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A F I X E D P O I N T T H E O R E M I N LOCALLY 
C O N V E X S P A C E S 

By G. Tudor, Bucharest 

Received July 3, 1967 

In this paper there is extended a fixed point theorem obtained in [1] 
to locally convex spaces. Therefore, let E be a Hausdorff locally convex 
space and s/ a sufficently and directed familly of seminorms that gives 
the topology of E. 

Let cp be a mapping of the family s/ satisfying the condition 

(1) q>lv(*)] = <P(") (*£<*?) 

and H a closed, convex and bounded subset of E. 
Theorem. Let f be a mapping from H into H such that: 
(i) for all otesf 

2 ) I f(xj) —f(x2) \aS I xx — x2 |v(a) (xx,x2eH) 

(ii) there is a compact set M <= H such that for every x e H the 
sequence {fn(x)} has an accumulation point in M (f(n = / . / n ~ 1 , / 1 = / 

Then / has a fixed point in H. 
Proof. We can suppose that H contains the null element of E such 

that if we p u t / , = q . /wi th 0 < q < l,fq(x) = (1 — q) . 0 + qf(x)eHf 

that is fq is a contraction of H. 
For every OLES/ 

I /,(*i) —fqM l« £ Q I *i — x2 |,(a) (xx ,x2eH) 

such that, for n = 1,2,... and x e H 

l/TM*) - / , (*) I. ^ g • l / » - / T 1 ^ ) U«> ^ 
^ <72 l/J-M*) - /? - 2 W U) ^ ... ^ 9" I / , (* ) -* I,'.) 

It follows that 

I /r*(*) - /?(*) I« ̂  ^n+k-1 + • • • + qn) I /f(*) - * u > ^ 

1 - î / , ( * ) - * • • 

M«) 

Consequently, for each xeH the sequence {fn
q(x)} is a Cauchy one. 

I t results that there exists xq 6 H such that: 

1/ (X9) — X9\9M£ l—q* 
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Indeed we can take xq = f\(x) with a sufficient large n. 
On the other hand 

(3) I /(*,) - x, \fia) ^ | f(xr/) — qf{x9) \fM + 

+ !/«(»») - X,, I *(«) ̂  (1 — 9) [\f(*g) I ,(a) + 1] = 
= ( l - g ) r 

where r is a positive number independent of â  since the set H is 
bounded. 

Hence, if n -== 1, 2, ... 

(4) | /»-"(*,) - / » ( * , ) |a ^ | /»(*,) -fn'Hxq) |,(a) < ... < (1 - g) r. 

Since the sequence {fn(x )} has an accumulation point 

yqeM, 

for every E > o, there exists n such that: 

(5) !/*(**) — y , I* £ * IP* <*, <pi*)] 

From (4) and (5) it follows that: 

\f(yq) - yq \a S \f(yq)-f
n+1(xq) |„ + |/»+1(*f ) - / " ( * , ) |„ + 

+ I P(xq) -yq\«S\yq -fn(xq) U> + i fn+1(xq) -fn(xq) \a + 

+ \fn(xq)-yq\aS e + (l—q).r + e 

that is 

\f(yq)-yqL^ (i — g ) - r . 

Let {gj be a sequence of real numbers such that 

L i m g ^ l (0 < q{ < 1, i = 1, 2, . . . ) . 
i—>-QO 

We consider a convergent subsequence {yq\ } of the corresponding 
sequence {yqi } c: M. 

If Lim t/?; = y G Jf it follows that 
l'~>00 

Lim \f(yq\) — yq\ |a S Hm (1 — q\) . r = 0. 
£->ao 

Since / is a continuous mapping, it holds 

l / ( y ) - y l « = o 

for all oc £S$. Hence f(y) — y, q .e .d. ' 

When the space E is normed there is obtained theorem 5 given 
by D. Gohde in [1]. 
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