}) < \ldots < x_{k}(t_{s}).$$

Folglich muß $x_1(t_i) = x_2(t_i)$ für alle i = -r, ..., s sein. Besonders:

R. 2,5-a
$$x_1(t_0) = x_2(t_0)$$
.

Also in jedem Punkt $t \in i_2$, der vom endlichen Typus ist, gilt R. 2,5-a. V. Aus II., IV. und aus der Stetigkeit der Funktionen x_1 und x_2

folgt, daß R. 2,5-a auch für die Punkte vom Typus $-\infty$ oder $+\infty$ gilt. Also $x_1 \equiv x_2$. Nach S. 3,4,4 ist auch $x_1 \equiv x_2$. Folglich $\mathbf{T}_1 \equiv \mathbf{T}_2$.

Im Falle einer fallenden Amplitude verläuft der Beweis auf ähnliche Weise.

Satz 2,6: Es seien S_1 , S_2 allgemeine Räume. Die Punkte $x_0 \in i_1$, $t_0 \in i_2$ sollen keine charakteristischen Punkte sein. Dann existiert höchstens eine wachsende und höchstens eine fallende Funktion x, die die Amplitude irgendeiner vollständigen Transformation des Raums S_1 auf S_2 ist und für die $x(t_0) = x_0$ gilt.

Beweis: I. Setzen wir voraus, daß $T_1(z_1, x_1)$ und $T_2(z_2, x_2)$ vollständige Transformationen des Raums S_1 auf S_2 sind, für die $x_1(t_0) = x_2(t_0) = x_0$ gilt und x_1, x_2 wachsend sind.

Wählen wir irgendeine linke Randbasis (u_1, v_1) des Raums S_1 . Nach S. 2,4 sind $[T_1(u_1), T_1(v_1)]$ und $[T_2(u_1), T_2(v_1)]$ linke Randbasen des Raums S_2 . Nach S. 1,4 können wir setzen:

R. 2,6
$$\mathbf{T}_1(u_1) = u_2$$
, $\mathbf{T}_2(u_1) = c_1 u_2$, $\mathbf{T}_1(v_1) = v_2$, $\mathbf{T}_2(v_1) = c_2 v_2$,

wobei c_1 , c_2 von Null verschiedene Konstanten sind. Nach S. 3,4,6 gilt:

R. 2,7-a
$$u_1(x_0) \ v_2(t_0) - u_2(t_0) \ v_1(x_0) = 0$$

R. 2,7-b
$$u_1(x_0) c_2 v_2(t_0) - c_1 u_2(t_0) v_1(x_0) = 0$$

Da x_0 und t_0 keine charakteristischen Punkte sind, sind $u_1(x_0)$, $v_1(x_0)$, $u_2(t_0)$, $v_2(t_0)$ von Null verschieden. Deshalb erhalten wir aus R. 2,7:

R. 2,8
$$c_1 = c_2 \ (= c)$$
.

II. Setzen wir jetzt für jedes $t \in i_2$:

R. 2,9
$$x_3(t) = x_1(t), \quad z_3(t) = c \cdot z_1(t).$$

Dann ist

$$c \cdot u_2(t) = c \cdot z_1(t) \ u_1[x_1(t)] = z_3(t) \ u_1[x_3(t)]$$

$$c \cdot v_2(t) = c \cdot z_1(t) \ v_1[x_1(t)] = z_3(t) \ v_1[x_3(t)].$$

Nach S. 3,4,3 existiert eine vollständige Transformation $T_3(z_3, x_3)$ so, daß

R. 2,10-a
$$T_3(u_1) = c \cdot u_2$$
, $T_3(v_1) = c \cdot v_2$

mit einer wachsenden Amplitude x₃. Nach R. 2,6 und R. 2,8 ist

R. 2,10-b
$$T_2(u_1) = c \cdot u_2$$
, $T_2(v_1) = c \cdot v_2$.

Nach R. 2,10, R. 2,9 und S. 2,5 ist $x_1 \equiv x_2$. Damit ist unser Satz für die wachsenden Amplituden bewiesen. Für die fallenden Amplituden verläuft der Beweis ähnlich.

Satz 2,7: Es seien S_1 und S_2 spezielle Räume und t_1 , $t_2 \in i_2$ x_1 , $x_2 \in i_1$ keine charakteristischen Punkte. Ferner seien weder t_1 und t_2 noch x_1 und x_2 miteinander konjugiert. Dann existiert höchstens eine Funktion x(t), die eine Amplitude irgendeiner vollständigen Transformation T(z, x) des Raums S_1 auf S_2 ist, und für die $x(t_i) = x_i$ (i = 1, 2) gilt.

Beweis: Setzen wir voraus, daß T(z, x) und $\overline{T}(\overline{z}, \overline{x})$ vollständige Transformationen des Raums S_1 auf S_2 sind und daß

R. 2,11
$$\bar{x}(t_i) = x(t_i) = x_i$$
 $(i = 1, 2)$

gilt.

Setzen wir z. B. voraus, daß $x_1 < x_2$, $t_1 < t_2$ ist. Aus R. 2,11 folgt, daß x und \bar{x} wachsend sind. Da x_i nicht miteinander konjugiert sind, existiert eine Basis $(u_1, v_1) \in S_1$ so, daß $u_1(x_1) = v_1(x_2) = 0$ ist. Bezeichnen wir $u_2 = \mathbf{T}(u_1)$, $v_2 = \mathbf{T}(v_1)$. Nach S. 3,4,5 existieren reelle Zahlen c_1 , c_2 so, daß $\overline{\mathbf{T}}(u_1) = c_1u_2$, $\overline{\mathbf{T}}(v_1) = c_2u_2$ ist. Wählen wir irgendeine Randfunktion $y_1 \in S_1$. Dann existieren reelle Zahlen k_1 , k_2 so, daß $y_1 = k_1u_1 + k_2v_1$ ist. Da x_i keine charakteristischen Punkte sind, ist $k_1 \neq 0 \neq k_2$. Nach S. 2,4 sind die Funktionen $\mathbf{T}(y_1) = k_1u_2 + k_2v_2$ und $\overline{\mathbf{T}}(y_1) = k_1c_1u_2 + k_2c_2v_2$ die Randfunktionen des Raums S_2 . Nach S. 1,3 sind sie also abhängig und deshalb existiert eine reelle Konstante $c \neq 0$ so, daß

$$k_1c_1 = ck_1, \qquad k_2c_2 = ck_2.$$

Daraus (da $k_1 \neq 0 \neq k_2$):

$$c_1 = c = c_2.$$

Weiter können wir wie im Beweis des Satzes 2,6 — Teil II. fortfahren. Im zweiten Teil dieser Arbeit wird gezeigt, daß unter bestimmten weiteren Bedingungen genau eine Funktion x(t) existiert, die die Eigenschaften aus den Sätzen 2,6 oder 2,7 hat.

LITERATURVERZEICHNIS

- [1] O. Borůvka, Sur la transformation des intégrales des équations différentielles linéaires ordinaires du second ordre. Ann. di Mat. p. ed app., 41, 1956, 325—342.
- [2] O. Borůvka, Sur les transformations différentielles linéaires complètes du second ordre. Ann. di Mat. p. ed app. 49, 1960, 229—251.

- [3] Kvötomil Stach, Die allgemeinen Eigenschaften der Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen. Publ. Fac. Sci. UJEP Brno, 478, 1966, 389—410.
- [4] K. Stach, Die vollständigen Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen. Archivum Math. T3, 1967, Fasc. 3, 117—138.

Mathematishes Institut Technische Hochschule, Ostrava Tschechoslowakei