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CATEGORIES OF ORDERED SETS

M. SERANINA (BrNO)

Received August 15, 1967

INTRODUCTION

In this paper the categories are studied, in which objects are ordered
sets and morphisms various kinds of homomorphic (i.e. isotone) maps.
The basic properties of A-, B-, C- homomorphisms have been
described in [6]. Some aspects of Culik’s results are generalized in
section 2. In sections 5 and 6 the completeness in the sense of [9] is
dealt with. Section 7 is devoted to the problem of so called “‘stable ordering
of full-relation subobjects”, section 8 to a study of automorphisms class
group. In section 9 categories with ordered sets of morphisms are de-
fined. Section 10 deals with the operations in the category of ordered
sets with distinguished elements.

Let us recall that in several questions dealing with ordered sets there
are also important several other kinds of mappings, e.g. convergence
mappings (let us mention [10], [13] as ones of the most recent papers
on this subject) or strong homomorphisms (see [4]) important in con-
structing of universal categories (see [11]). Many results on categories
of ordered sets can be found in [1].

The studied categories are examples of the structured categories
in the sense of [8] (see also related considerations in [4]). Further, it is
possible to assign to every ordered set A a topology on 4 (e.g. so called
left-topology, where the system {{z :# < a}:a € 4} forms a subbase

{ of the system of open sets) so that isotone mappings are continuous.
Categories of topological spaces have been studied in many papers
(e.g. [12], [14], [15], [23]). A generalisation of the results of this paper
to more general types of structured categories, especially a comparison
with results on categories of topological spaces are intended to be content
of further research.

1. BASIC NOTIONS

1.1. The definitions of basic notions of the theory of categories are
taken from [16]. The class of all objects or morphisms of a category ¢
is denoted as O (X") or M (X) respectively. In diagrams »— denotes
a monomorphism, —» an epimorphism. If it is necessary to emphazise
that a set of morphisms of a into b in the category X is considered we
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write H-(a; ). In the most cases morphisms are denoted by small
Greek letters. Recall that for «: @ — b, f: b — ¢ it is af: a — c. If the
objects of a category £ are sets, then they are denoted by capital letters.
If it is said nothing clse (e.g. in ’—see below—the objects are non
empty sets) the empty set is always taken in considerations, too. If
A, B are two sets, then a mapping ¢ of the set A in the set B is a triple
[4, B, F|, where F < 4 X B and for each a € A there exists exactly
one element b € B such at {a,d> € F. If A, B are sets with some struc-
ture, then we suppose that the symbols 4, B represent also this structure.
Mostly, in the sequel, F represents the whole triple. If, especially,
A =0, then [0, B, (] is the only mapping of () in B. If B # (J, there
exists no mapping of B in (). Let us add that Godel —Bernays system
is taken as a foundation of the set theory. If «a: 4 — B, X < 4 and
yeB, then () at={x:vecd, (¥)a=y} (X)a={y:yeB y=(v)«
for a certain z € X}.

If F is a functor mapping a category ¢ in a category £, the values
of F in an object ¢ and a morphisms o are denoted as (a) F, (x) F.

1.2. Binary relation (further only relation) ¢ on a set 4 is a subset
of A x A (i.e. p © A x 4). The set 4 provided with p is denoted also
as (4, p). Let (4,, g,), (43, 02) be two sets with relations, ¢ a mapping
of 4, in A, such that xg,y = () po,(¥) ¢ for all x,y e 4,. Then ¢ is
called a homomorphism of the set (4,, p;) in the set (4,, g,). Let @
be a relation on a set 4, X < 4. Let o' =pon X x X. Let ¢ be the
identity mapping of X in 4, i.e. (z) ¢ = z for all x € X. Then ¢ is called
the inclusion mapping of (X, o) in (4, ). So, if inclusion mapping of
a subset X of a set (4, g) is talked about, we have in mind X provided
with the restriction of the relation ¢ (X is then called full-relation
subobject). Moreover, if a distinguished point @ or « is defined in 4 or X
respeotively, then the described mapping ¢ will be called an inclusion
mapping, if 2 = a.

1.3. If p is a reflexive, antisymetric and transitive relation on a set 4,
then (4, g) is an ordered set. As a rule, instead of p the symbol <
(and its modifications) is written. If every two elements of an ordered
set A are comparable, 4 is called a chain, if every two distinct elements
of A are incomparable, the 4 is an antichain.

Let (4, <), (B, £) be two ordered sets and ¢ a homomorphism
of A in B. Consider the following properties of ¢.

(1) z<y=>@g¢<@eo
(2) z|ly=(v) ¢l (y) ¢ (x| y means x and y are incomparable).

(3) zlly=> @ ell@e or (x)¢g=(y) e
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@is called an A-homomoprhism (B-homomorphism, C-homomorphism,
respectively) if (2)[(1) and (3), (3) respectively] is valid (see [6]).

Let X be a subset of an ordered set 4 and for y € A — X following
property be satisfied: if «,, «, € X then

Yy <2 =>Y <,
Yy>x,=>Y > x,.

Such a subset X will be called an embedded subset of 4. In [6] 2.1.,

3.1., 4.1. there is proved:

1 3. a If @ is A- (B- or C-) homomorph@sm of A in B, then {(b) ¢
be (4) ¢} is @ decomposition of A in embedded chains (a,ntzclmms' or
ordered sets respectively).

As for the decompositions of the sets the terminology of the book [3]
will be used. If R is a decomposition on a set 4, then (a) » means that
element of R, for which a € (@) ». So, » is a mapping of 4 onto R and
it is called the canonical mapping for the decomposition R . If ¢ is a
mapping of a set X in a set ¥ then {(y) ¢ ; y € (X) ¢} is a decomposition
of X and the mapping @ of this decomposition in ¥ induced by ¢ is
defined by [(y) ¢ "1 ¢ =y.

We shall deal with the following categories.

Notation Objects Morphisms

Ay all sets with relation homomorphisms

Ay all ordered sets homomorphisms

Ay all ordered sets A-homomorphisms

Ay all ordered sets B-homomorphisms

A5 all ordered sets C-homomorphisms

Ay all ordered sets homomorphisms map-
with distinguished element ping

the distinguished element
in distinguished element.

It is evident that all properties of the category are satisfied in all
these cases. The objects of the category ¢ are denoted as (4, a, ),
where 4 is the corresponding set and a the distinguished element of 4.

1.4. Evidently following assertions are valid.

a) A, i3 a full subcategory in A,

b) X, is a subcategory in A, for i = 3, 4, 5.

c) Ay and Ay are subcategories of A,
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2. INVERSIBLE MAPPING, MONOMORPHISM,
EPIMORPHISM

2.1. Let (4, p), (44, 0)) € O(X,), ¢ € Hy [(4, 0), (44, 0,)] & One-to-one
mapping of 4 onto (in) A4, and

(a) zoy = [(=) ¢] e[ (¥) ¢l

for all z,y € A. Then ¢ is a relation-isomorphism (a relationisomorphic
mapping) of (4, g) onto (in) (4., o,). If, instead of (a) zpy = [(¥) ¢]
o:[(z) @] is valid, ¢ is called a relation-antiisomorphism (a relation-
antiisomorphic mapping).

22. Ifi=1,...6,4, BeO(X",), pe Hx(A4, B),

a) @ 18 tnversible in A ;, if and only if ¢ is a relation-isomorphism.
b) ¢ is a monomorphism tn X ;, if and only if @ is one-to-one.
c) @ 18 an epimorphism in KA ;, if and only if @ is onto.

Proof. b) and c¢) is proved for ¢, in [1], 1.2.4 p. 27 and 1.2.8., p. 29).
Other cases are quite similar. Also a) is evident.

2.3. Let X be a full subcategory in K ; (i = 2,3, 4,5), a € Hy(4, B)
a monomorphism in X ;. Then « is one-to-one.

Proof. Let 1 =3,4,5. Let 2 € (4) . Then (z) ! is an embedded
chain, antichain or ordered set, respectively, in the set 4. Let y € (z) ™.
Define §: 4 — Aso:(2) f =zforznon e (z) a1, (2) f = yforz e (x) L.
B is an element of M (X";) and fa = «. As « is & monomorphism, f is
uniquely determined, so card (z) a~1 =

Let ¢+ = 2. Notation will be as above. Admit card (z) ! > 1. Let
%y, 2 € (x) a7, ;) 7~ @, Let (2) f; = =; for 26 4 and j =1, 2. Then
Bi€ M(Xy), frx = Py and By # By, a contradiction.

2.4. 2.3 is not valid for 1 = 1,6.

Proof. a) s = 1. Let 4 = {x, y} with the relation {<x, y>}, B = {2}
with the relation {(z, 2)}. Then the full subcategory in J¢; with 4 and B
as objects has the mapping ¢: 4 — B, (z) ¢ = (y) ¢ = z as a mono-
morphism.

b) ¢ = 6. Let 4 and B have the following Hasse-diagrams with 2 and v
as distinguished elements. Then ¢: 4 -~ B (z) ¢ = (2) ¢ = v, (y) ¢ = u,

> u
J z
A= 8= 1"
t
-k
b w
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(t) ¢ = w is a monomorphism in the full subcategory of category g
with 4 and B as objects.

2.5. Let A" be a full subcategory of A", or A g, & an epimorphism in A,
oa: A—>B, A #D. Then o is onto.

Proof. a) Let £ be a subcategory of £,. Admit xe B — (4) a.

Let z,,y, € B, z; < y,. Define ;, B,: B — B in the following way:
(2) B, = y, for all z = =, (2) B, = z, otherwise; (2) f, = y, for all z > x,
{2) B, = 2, otherwise. Clearly «f, = «f, and f,, B, € M(KX'). So « is
not an epimorphism.

If Bis an antichain, take in the place of x, and y, two distinct elements.
The constructions of f; and f, run as above.

Note. If 4 contains B with card B = 2, then the assertion is true
also for A = (. If X does not contain such an object, then every
morphism is epimorphism.

b) Let A be a full subcategory of #y. As above, let x€ B — (4) a.
Let b be the distinguished element of B. Clearly x 5 b.

- First, suppose x comparable with b, for instance > b. Construct 8,, £,
as in a) with ¢, = b, y, =2. If x < b, put 2, =z, y, = b.

At second, let « || b. If there is an element 2’ € B — {b} comparable
with b, the procedure is as above taking z’ instead of z, if 2" > b. If
2" < b, then f;, B, can be constructed in the dual way, i.e.

(2) By = «’ for all z < =, () B; = b otherwise.
.. (2) By =2’ for all z < =, (2) B, = b otherwise.

So, let b be incomparable with all the elements of the set B —{b}.
Let card B — {b} = 2. Then on B — {b} the constructions of #, and S;
run as in a) and put (b) 8, = (b) B, = b. If B — {b} = {x}, put (b) f, =
= (z) By = b, B, the identity.

. Inall cases f3;, By M(X), aff; = af}, 80 « is not an epimorphism in %",

2.6, Proposition 2.5. is not valid for A"y, Ay, H 4, A's.

. Proof. Define the following mappings «,, as: 4 — B, which are not
onto, nevertheless can be easily proven to be epimorphisms in the
corresponding two object full subcategories of ¢, or £ , respectively.
ad ¢ = 1. A = {x} with the relation @, B = {y, 2z} with the relation
{<y, >} and (%) &, = =.
ad ¢+ = 5. Let Hasse diagrams of 4 and B be as follows and (z) ay; = %,
(y) as = 0.
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Further, a5eM( 3) N M(A,). So, according to l.4.c. a5 is an

epimorphism in the full qubcategorles spanned by the objects 4 and B
in ¢, and X,.

3. V.SUBCATEGORIES

3.1. A non empty class V of ordered sets will be called a variety, if it
contains with an element A all elements relation-isomorphic to 4. So
A eV, BeO(X,), Brelation-isomorphic to 4 = Be V. .
Let V be a variety and " a subcategory of £, such that
1. There exists at least one non empty object in O(X).
2. If pe M(A'), p: A — B, then (z) g1 V for all xe B.
Then " is called a V-subcategory in %’,.

3.2. V being a variety a V-subcategory exists if and only if V contains
a one-point set.
Clear.

3.3. Let V be a variety containing a one-point set. Following assertions are
equivalent.
1. The greatest V-subcategory exists.
2. V possesses the following properties:
8) V is closed under the lexicografical summation, i.e. for A;,, Be V,ie B
itisy A;eV.
i1€B
b) If (B, ¢) € V and g, is an ordering of B with o, < g (s0 g is an extension
of p,), then (B, g,) € V.

Proof. Let )£ be the greatest of all V-subcategories. Let Be V,
C = {c}, p: B—>{c} (sobeB= (b) p = c). p € M(X')since the category
with B and C as objects and with the identidy mappings together with ¢
as morphisms is a V-subcategory, so contained in ¢". Let P = X' 4,,

i€B
A; eV, be the lexicografical sum (i.e. the set of all <7, a), where i € B,
a€ d; and (4, a) < ', a’) if and only if © < ¢ or ¢ =4’ and a < o).
Let (i,a) yp =i for all i€ B, a€ 4;. By similar arguments as for ¢,
weM(X). So yp € M(X). Then (c) (yp)™ = P, so P e V. Hence a) for
V is satisfied.

Further, (B, g,) being the set of b), y the mapping of (B, p,) in (B, g)
defined by identity is a morphism of #". So yp € M(X") (¢ as above).
But (¢) (yp) = (B, 0,). We get (B,p,)e V.

On the contrary, let a) and b) satisfied for V.

Define the category X~ as follows. O(X") = O(X,) and

(pEM(Jf) = g e M(X,) and, if ¢p: A — B, then (z) p~1e V for z € B.
X is realy a subcategory of ;. Namely, if ¢: 4 - B, y: B—~>C,
o, yeM(X), ceC, then (c)y'eV and beB= (b)pleV. Put
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S=() ()", 8" = Y (b g LBya)S' e V. Lot zeS, (z) g e (c) p .

be(e)y-1
Put (x) y = {(x) ¢, ®>. x is clearly a homomorphic mapping of 8
onto §” and is one-to-one. So, by b) and the definition of the variety,
SeV.

As one-point sets are elements of @, identity maps are elements of
M(X).

3.4. Let V be a variety. V-subcategory " of £, is called a regular
V-subcategory of K, if
¢: A+ B, pge M(X), xe B = (x) ¢! is embedded in 4 (see 1.3).

3.5. Let V be a variety. Let there exist the greatest regular V-subcategory A~
of A5. Then V = {X: X one-point set} or V = {X: X one-point set or
empty set}.

Proof. Admit (4, p)e V, card 4 = 2. Let (B, p;) be isomorphic to
(4,0), AnB=0 and cnone AU B. Put D= AU BU {c} and
"=y U gl U {<c,a) tae A} U {{c, c>}. 0" is clearly an ordering of D.
(D, 0" e O(X"), as A", where O(H"') = {D} and M(X") contains only
the identlty on Disa regular V-subcategory. By similar arguments one
proves O(X ) — {0} < O(X"). Let E = {x,y,2}, * #y #2 #x and
xEy,yiz Let ¢: (D, ¢") > B, (4) ¢ = {a}, (B) ¢ = {2}, () p = ¢
A" being the greatest regular V-subcategory, ¢ € M(X).

Now, we shall prove that two-point antichain is an element of V.
Let F = {u, v} be an antichain, u,, v, € 4 two distinct elements of 4.
Put (u) y = w;. (v) x = v;. Clearly y € M(X") and (x) (yp)* = F. So
F e V. Now, the subset {z, 2z} of E is embedded and {z,2}e V. If @ =
={st}, s <t (@) p =)y =t (y) p =s, then pe M(X") and hence
oy e M(X). Nevertheless, (t)(pp)' = AU B and 4 U B is not
embedded in D.

Notes. a) Let " be the following category: O(H#) = A, M(H') =
= {¢: 9 € M(X,), @ one-to-one onto }, then ) is the greatest regular
V-subcategory for V = {X: X one-point set}.

b) If “onto” in the definition of M (¢~ ) is omitted, one gets the greatest
regular V-subcategory for V = {X: X one pointed or empty set}.

3.6. Let V be a variety closed under the lexicografical summation
containing one-point sets and (). Define the category .¢" in the following
way.

1. O(X) = O(L).

2. ¢ eM(.Jf) (peM(sz) and, if q? A — B, following property is
satisfied v

*) If X is embedded in B Xe v, then (X) (p*le V and (X) ¢! is
embedded in A4. -

Theorem. ¢ is a maxzmal regulm V-subcategory of " ,.
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Proof.

1. A is a subcategory of £ ',. Namely

1.1. Identity mappings are clearly elements of M(X").

1.2. Let ¢p: 4 — B, y: B — C, p and y satisfying (*) and ¢, y € M(X4,)
Let X <« C, X €V, X embedded in C. Then (X) p~! is embedded in B
and (X) p1eV, so (X) pylgp~!is embedded in 4 and (X) plg~te V.
So @y satisfies (*).

2. A is a regular V-subcategory.

In proving that it suffices to put in 1.2. X equal to one-point set.

3. Admit the existence of a regular V-subcategory ¢, for which
M(A"Y £ M(X). Let ye M(AX') — M(A), x: A — B. Let X be em-
bedded in B, X € V, (X) x ' not embedded in 4. Let B’ be the decompo-
sition on B, the elements of which are the set X and one-point subsets
{y}, where y € B — X. Define the order on B’ in such a way:

@} <{y} =<y for z,ye B — X.
(< X=(reX=2x<2) for reB — X.
X=s{ag=(reX=>2510) for zxeB — X.

Let @ be the canonical mapping of B onto B'. Clearly ¢ € M(X), so
@€ M(X"). But (X) (x¢) ! is not embedded in 4, which contradicts #"’
to be a regular V.subcategory in % ,.

3.7. Let V consist of all chains (all antichains, V = O(X,), respectively).
Then A 3 (K yor Ky, respectively) is a reqular V-subcategory and M(A";) <
< M(AX') (A constructed in 3.6). It is A, = A .

Proof. Clearly in all cases V contains one point sets and is closed
under lexicografical summation. Assertion on ", to be a regular V-sub-
category follows from 1.3. M(X",) < M(X") follows by.[6], 2.2., 4.2.
and remark on p. 507. For proving A", # X let us take 4 and B with
Hasse diagrams as follows and (#) ¢ = ¢, (b) ¢ = e. Then ¢ e M(X)
(for ¢ = 3, 4, 5) and ¢ is not a C-homomorphism.

A ‘ ‘ “
a s B-

e

3.8. Notes. 1. If ¢ non.e V, all other assumption of 3.6. being satisfied,
take only epimorphisms of ", in the construction corresponding to

that of £". Resulting category is a maximal regular V-subcategory, too.
Proof runs as for 7.
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2. One can prove by means of the axiom of choice existence of maximal
regular V-subcategory for every variety in #,. In 3.6., i.e. in the
case that V is closed under the lexicograﬁcal summation, no use of
axiom of choice has been made. It is an open question, if in general case
axiom of choice is needed.

4. WEAKLY INITIAL OBJECT, WEAKLY TERMINAL O BJECT,
GENERATOR AND COGENERATOR

4.1. Let 4" be a category, a € O(X).

1. a is called weakly initial (terminal) if for every ye O(#") with
eventual exception for one object of ', Hy (a, y) # 0 (Hy(y, @) # 0).

2. a is called a generator (cogenerator) of ¢, if a is weakly initial
(terminal) and for «, f € H (b, c), a # B there exists & H(a,b)
(¢ € Hyy(c, a)) so that fa # Ef(aé # BE).

4.2. Notes. Ad 1. In [17] p. 42 initial and terminal objects are defined.

There uniqueness of a mapping @ — y (y — a) is demanded and no excep-
tion allowed.
Ad 2. In [16] p. 22 one speaks about entire (coentire) objects, definition
of which is as for generator (cogenerator) again without any exception.
In definition of generator (cogenerator) in [18], p. 72 one does not require
for a to be Weakly initial (terminal)

4.3. a) Let (A, p) € O(A,). (A4, p) is weakly initial in KA\, if and only
f 0=

b) Eack object of Ay (H 5 or H) is wealcly tnitial.

c) (4, L) e O0(H,) is weakly initial in Ay exactly when (A, <) is
a chain. '

d) (4, <) e O(H,) is weakly initial in Ay, when it is an antichain.

Proof. Ad a) Let (8, () € O(",). Then H,((4, ), (S,0)) #0 = 0 = 0.
The converse is clear. . ,

Adb) Let (S, <)e0(X) 1=2,5,6), S#0. Let xeS(if ¢ =6
let x be the distinguished element of §). Put ¢: 4 — 8, (a) ¢ = = for
all a € A. Clearly ¢ Hy (4, 8).

Ad c) Let (8, <) be chain. Then Hy-(4, S) # () = (4, <) is a chain.

Ad d) Similarly as in ad c).

4.4. We evidently get

In X, (1 =1, ) 5) initial object vs empty.

In Jf tnatial ob_yect 18 each one-point set.

4.5. a) (4, 0) € O(A,) is weakly terminal tn KA | exactly when there
exists x € A such that {x, x) € p.

b) In X, (s = 2, 5, 6) every non empty set is weakly terminal.

c) In A3 and A", no weakly terminal objects exist.
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Proof. Ad a) Clear.

Ad b) As in 4.3. b).

Ad c) Let (4, <)eO0(A3) (0(X,) be an antichain (chain) with
a cardinality m. Let BeO(X7) (O(X,), ¢ € H(A.B). Then card
[(A) ] = m. So no weak]y termmal object exists.

4.6. a) (4, o) € O(A",) is terminal, if and only if A = {x}, 0 = {(a: x>},

b) (4,0) € O(X",) (i = 2,5, 6) is terminal, if and only if A 18 a one
point set.

Proof. Clear. v

4.7. a) In X, (it =1, 2. 3, 4, 5) every non empty weakly initial object
18 a generator. Empty object is not a generator.

b) In Ay (A, a, 0) is a generator, if it contains at least two connected
components.

Proof. a) Clear
Adb) Let (A4,a.p) have at least two connected components. Let
(N, n,v), (P.p,n)eO(A), ¢, y: N—P. ¢ #y. Let ¢ be such an
element of N that (c) ¢ 7 (c) y. Clearly ¢ 5= n. Let us define y € H(4. N)
as follows: If K is the component of 4 containing @ and if y € K, then
(y) x =n, (y) x = c otherwise. It is y € H(A, N) and y¢ # xy.

On the contrary, let (4, a, g) be a generator in g, N a three-point
antichain with elements 1, 2, 3 and 1 being the distinguished element
of N. Let ¢ be the identity mapping in H(N, N) and define y € H(N. N)
in the following way: (1)y =1, (2) y =3, (3) y = 2. Let yp # xy
for a certain y € H(4, N). The (1) =1 and (2) x~ [(3) 7! respectively]
are set theoretical sums of disjunctive systems of connected components
of A.

48, Let t =1, ...,6 ., ts a concrete category.

Proof follows from 4.7 and by 5 in §4 in [16].

Note. For ¢ = 1, ..., 5 our definition of generator differs from that
of [16] but the exceptial object in ¢, ..., X5 is the empty set. The
mapping constructed in § 4 in [16] is an embedding of £, in the category
of all sets. The image of ¢J is (). Let us mention that 4.8 is also an im-
mediate consequence of representation of the objects of K, (1 =1, .. ., 6)
as algebraic structures ([4], chapter IV). a

4.9. a) (4. 0) € O(KX")) is a cogenerator in A, exactly when two dinstinct
elements z, y € A exist such that {x, y} X {z, y} co.

b) (4, 0) e O(A,) is a cogenerator exactly when (A, p) is not an anti-
chain.

c) (4, a,0) € O(H,) is a cogenerator of H g ewactly when there exist
elements @, y € A such that x < a < y.

d) A5, Ay, A have no cogenerators.

Proof. Ad a) Let (@, o) possess the described property. Let (N, v),
(P, m) e O(X?), @, ye H(N, P), ¢ # . Choose z € N such that (2) ¢ #
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# (2) y. Define y: P — A in the following way: For ve P, vn{(2) ¢],
v# @)y = (v)y ==, (v)yx =y otherwise. In consequence of the
agsumption on « and y y € H(P, 4) and clearly ¢y # yx-

On the contrary let (4, o) be a cogenerator in 4. Put N = {1, 2},
v =N x N. Let ¢ be the identity mapping N — N and define y as
follows: (1) y =2. (2) y = 1. Let ye H(N, A) with gy # yy. Then
() 2 # @)z and 1() 712 (1) 21, ) 1)l 2 1 1(1) 27190 7, 12) 1]
oitl) x1-

Adb) Let a,,a,€ A, a, < a,. Let (N, <), (P, £)e0(X,), p,y€
€ H(N, P), ¢ #y and (x) ¢ # (x)y for certain x € N. Notation for ¢
and y will be chosen so that (x) ¢ > (x)y or (x) ¢ || (x) y. Define y:
P — A as follows. If ze P, then z = () p = (2) y =a,, (2) y =4
otherwise. Then y € H(P, A) and ¢y # yy.

On the contrary, let (A 0) be a cogenerator in JX7,. Put N = {1},

= {1. 2} (with the ordering 1 < 2). Let ¢, y: N—>P 1) ¢ =1,
(1) y =2. Let ye H(P, 4), oy # yx. Then (1) y  (2) y and (1) y <
< (2) x. So 4 is not an antichain.

Ad c) Let A possess the required properties, (N, n, <), (P, p, <) €
eO(Ag), 9. ye HN,P), (2) ¢ #~ (2)y for a certain z2e N. Suppose
() ¢ > (2)y or (2) ¢ || (2) y. Let p = (2) ¢. Define y: P — A as follows:
v = (2) ¢ = (v) x = a. (v) x = x otherwise. If pnon = (2) ¢ then the
definition of y runs as follows: v = (2) ¢ = (v) ¥y = ¥, (v) y = a otherwise.
1t is y e H(P, 4), oy # yx.

To prove the converse. it suffices to take in considerations the object

= {1, 2, 3} with the ordering 1 < 2 < 3, 2 being the distinguished
element Let ¢: NN, (1) ¢ =2, (2) p =2, 3) ¢ =3. » be the
identity on N. Let (4,a, <) be a cogenerator in .#; and @y # yyx
for a suitable y e H(N, A). Then (2) y = a, (1) y £ a, so (1) ¥ < a.
Similarly, the existence of y can be proved.

Ad d) One gets the assertion for £y and ¢, from 4.5.c). Let us prove d)
for ', as follows. Take a cardinal number m and the sets A; with
Hasse diagram where j runs through a chain J with the cardinality m

v ¢
zf \/zt

§ 4
2

and 4;n 4; = 0 for i # j. Put A = |J 4;, the orderings of 4; be kept
jeJ
and let 2%, xi < 2} for ¢ < j. There exist no embedded subsets in 4,

but one-point subsets and A alone. So if ¢ € Hy (4, B), B e O(Xy),
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then @ is a mapping on one point of B or a relation-isomorphic mapping.
Admit that B is a cogenerator. Then card B = m for all cardinals m.

4.10. Note. In fact, following proposition has been proved in the
proof of 4.9.c.

Let V be a variety, A a regular V-subcategory in KA 5, for which O(X") =
= O(HA,) and all mappings of one point sets be morphisms of A". Then
A" possesses no cogenerators.

4.11. Now, let us add some results on the category .£7,.

Let ¢, we M(X,). According to [15] p. 251 we shall write ¢ | v,
if and only if @y, = gy, = yy; = yy, for all y;,p,€ (X)) ¢ty
is defined in dual way. A monomorphism g is said to be an i-mapping,
if | B =B = Py for a suitable B,. Similarly, an epimorphism v is
a p-mapping if v} f = f = »f, (Kowalsky calls i-mappings injections,
p-mappings projections. These terms are reserved for concepts related to
direct and free joins in this paper).

One can easily prove

411, a) p: N> M, p: P> M, o \p<= (N) ¢ > (P) y.

b) g: M >N, y: M >P, ptys=@e=@)p=>@yp=0)y
for all z, 2" € M.

(Compare with the resuls in [15] p. 251.)
¢) A monomorphism u e M(A,) is an i-mapping, if and only if it is
a relation-isomorphic mapping.

Proof. Let u be a relation- 1s0morphlc mapping 4 - B and u J, B,
f: C — B. According to 4.11. a) (4) u > (C) . Let u, denote the iso-
morphism (4) 4 — A inverse to the isomorphism A4 — (4)x induced
by u. Let B, be the mapping C — (4) 4 induced by f. Then g = Bu,u.

Let a monomorphism u: 4 — B be an ¢-mapping. Admit the existence
of x,ye A,z ||y and (z)u < (y)u. Let ¢ be the inclusion mapping
of (A)u in B. Then u | ¢ and ¢ clearly has no factorisation by means
of u.
d) Epimorphism ve M(X,), vi: M — N is a p-mapping, if and only if
following equivalence is valid for all x,ye M. (*) () v < (y) v = there
exist o, y, €M, 1 =1,...,m, 0; < Y1, T<Yy, T, <Y, (&) v = (y;) ¥

Proof. Let (*) be satisfied, » 1 g, f: M — P. By 4.11.b) for all z, 2’ €
eM (@) v=(x)y > (x) 8 = («') B. Define B,: N — P as follows: If
yeN, let y, e (y) v and put (¥) By = (11)B . If y; € (y) »~!, too, then
() v = (3,) », so (y;) B = (y,) B Hence the definition of 8, does not
depend on the choice of y,. Let v,y €N, y < y'. Let y, e (y)»!
Yy € (y') v1. (*) implies (y) B, < (¥') P1. So B, € M(X,) Clearly f = vf,.

Let » be a p-mapping.

Define on P = {(z} »~1: z € N} the relation by the equivalence
(z) v 1o < (z,) v~ = there exist  and 2, (x)» = 2,

() v = 2 and r< 7.
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Transitive hull < of ¢ is an ordering of P and the canonical map-
ping »#: M — P is an homomorphism, so morphism in .¢",. By 4.11. by } ».
Let s = vy If () v < (y) v, then (%) » < (y) » and (*) follows.

4.12. By standart consideration following proposition can be proved.

A4 € O(X,) is an injective object, if and only if 4 is a chain, 4 is
a projective object, if and only if A is an antichain, (definitions of
injective and projective objects see e.g. [18] pp. 69, 71).

5. DIFFERENCE KERNEL AND COKERNEL

5.1. Let ¢ be a category. Let g, y:a — b, o,y € M(X'). Let w e M(X'),
y: ¢ — a with the following properties
a) Yo = yy.

b) If up = wy, then there exists a unique v € M () so that u = yy.
Then v is called a difference kernel of ¢ and y (see [9] p. 21).
Difference cokernel is defined in the dual way.

5.2. Let p, ye M(AX,) 1 =1, ....6), ¢, y € H(A, B). Then difference
kernel of @ and y exists.

Proof. Let K = {#: (x) ¢ = (x) y} and K be provided with the reduc-
tion of the relation defined on 4. If ¢ = 6 and a is the distinguished element
of A, then a € K and will be supposed to be the distinguished element
of K. Let ¢ be the inclusion mapping of K in A. Clearly 1€ H,, (K, 4).
Let yp = yy for a certain X € O(X";) and a certain y € H(X, A). Hence
zeX = (2) ye K. So yx induces in a natural way y: X — K. Itis
g = x't. As ¢ is a monomorphism in X7, y’ is determined uniquely.

. 8.3. The investigations on cokernels are little more complicated.

Let A, BeO(X,),i=1,...,6, ¢,y € HA, B). Let ¢ = 1. The decompo-

sition R on B is defined as follows. If X, = {(a) ¢, (a) y} for ac 4

((@) ¢ = (a)y is admitted), then R is the finest decomposition on B,

for which every X, is contained in some element of R. If g is the relation

of B then the relation ¢’ on R is defined as follows. X,, X, e R, X,0'X, =
= there exist z, € X,, =, € X, so that z,px,. We shall prove that the

canonical mapping » of B onto R is a difference cokernel of ¢ and y.

First, » € H(B, R) by construction of ¢'. Further, gx = yx by definition

of R. Let y € O(X), y € H(B, X), px = yx. We shall prove that R* =

= {(x) y ' : 2z € (B) x} is a covering of R. Asforalla € 4 (a) px = (a) yx,

(@) ¢ and (a)y are elements of the same class of R*. By minimality

of B, R* is a covering of R. Define on R* the relation g* in a similar

way as ¢’ has been defined. y induces 7 : R* - X, y € M(A{). Let »" be

the canonical mapping of R onto R*, clearly »' € M(¢,) and y = xx'y.

As » is an epimorphism, the factorisation of y in x»y” is unique.

For the cases ', and 'y the consideration is quite similar. As for &,
the following properties are demanded:
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1. If a € A, then X' € R exists so that X, < X",

2. If ¢” is the transitive hull of the relation ', then p” is an ordering of R
(transitive hull of the relation g is the least transitive relation containing g).

3. R is the finest decomposition with the properties 1. an 2.

The existence of R can be proved as follows. Let R be the infimum
of all decompositions R; on B satisfying 1. (this system is not empty.,
as it contains the coarsest decomposition).So B = A R, Clearly 1. holds

jeJ
for R. Define ¢” as in 2. Let X,, X, e R, ng"Xl,leg”Xz. Then there
existsets V,,..., Y, Y, =X,,Y, =X,, Y, =X,,Y,eR,v1=1, ...,
n. k a suitable number among them, so that there exist elements y,,
yi, y; € Y, for every 1, for which y, < y3, ¥, < 95, ... ¥ < ¥ hold. Let
J€J. Then by 2. for E; there exists an element X; € E; containing all
Y ¥ Let X = n X;. Then X = X, = X,. So 9" is an antisymetrical
jeJ

relation. Ruﬂexixjrity is clear.

As for R*, it is immediately seen that R* satisfies 1. and 2., so R*
a covering of R and the rest of the consideration made for ¢ = 1 is valid
also in this case (for ¢ = 6 the distinguished elements of R and R* are
that containing the distinguished element of B). So we get

54. In A"y, Ay, H'g, every two morphisms ¢. y € H(A, B) possess
a difference cokernel.

5.b. Let v, ¢ € Hf‘(A, B) i =3, 4, 5. Morphisms y and ¢ have a dif-
ference cokernel if and only if there exists a decomposition R of B in em-
bedded chains (for i = 3), antichains (i = 4) or ordered sets (i = b) satis-
fying 1. from 5.3.

Proof is analogical to that of 5.4 and follows from the description of
the decomposition R* taken from 1.3.9. ,

5.6. Let ¢, y € Hy (A, B). Then ¢ and y possess a difference cokernel.

Proof. The coarsest decomposition on B fullfils the conditions
from 5.5.
5.7, For i =3 or i =4, ¢, yeHy (A. B) exist such that they do not

possess any difference cokernel.

Proof. Let A4 = {a;,a,}. aylla,, B={b,, by, by, by}, b <b,,
by < by. Let (a;) ¢ = by, (@) @ = by, (a)) y = by, (ay) y = b3. Itis X, =
= {by, by}, X,, = {b,, by}, so the coarsest decomposition of B is the only
decomposition of B consisting of embedded subsets of B and satisfying
1. from 5.3., nevertheless conditions of 5.5 are not fullfilled neither for
i =3 nor ¢ = 4.



39

6. DIRECT AND FREE JOINS

6.1. Let " be a category, § = {a;};c, an indexed system of its objects.
Say that an object ce O(¢") together with morphisms a; : ¢ — a; is a fast-
direct join of the system 8, if for every system of morphmms; pi:d —~a;
there exists y: d — ¢ such that ya; = f; for all je J. «; is called a pro-
jection (similarly as for direct join).

Note. If J = ), then a is a fastdirect (direct) join of S if and only if
a is a weakly terminal (terminal) object of 7.

6.2. Let J # 0, {A;}jcs be a system of objects from A", (i = 1, 2, 3, 5).
Let at least one of these objects be empty. Then the direct join of {A;};e,
exists and it is the empty est.

Clear.
6.3. Let O be a fastdirect join of a system {A;}je; (A; # O from A';
1= 1. 6). Let a; be corresponding projection. Then a; is an epimor-

phism and for every two distinct indices j', j” € J and every xe Ay, ye Ay
() 2t N (y) ot # 0.

Proof. i =2, 3, 4, 5. Admit j, € J exists such that a; is not an
epimorphism. Let a non € (C) o;, and D, = {d,} be one point set. Define
Bi,: (d) B;, = a, B; arbitrary for j + j,. Evidently y: D — C with de-
manded properties does not exist.

Let xe A;, ye 4;- = {d,} and define ( /37 =, (dy) B =y,
Bid #J.J" ‘arbitrary. Then( 2) ¥ € () &' N (y)
t = 1. The proof runs as above, only relatlon of D (t =1, 2)is to be

congidered empty.

i = 6. Take in above consideration 4;, instead of D,, identity mapping
in the place of §;,, an antichain D; = {d, d'}, d’ the distinguished element
instead of D, and define B;-, B, so that (d) B;; = =, (d) f;» = y. This is
possible as d || d'.

6.4, Let (4;, 0;) € O(A ), jed. it =1,2,6.Then {(A;, 0;)}jes has a direct
Join.

Proof. For J = 0 see 4.6 and note in 6.1. Let J % (). Let P be the
cartesmn product of the sets 4;, 7 a relation on P defined as follows:
(.. ) A ) = .ngjy, for all j € J. Let «; denote the projec-
tion of P onto Aj. If 1 = 6, let the element of P, all coordinates of
which are distinguished elements, be the distinguished element of P.
The proof of the fact that P is a direct join of {(4;, g;)};es with the pro-
jections «; is straightforward.

6.5. Let A,, A, be two objects of A'y. Let card A; > 1, j =1, 2. Let
{A;}jes be a system of objects in Ay, 1, 2€J. Then a fastdirect join of
this system does not exist.

Proof. Admit that O is a fastdirect join of the system {4,};cs. o; de-
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notes the corresponding projection. Let R; be the decomposition of '
which corresponds to «;. According to 6.3. card E; > 1 for j =1, 2.
According to 1.3.a the elements of R; are chains embedded in C. Fur-
ther, X e R, X' e R, = X n X' 5 (). Let us consider two cases.

a) A,, A,are chains. Then C, as (4;) aj* since a; is 4-homomorphism,
must be a chain, too. Let X,, X, e B,, X;, X, e Ry, X, # X,, X; # X,.
Choose the notation in such a way that z, e X,, z,e X, = 2, < 2,;
23€ Xy, 2,6 X, = 23 < x4.Letx’eX n Xa,:c”eX1 nX,,2"eX,n X,
2"eX,n X,. Sox <2" <2, & <a" <z Itisa" #2" and C
is a chain. Admit 2” < 2”. Then X, is not embedded in C. If 2" < 2",
X, is not embedded in C, so we get a contradiction.

b) Choose the notation so that A, be not a chain. Then X, and X, in
R1 exist such that z, € X,, z, € X2 =z ||2,. Let XeR,, 2’ e X; n X,

z"eX,n X. As X is a chain, a’, 2” are comparable, a contradiction.

6.6. Let A; e O(Xy), 4; # 0, 9eJ card J = 2. Let at most one of
the set A; possess more thcm one element. Then {4};cs possesses a directed
join exactly when A; is a chain for all j € J. If there exists j, € J such that
A;, 18 not a chain, then no Sastdirect join of {A;}jey exists.

Proof. The assertion is clear if all the sets A; are one-point sets.
Do not let 4;, be a one-point set and let it be a chain. Then put C = 4;,,
aj, being the identity mapping on 4, «;, j # j, the mapping of 4; on
(one-point) set 4;. C' with these morphisms is clearly a direct join. Now,
let card 4; > 1 and 4; be not a chain. Admit C' with {o;};jc; to be
a fastdirect join of {4;};c;. As o, is an epimorphism by 6.3, C is not
a chain and so (C) «; for j € J, j # j, cannot be a one-point set. which
contradicts card 4; = 1 for j # j;

6.7. Let A;e O(X,) for jed, card J = 2, 4; # 0 and at least one of
these objects, say A,, be not an a,ntzcham Then a Jastdirect join of {4;}jes
does not exist.

Proof. Let », z,€4,, %, < ;. Let A,€{A4,}je; (so we suppose
2el). Admlt there exists a fastdirect join of {A iye 7. Denote it by C
() of and (xz) oyl are embedded antichains in C and for y, € (z,) a7
Yp € () oy it is always y, < y,. If R, is the decomposmon of C cor-
responding to oy and X € R,, take y, € X 0 (2,) a7l, ¥, € X N () a7t
As X is an antichain, it is impossible to have y, < y,.

6.8. Let A; e O(X',) be an antichain for jeJ # 0. Then {A;}je; has
a direct join.

Proof. Let P be the general cartesian product of the sets 4;. Every
two distinct elements of P are considered to be incomparable, i.e. P is.
an antichain. «; denotes the usual projection. Let D e O(¢,) and B;:
D—A4;. Let (d)y=/(..,(d)p;, ...) for de D. Then y € H(D, P) and
B; = yoc y is clearly umque ’

6.9. Let A,, A, e O(X), card 4, > 1, card 4, > 1 and at least one
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of these objects be not an antichain. Let J be a set, 1, 2€ J, A; € O(X)
for jeJ. Then the fastdirect join of the system {A;j}jc; does not exist.

Proof. Let e.g. 4, be not an antichain. Admit that C is a fastdirect
join of {4;};es, o denotes the corresponding prOJectlon Elements z,
and x, of 4, exist such that z, < %,. Then y, € (%) a7, y, € (2,) 7!
implies ¥y, < y,. R, denoting the decomposition induced by «,, let
X' = (x) 7!, X" = (2,) 2! be two distinct elements of R,. We can
suppose z, < x, or %, || ;. In the first case, y¥’ e X', y" e X" =y < y".
Choose y' € X'n (x) a7t ¥ €X"n (x) o7t, ¥ €X' N () a7?,
y"eX"n (x,) a7l. We have y' < y”, y” < y". Simultaneously y’,
¥’ € (x;) o', ¥” non € (z;) a7! . So (y;) «7! is not embedded in C.

Letz; || z,. Theny’ € X',y" € X" = y' || y". Nevertheless by preceeding
considerations ¢ € X' n (z,) a7, ¥" € X" n (%) a7l =y < y", a con-
tradiction.

6.10. Let A; € O(A5), 4; # 0, jeJ # 0. Let at most one of these object
contain more than one dlement. Then a direct join of {A;}jes exists.

Proof. Let all Aj s be one point sets. Then every one point set is
a direct join of {4;};e;. Suppose 4; to be not a one point set. Then 4;,
is a direct join of {4,};e,. The projection o, is the identity map.

6.11. Let A, e()(.)fs), Jjed #0, A; # 0. Let all 4; be antichains.
Then a direct ]om of {A;}jes exists.

Proof. Let P be a cartesian product of 4;, considered to be an anti-
chain, a; the usual projection. Let 8;: D — A;. Put, as in 6.8. (d) y =

' d) B;,...) for all de D. As all elements of every connected
component of D are mapped on the same element from 4;,y € H(D, P).
Uniqueness of y is clear.

6.12. Let " be an arbitrary category, S = {a;};e; a system of its
objects. ¢ e O(X") together with a system of morphisms o;: a; —¢
is said to be a fastfree join of § if for every system of morphisms g;:
a; — d there exists y: ¢ — d such that a;y = g, forall j e J. «; are called
injections.

. Note. If J = (3, then c is a fastfree (free) join of § if and only if ¢ is
a weakly initial (initial) object of £
613, In Ay, Ay, Ay every system {(A;, 0;)}jes possesses a free join.

. Proof. For J = (J clear.

Let J # (. Let P be a cardinal sum of 47, 4; prov1ded with the rela-
tion ¢; isomorphic to g;. For 7 and X", P'is a free join of {(d4j, ¢;)}-
For A’ one must ldentlfy in P &11 dlstmgmshed elements of 4; in one
element and to consider it to be the distinguished element (refatlon is
then defined. as the transitive hull).

6.14. Let {A;}jes be a system of objects in KH'; (i = 3, 4, 5) containing
two non-empty sets A,, A, (s01,2eJ ) Then a fa,stfree Jjoin of {A;};es does
not exist.
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Proof. Admit that C is a fastfree join of {A4,};er, a; the corresponding

injection. Let Z{ A; denote the cardinal sum (one can suppose that
jer 1,2}

Aj are mutualy disjunct), @® means the ordinal summation. Put D, —
5‘41@/42@_JZ{“}A;,DzzAz@Al(—B Y, 4;. Let B} be the
j&J — 1yt jeJ —{1,2}

mapping of 4; into D; induced by identity njlappi{ng‘of A4;. Let xeAd,,
y€ 4, We have () f] < (y) B}. Let y be a mapping from the defi-
nition of the fastfree join. Then (x) ayy = (z) B}, (¥) ay = (¥) Bs.
As y cannot map incomparable elements into distinct comparable, we
have (z) a; < (y) «,. Considering D, instead of D; we get (z) a; < (¥) oy,
a contradiction.

6.15. If a system {A;}jes, A; € O(X7) (i = 3. 4, 5), contains an object
10417'1 such that j +# j, = A; = 0, then A; is a fastfree join of {A;}jes.

ear.

From the theorem on p. 77 in [9] and 5.2., 5.4., 6.4. and 6.13. one gets

6.16. Every functor from a small categoryto Ay (A 'y or A, respectively)
has a left and right roots, so that Ay, Ay and A g are complete.

6.17. Let A be a subcategory of A, with the following properties.

1. O(X) = O(Xy).

2. If X, YeON,), p: X — Y isomorphism, then ¢ € M(X).

3.If : XY, Y Z geMX), ¢ inclusion mapping ¥ —Z
in A, then pue M(X).
. 4. Let A be two-point chain, B one-point set. Then ¢: A — B is an element
of M(X).

Let A" be a right complete subcategory in A, (see [9] p. 26), for which
M) < M(KH') < M(A,). Then A~ = A,

The proof will be accomplished by means of several lemmas.

Lemma 1. The free join B + B in £ is a two-point antichain.

Proof. Let B = {b}. Let C = {¢;, ¢,} b2 two-point antichain, ¢,:
B—C,(b) ¢, =1¢,, @s: B—>C, (b) gy = ¢5. @, po € M(HA ") by 1. and 3.
There exists exactly one ¢ € M(X"), ¢: B+ B — C so that a;¢ = ¢;
(j = 1, 2), where a; means the corresponding injection. Hence (b) a; #
# (b) &y and (b) oy || (b) @y. Let D= B + B — {(b) oy, (b) «r}. Admit
D # (. Let y mean the isomorphic mapping of C' on {(b) &, (b) x,},
(1) @ = (b) &y, (c) p =:(b) &y. Clearly o,y = ay, aypyt = a,, Where
¢ is an inclusion map of {(b) «,, (b) ®,} in B + B. Simultaneously ¢yt e
€ M(X") by 2.and 3., gyt # 15, We have aylgip = oy, al g = %,
too. This is a contradiction to the definition of the free join.

Lemma 1. impies that a mapping of two-point antichain to one-point
set is an element of M(X""). ot ;
. Lemma 2. Let C = {c,,¢,} be a two-point antichain. Let 4 = {a,, a,},
a, < ay. Let (c;) ¢ = a5, (¢c;) ¢ = a,. Then ¢ € M(K").



43

Proof. ¢ = B + B by lemma 1, «,, «, being again the corresponding
injections, (b) a; = ¢;, (b) ay = ¢y, (b) @, = a5, (b) p, = a,, where @, :
B Aforj=1,2. By2and3 ¢;e M(X"). Let a;pp = ¢; forj =1, 2.
Then (¢,) ¢ = a,, (¢,) ¢ = a,.

Lemma 3. Let X € O(¢”'). Let the category & consist of one-point and
two-point subsets of X, morphisms of Z are inclusion mappings. Let
F 7 be the identity functor of the category & in #”'. Then X is a right root
of the functor Fg and inclusion maps are injections.

Proof. Let ¥ € O(Z) and ¢(Y) be the inclusion map of Y in X. Let C
be a right root of Fy, a(Y) the corresponding injection and ¢: C — X
the mapping corresponding to ¢(Y). So ¢(Y) = «(Y) ¢. For Y < Z,
Y, Zc0 (%) it is a(Y) = (t)Fga(Z) where ¢ is the inclusion map of
YinZ.

As U Y)[e(Y)]] = X, ¢ is a mapping of €' on X and as ¢(Y)

YeO .
is one-to-ézlaie mapping, i.e. monomorphism in %, so «(Y) is a mono-

morphism in 5, i.e. one-to-one, for Y e O(Z). If Y € O(Z) is an anti-
chain, so is (Y)[@(Y)] and (Y)[«(Y)]. So, if Y ={y,,y,}, then
@2) (D] 1| (va) [ ¥)] = 3, || goand (y) ((F)] < (@) [(X)] =y, <y,
Hence ¢ maps isomorphically J [(Y)[«x(Y)]] on X. Let E =

YeO)
=C— U [Y)[(Y)]] and admit E 3 (. By foregoing arguments
YeO(®)
@ induces an isomorphic mapping y: |J [(Y)[x(Y)]] > X, so pp~te
YeOo(®)

€ M(X"'), which is not onto, so different from 1.. For all Y € O(Z’) we
have p(Y) p !t = a (Y) = a(Y) 1, = «(Y) py~'. As C is a right root of
Fg4, there exists unique y such that «(Y) = a(Y) y and it is 1,. So
1, = pyp~1, a contradiction.

Lemma 4. Let X, VeO(X,), ¢* X—>V, p*e M(X,). Then
p*e M(X").

Proof. Let Fy be the same as in lemma 3. Let ¥ € O(Z), ¢*(Y) the
mapping ¥ — V equal to ¢* | Y. ¢*(Y) e M(XA"') by lemmas 1. and 2.
and suppositions 2. and 4. on #”. Then p :X — V exists in M(X")
for which ¢*(Y) = [a(Y)]  for all ¥ C X. As «(Y) is the inclusion map
of Y into X, y = ¢*. .

The assertion 6.17 has been proved. '

6.18. Let " possess the difference cokernels, M(H ) = M(H") = M(XH,).
Then A~ satisfies 4. from 6.17.

Proof. Let F be a three- point chain {fy, fo, fa}, f1 < fa < f3. Let 4 =
= {a,, ay}, @, < ay, (0;) ¢; = [, (@) 1 =[5, (@) @2 = f1, (a5) @2 =1,
@ be a difference cokernel of ¢,, @;, p: F — C. We shall prove that C
is one-point set. Admit ¢ — {z} # @, where z = (f;) ¢ = (f2) ¢ = (fo)p.
Let y be an inversible mapping of object C, on C, C;n C = @. Let D
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be constructed from 0, U C by identifying » and (z) y-1and completening
the relation to the transitive hull. Let ' be an inclusion map C — D,
4" inclusion map C;, — D, 9" = p~U".

It is @9’ = g9y’ and @' = @y’. Simultaneously ¢’ + y’, which
contradicts the definition of the difference cokernel.

So C is one-point set and @, is the demanded map.

6.19. Let ¢ be one of the number ¢ = 3,4, 5. Let A be a complete category,
M(X,) © M(A) = M(A,). Then A = A ,.

6.19 follows from 6.17 and 6.18.

7. ORDERING OF THE SYSTEM OF FULL RELATION
SUBOBJECTS OF AN OBJECT

7.1. In the paper [21] the orderings of the set exp (4) -the system of all
subset of a given set A —are studied, which are invariant to all permu-
tations of the set A. That means, such orderings < (called “topological
orderings”) have been studied that for all permutations f of the set 4
itis X <Y = (X)f < (Y)f It was proved (theorem 8 p. 295) that the
ordering by inclusion is a maximal lattice topological ordering.

Now, we shall deal with similar questions for the category £, in
a slightly more general way. A full-relation subobject of (4, g) has
been defined in 1.2. If e.g. 4 is a well-ordered set, identity mapping is the
only isotone mapping of 4 in A4, which is inversible. So every ordering
of the set of all full relation subobjects of A4 is invariant to all inversible
mappings of 4 to 4.

7.2. Let £, be the category, which originates from J¢°, by putting
0(A3) = O(A,) and morphisms of ', are one-to-one isotone mappings.

Let X be a subcategory of J¢,. For A e O(X) o, be an order of
exp (A4). Say that {p 4} is stable on ¢, if Xo, ¥ = (X) fou(Y) fforevery
fiAd—>B fe M(X).

7.3. Let A € O(X'3), o, be the ordering of exp (A) by inclusion (the ele-
ments of exp (A) aretaken as full-relation subobjects of A). Let 6, < g, for
all A € 0(X;) and (exp (A), o,) be a lower semilattice. If {0 4} is stable
on Ay then o, = 04 for all A. '

Proof. Admit that 4 € O(X7,) exists such that o, 2 ¢,. Let X < 4,
Y < A be such full-relation subobjects that X ¢ Y, Xo,Y. Let ze X
be such an element that 2 non € Y. Then {#} 0,4 — {x}. Let the ordering
of A be completed to a total order. The object gained in such a way
will be denoted by A’. So the inclusion map ¢ of 4 in A’ (as for set point
of view-the identity) is a morphism in X7, so {z} o 4’ — {z}.

' By similar arguments one proves that there exists a chain B € O(X73)
dnd b€ B witli the following properties. : :
"1 {b} 0B — {b}.
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2. B is homogenous, i.e. for all , y € B there exists an isomorphism
J of B onto B such that (z) f = y.

Let B; be mutualy disjoint copies of B for s = ..., —1, 0, 1, ....
Pt T=..®@B,®B, OB, @®.... T"=U By, T" = U Baiv- By

® %
1. and by stability of {g,}4; z €T = {2} 0,T", {2} 0,T". Put P=1T" 7
T" (infimum in g;). As {z} o,P for all ze€T, P # (). Let y € P. Sup-
pose y € B;,. If z € B; , too, define f: T — T in the following way: On B;,
f is an isomorphism mapping y into z. Otherwise f is an identity.
So (T")f=1T",(T")f = T" and we have (P)f = P,So B; < P.

Let g be an isomorphism T — T such that (B;)g = B;+; Then
T)g=T,(T")g="T.80(P)g=P. Asn 901 (Bi,) g» = P. It
results P = T'. But this contradicts 7" < P, T" :7‘-' P.

7.4. Now, we shall define an ordering », for A € O(¢;). For X, Y < 4
Xv,Y means one of the following conditions:

1. X, Y infinite and X < Y.

2. X finite, Y infinite.

3. X, Y finite and for every 2€ X — Yze ¥ — X exists such that
z <z

7.5. v, is an ordering of exp (4).

Proof.a) Clearly Xy, X.

b) Let X»,Y, Yv X.

Let X or Y be infinite. Then the other of them is infinite, too, and
clearly X = Y.

Let X, Y be finite. Suppose z is maximalin X — Y. Thenze ¥ — X
exists such that ¢ < 2, ve X — Y exists such that v > 2z, so v > =,
a contradiction. So X = Y.

c) Let X»,¥, Yv,Z. If X is infinite or Z is infinite, then X»,Z. So
we can suppose X, Y, Z to be finite. Let z € X — Z, we can suppose 2
to be maximal in X — Z. It is xe (X —Y)—-Z orzeXn ¥ — Z.

¢,) Let e (X — Y) — Z. There exists ye ¥ — X (suppose it to
be maximal) such thaty > z. Thenye (Y — X) —Zorye (Y —X)nZ.

) ye(Y — X)—Z =z exists such that zeZ—Y, 2>y If
z€ X thenz € X — Y, which contradicts X»,Y,soznone Xandze Z —
— X. Simultaneously z > z.

cp)ye(Y—X)nZ=>yeZ — X.

c)xeXnNY —~Z=>xeY —Z=y exists in Z— Y such that
y >z IfyeX, thenye X — Y, so y,, maximal in ¥ — X, exists with
9, > y. If 4, € Z, the proof is finished. If , € Y — Z then y,€Z — Y
exists with ¢, > ¥,. It cannot be y, € X because y, is maximalin ¥ — X
and Xv,Y.Soy,none X,ie. y,€6Z — X and it is y, > 2.

7.6. {v,}x; 18 stable in Ay and o, < v, for all A € O(Xy).
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Clear.
7.9, Let X, Y be finite subsets of 4 € O(X;). We shall use the follow-
ing notation.

={x:ze(X — Y)U (Y — X), » maximal}, My=Mn X
M,=MnY,
(M ] = {x: v € A and there exists y € M ; such that z < y}.

Similarly (M,] is defined. XV Y =[X — (M,JJU [Y — (Mgllu
UIXn Y —(MeIn(M,]].Clearly My <« X — (M}, My = Y — (My].

78. XV Y ts supremum of X and Y in v .

Proof. Let Xv,Z, Yv,Z. If Z is infinite, so (XV Y) v Z. Suppose Z
finite. Let # be maximalin XV Y — Z.

1. Let ze (X — (My]) —Z. There exists ye Z — X, z < y. Admit
yeXV Y. Thenye Y — (My].Soye ¥ — X, a contradiction.

2. Let z € (Y — (Mx]) — Z. Similarly.

3.2e[Xn Y — (Mgln (My]] —Z. There exist y,€Z — X,
Y:€Z — Y, y,, Yy, > . Suppose that both of them are elements of
XVY. Then y;€ Y — (My], y,€ X — (M,]. a contradiction. So e.g.
yynone XVY. Weget (XVY)r,Z

Now we prove X9, (XV Y) Let xreX —XVY. znoneXVY =
= aznone X — (M,],ie. ye M, exists such that y > x. As y non €
X,yeXVY - X

Similarly Yy (XV Y).

7.9. Let A be finite. Then

XAY=(XnT)u (Xn (M) u(¥Yn (MgDU (Meln
N (My]) is infimum of X and ¥ in v .

Proof. X A\ Yv X

Let zeXAY —X. Then ze(Yn (Mz))U (Mg] n(M,]). So
z € (My]. Hence y exists in My such that x < y. So y e X. Clearlv (by
definition of M)y non ey and ynon € (M;]. Hence ynon e X/\ Y.

Simirarly X A Y», Y

Let Zv X, Zv,Y. L°t zeZ — X A\ Y (we may suppose it to be ma-
ximal).

a) Suppose znone X, znone Y. Then 2€Z — X. So ye X — Z
exists sothaty > 2. If ye X n Y,itisye XANY — Z Letye X — Y.
Ifye (My)], thenye X A Y — Z, too. If y non € (M], then we construct
y' € Y — Z in similar way as y taking Y instead of X. So suppose that
ynone(Mylandy' €Y — X. Wehavenowye X — Y, ynone (My],
yYeY — X, ynone(My), <y, z<y. Hence ze(M;]n (My].
soze XA Y, a contradiction.
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b) Suppose x€ X. Then xnone Y. y e ¥ — Z exists such that y > 2.
Suppose ynone XA Y. So ye(My] — (My]. Then ze X n (M)
So 2e XA\ Y, a contradiction. So ye X A Y — Z. Similarly for z € Y.
SoZv, XAY.

7.10. Let ', be the category of all finite ordered sets with ome-to-one
isotone mappings as morphisms. Then {v i} is @ maximal stable system

in Ay, i.e. if {0}y isstableand g, > v for all A € O(KA)), then o =v
Jor all A.

Proof. Let there exist such a stable system {o 4}f~ described in the
theorem which is different from {4} ;. Let B be such an object of A7

that v, & 05 Hence such X, ¥ < B exist that XopY and X nonv, Y.
Soz; e X — Yex1stssuchthaty €Y — X =ynon = z,.As Y non v, X,
y, € ¥ — X exists for which 2, || y;. Add to the ordering < of B{y,, x>
and construct the transitive hull to this new relation. We get an ordering
of B <, such that in B’ = (B, Sl)Xnon vy Y, as there exists for
z,€X —Y no yeY — X with = =, 9. Slmultaneously XopY. So
after finite number of steps we get an ordered set B® = (B, <) with
X non vgm ¥, XopmwmY and with no ye ¥ — X for which z; ||y in
<, and this is imposible.

=n

8.AUTOMORPHISM CLASS GROUPS OF SUBCATEGORIES IN .,

8.1. The most of fundamental definitions of this section are taken
from [9] p. 28. A slightly different point of view see [18] p. 61. Let us
recall that it is necessary in 8.19 to restrict oneself to the small cate-
gories when one wants to remain in Gédel —Bernays theory.

8.2. Let A be a category. Say that a functor F from the category ¢
to the same category % is almost identical if F is naturally equivalent to
the identical functor of " to A"

8.3. Let F be an almost identical functor of A to K. Then F induces
@ one-to -one mapping of H(x, y) onto H((x) F, (y) F) for all z, y € O(X).

Proof. Let ¢,: * — (x) F be an inversible mapping corresponding
to a natural equivalence between identity functor and F. Let a € H(z, y).
Then ap, = @,[(«) F]. Hence a = ¢,[() F] @, ' So F is one- to -one
onH(z,y). i e H((x) F, (y) F), itis 9, fp,' € H(z,y)and (¢, fo;") F = f.
So F induces a mapping of H(z, y) onto H((z) F, (y) F).

8.4. A functor F mapping J¢ into X~ will be called an equivalence, if
there exists a functor @ mapping ¢ into £ such that FG and GF are
almost identical functors.

8.5. Let F be an equivalence. Then F induces a one-to-one mapping of
H(z, y) onto H((z) F, (y) F) for all z, y € O(X).

Proof follows from the fact that FG and GF induce one-to-one mapping
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of H(z,y) onto H((z) FG, (y) FG) or H((%) GF, (y) GF), respectively.

8.6. If « is an inversible map in H(z, y), (x) F is inversible in H((x) F,
() F).

Proof. If « is inversible, then aa™' =1,, a~'a = 1,. Hence (a) F
(@) F = 1p, (@) F (0) F = Liyr-

8.7. We say that « € M(X), «: @ — ¥ is one-pointed morphism if for
allce O(X") and B, y: ¢ — z it is fo = ya (see [15] p. 254).

8.8. Let a*: (&) F — (y) F be one-pointed, F an equivalence of a category
A Let o: x — y satisfy (x) F = o*. Then a is one-pointed.

Proof. Let 9, B: ¢ >z, you # . Then (y) F () F # (B) F (o) F,
a contradiction.

8.9. Let ™* be a full subcategory of J£,, F an equivalence on J™*,
then o* will be occasionally used instead of (x) F.

8.10. A morphism a: A — B, A #* @ of A* is one pointed exactly when
it maps A on one single element of B.

Proof. Let « be one-pointed, z € 4 and define ¢, as (z) ¢, = z for
all zeA. Then (2) @0 = (%), (2) P, = (#) . AS Qg0 = @Qra
it is (#;) @« = (x,) «. The converse is clear.

8.11. Let « € M(K*) be one-pointed, F an equivalence. Then (x) F is
one-pointed.

Proof. Let a: A — B. If A =0, then a is zero map [0, B,]. Then
(A) F =@, so (x) F = [@, (B) F, ], which is clearly one-pointed. Let
A #@. Then (4) F # @, too. Admit (x) F is not one-pointed. There
exists a,, aye (4) F so that (a,) [( ) F] # (a,) [() F] Let of, of:
(A) F— (A) F, for which [(4) F] o} = {a,}, [(4) F] a = {a,}. Clearly
acl(oc) F £ o3(ar) F o, and a, exist such that o, 0t5: 4 — 4 and () F =
= ozl, (o) F = o} (so the notation agrees with 8.9). It is o0 = s
a8 o is one-pointed. So af(x) F = aj(a) F, a contradiction.

Let A be a non-void object of #*. In the sequel we fix one of such 4.
Let a: A — B be one-pointed, let | a| denote the common value of
@ (so | a | € B). Let ¢, , be a mapping B — (B) F given by the formula

(lxl) ®rp = | (@) F.

From 8.5., 8.8., 8.11. we get

8.12. ¢, 5 ts one-to-one map of B onio (B) F.

Instead of | (x) F| |« |* will be used, i.e. in a more general way
z* = () g p for e B.

8.13. Let f: X — Y. Let (x) f =y. Then (z*) [(B) F] =

Proof. Let a: A — X be one-pointed, | a | = #. Then (« F B Fis
one pointed with the value | «f |*. Slmultaneously we have (x* [(B) F]l=
(| () F |) [(B) F] = (2) [(«) F (B) F] where z is quite arbitrary element of
(4) F. Further on (2) [(«) F . (B) F1 = (2) [(«f) F] = | «f |*. On the
other hand | af | = y.
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8.14. Let a,be A, a < b. Let a* < b*, x, ye X. Then a* < y* exactly
when z < y.

‘Proof. Let # < y. There exists a mapping #:4 — X such that
(4) B = {x. y} and (a) B = z, (8) B = y. Then (a*) B* = o*, (b%) p* = y*
(it follows from 8.13), so a* < y*.

Let x* < y*. There exists #: 4 — X so that (a*) f* = x*, (b*) f* = y*
and [(4) F] p* = {z*, y*}. Again, from 8.13 we get (a) f = =, (b)) f = y.
S0x < y.

8.15. Let a, be >, a < b. Let a* A b*. Let z, ye X € O(X*). Then
z < y exactly when x* > y*.

The proof is similar to that of 8.14.

8.16. Leta, be A, a < b. Then a*, b* are comparable.

Proof. Admit a* || b* {a*}, {b*} are components in (4) F. Then y:
A — A exists such that (a*)y* = b*, (b*)y* =a*. Then (a)y =b,
(b) y = @, which is impossible.

8.14, 8.15, 8.16 imply.

8.17. Do not let A be an aniichain. Then @p ;3 simultaneously for all B
a relation-isomorphism or antiisomorphism.

8.18. Do not let B be an antichain, F, G two equivalences of A" * such that
@p,p ond Qg p are simultaneously relation-isomorphisms or antiisomorph
tsms. Then F and @ are naturally equivalent.

Proof. Define for every Be O(X™*) (B) y: (B) F — (B) G as follows.
Let « € (B) F. According to 8.12 ¢y 5 is one-to-one mapping of B onto
(B)F. Let (2) ¢pp=2a Put (2)[(B)y]=(2)@gs-(B)y is by
assumption on F and @ a relation-isomorphism. It can be easily see that
the diagram

(x) F

(B) F——(C) F

(B) '1.01 l )y
() G
(B)G—(0) Q@

commutes for all «: B —> C

8.19. Let 2" be a category, § a system of classes of naturally equivalent
equivalences. In J¢ there can be defined a multiplication by means of
composition of representatives. In regard to this multiplication & satis-
fies the axioms for group multiplication and it is called automorphism class
group (see [9], p. 28).

8.20. Every full subcategory H™* of A, has the trivial or the two-point
automorphism class group.

Proof. If X™* consists only of (J, the assertion is clear. So let J™*
contain a non-void set. If J£™* consists of antichains, then by 8.12 and
8.13 every two equivalences are naturally equivalent, so K* consists
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of one class. 1f £* contains an object, which is not an antichain, we
get the assertion by 8.18.

From 8.20 following theorem (see [9] p. 30) can be proved.

8.21. The automorphism class group $R; possesses two elements.

Proof. Let F be the identity functor on £, ¢ the functor defined as
follows (4, <)@ = (4, <), where s < b=a > b, (¢) G = . F and @
are equivalences in 5, which are not naturally equivalent.

One can see from following examples that in 8.20. “full” cannot
be omitted and “‘the category of small categories” cannot be put in the
place of )", (compare with the considerations in [9] p. 29).

8.22. Let K, and K, be two different objects from ;. Let H(K;, K;)
(4 = 1, 2) consists only of the identity map, H(K,, K,) = H.;Q(Kl’ K,),
H(K,, K,) = (. The obtained category will be denoted by % ". So 4 is
a subcategory in J£',. Let & be an arbitrary permutation of H(K,, K,).
Then the functor F,, for which (K;) F, = K, and («) F, = () 7 for
a € Hy(K,, K,) is an equivalence on %", as F_ . F, _, and F,_ F_ are
equal to the identity functor. Simultaneously, functors belonging to the
different permutation are not equivalent as on K, and K, in " there exist
only the identity morphisms. So the automorphism class group for " is
isomorphic to the permutation group on the set H (K,, K,).

8.23. Let X be a category with one object ¢ and with morphisms
Hy(a,a) = F, where F is a free non cyclic group. Let {£;};e; be some
complete system of free generators in F, &', & two of them. Define
(@ F; = (£) 0, () Fyr = (&)1 0’ for aeF, (@) Fy = (a) For =
=a . Fy, F. are clearly equivalences. Let us admit that ¢ is a natural
cquivalence carrying ¥ into F o ,i.e. for every o € F it holds (§') "1 aé'g =
= @(&")" af”. Let « = &'. Then (") §'E" = &'g, 50 §'8" = &7 E .
Let ¢ = .. » be the noncancelable form for @. Then EnE

LDEEE . E = E'E hence & = &'. In the same way we get & = ...
...=§ =2¢§,s0t=0(i.e. ¢isa unitfor F)ort=1. In both cases §'¢" =
= £"¢', which is impossible. So card & = card J.

8.24. Now, we construct a category # with two-element automorphism
class group which cannot be embedded in %", as a full subcategory.

OA)={a,b}, a#b, H(aa) ={1,}, H®b b ={}, H(,b) =
= {1, 2}, @1 F @3, H(b,a) = . The identity functor is the only
equivalence in . No full embedding of ¢ in X, exists, as X, Y e
€O, X #0 + ¥ = Hy (X, ¥) # 0.

9. CATEGORIES WITH THE ORDERED SETS OF MORPHISMS

'9.1. A category X is said to have the ordered sets of morphlsms, if
1.4, BeO(X)=> Hy(4,B) e O(X,). :
2.« £ f = ay < Py, if the compositions are defined.
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3. a = B = ya £ 9p, if the compositions are defined.

Briefly " is called an o- category.

9.2. A subcategory J” in an o-category ", which is provided with
the restrictions of orders of " is said to be a good subcategory in .
"~ 93. Let A,Be 0(%’2). Ordm H(A, B) as the cardinal power, i.e.

a,.BeH(A. B),a < = (2)a < (%) B for all xe A. KA, is then an o-ca-
tegory

9.4, Let A and " be o-categories. Let F be isomorphic mapping of
the category £ onto the category A, for whicha < <= () F < (B) F
Then F is called o-isomorphic mapping. £ is said to be o-isomorphic
to . This relation is clearly symmetrical.

9.5. Every small o-category A~ is o-isomorphic to a certain good subcategory
of H'y. There exists such an o-isomorphic mapping that the monomorphisms
of A are carried into one-to-one mappings.

The proof runs as in Eilenberg—MacLane theorem. Let (x) T =
= Z H(u, x) for x € O(X") (X means here the cardinal sum of ordered

u€0(X)
sets). Let a:a —y . (x) T is defined as follows; for f: u —a it is

(B) [(«) T] = o

a) () 7' is an isotone mapping of (z) 7" into (y) 7.

Proof. From y < f in H(x.y) we get ya < fo= (p) [(x) T]1 <
(B) [(e) T

b) Clearly (lz) T = l(z)T

) ()T (BT = (o) T.

Proof. Let a: ¢ =y, f: y—>2, ye @) T .yeHu,z) =) () T] =
= ya . () [(@) T(B) T1= (yo) [(B) T1 = yap = (¥) [(«f) T].

d) Let «, Be H(x,y), « # . Then () T' # (B) T

Proof. (1,)[(x) T] = l,a = a0 # = 1,/3 = (1,) [(B1 T'].

¢) Let (a) 7. (B) T € Hyp,[(@) T, (3) T). Then

@WT<@BT=axp

Proof. 1. Let o < f. Then for y : w — x we have ya < yf.80 (y)
[(«) T1< () [(B) T] for y € (@) T.

2. Let (x) T < (B) T. Then ya < yp forallye (x) T. So, in particular
La=a=xf=1,3

f) Let « be a monomorphism in J¢. Then («) T is a monomorphism
in A,.

Clear.

So the proof of 9.5 is finished.

9.6. To the foregoing theorem let us add following notes.
1. There exists an o-category which is not isomorphie to any sub-
category in . It can be seen from the fact that every category can be
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regarded as o-category (H(a, b) are antichains) and there exist categories
non embeddable in the category of the sets ([9], p. 108, [7]).

2. It is an open problem, what is the analogon for o-categories of the
theorem 1 of [23], p. 14. To this problem see also [25].

3. The property to be o-category is not amalgamic (definition of
an amalgamic property see [24] p. 148, 1. Metadefinition). Let us prove
it by an example. Let a category J™* possess objects a, ¢, ¢y, Ca, C3, JH**
objects b, ¢, ¢, ¢,, ¢ and let morphisms be as on figure (identities are
not displayed) p: ¢, —>¢;, ¥ : ¢y —>cy.

a

Let the following relations hold: o) = fiu, oy = fop. ¥ = By,
ya = Pav, px =P, vy = B, o = Sy, 0y = by, T3 = &Py, T2 = &P,
vy = &y1, Vg = &Yy, T = Oy, Tolh = O, TyY = V1, Tp¥ = ¥y, 0 =0y0,
Ty, = 0y, Wy = Tyf, 7y = Taff, g = vy, 3 = VY.

Let o; > ay, ¥3 > 71, Bull B So also oy > 0y, v, > v;, w; > @y,
wg < T3, Suppose now that this amalgam (consisting of the categories X ™*
and J** with the amalgamated subcategory possesing as objects
¢, €y, Cg, Cy, and morphisms u, », 0y, 03, 7;, Ta, vy, V) i8 contained as
a good subcategory in an o-category . As w, # 7, and w; = 7,8 =
— E8,8, my — Tsf = £BuB omo gets in A 8 # B,f. Put 8, = Bif,
8y = fof. It is 8, = 1y = 1B = oy, O =,y = By = aax.

We have implications

0y = oo, 8 = aya, o > ay = 0; > 0,
=9y, Ga=vy, Y1 <y:=0 <y,
which contradicts one the other.
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4. In consequence of 3. the existence of a universal o-category in the
sence of [24] p. 143 remains to be an open problem.

9.7. Let £ be a category, in which for all z, y € O(X") H(x, y) is
an ordered set. Such category will be called a wo-category.

9.8. An example of a wo-category, which. is not an o-category (even
neither 1. nor 2. is valid) is the category £§ defined in the following way:
O(H'3) = O(X,), set of morphisms H,4(X, Y) is the set of all mappings
of the set X into Y ordered as exp; X (see [22]).

9.9. For every small wo-category there exists one-to-one mapping T’
of O(X") into O(AS) and M(X") into M(A'§) such that

V. (@f) T = () T (B) T"

2 a<pe (@I < BT
(1" s fullfilled, whenever aff is defined).

Proof. Let () T, («) T be defined as in 9.5. Let for every x € O(X")
@ T =2} ® @ T, @) [(«) T'] = a for all xe Hz,y), (B)T" = () T
for e (x) T. From the definition of exp, X one gets immediately 2'.
Let us prove 1. for z.(z)[(¢f)T'] = af. (2)[(x) T(B)T']=
= () [(§) T"] = «f. For y s £ 1'. is clear.

9.10. One cannot demand in general (1,) 7" = )" in 9.9. Let us
give an example.

Let " be a category with one object o and H(a, a) be a cyclic two
element group {1,,a}. Let e.g. 1 > . Admit that 4 € O(H) and
morphism «, € Hy:(4, A) exist so that the subcategory in ¢y with
the object 4 and the set of morphisms {1,, «,} is isomorphic to X~
even as for order, so 1, > «,. Let 2z be a minimal element of 4, for which
2 7 (2) . Then z > (2) «;, «; is one-to-one map onto 4, as a2 = 1,.
So (2) ayoy # (2) 2y which contradicts the minimality of z.

10. THE PRODUCTS IN X

Now, we shall be interested in studying of the category 7y, which
is the only category in our considerations possessing a zero object.
A zero morphism will be denoted by w. It is routine to check the existence
of kernels and cokernels of morphisms of .

10.1. Let (N, n, v), (P, p, ) € O(Hg) Let u: N — P be a monomorphism.
Then y is a normal monomorphism (see [16]) iff it is a relation-isomorphic
mapping of N into P and (N) u is a convex subset in P (X < P i3 convez,
ifr,2e X and x < y < z implies y € X).

Proof. Let u possess the demanded properties. Let uyy = w,y: P — 8.
Let s be the distinguished element of S. Then (N)u < (s)y~!. Let
xeP — (N)u.

Admit z € (N) u exists such that « > z. Then v || 2 or v < « for all
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v € (N) u (consequence of the convexity of (N) u in P). Let R = {** v*}
z* > y*, y* will be the distinguished element of R. Let y,: P — E be.
defined as follows: (y) y, = a* for y = 2, (y) y, = y* otherwise. Let a:
K — P be a morphism for which «f = w for all morphisms with yf = .
As py, = o, ay; = w, too. The procedure is similar also in the case
when for € P — (N) u there exists in (N) u an element greater then z
or all elements of (V) u are incomparable with 2.

If we notice that znon e (y*) 9y, we get (K)o < (N)u. As u is
a relation-isomorphic mapping, it induces an inversible mapping u,
of N onto (N)u (p being the distinguished element of (&) ). Then
« = oy ' w, where o is the map of K onto (N) ginduced by the mapping «
So o = a'u for &' = aurt.

On the contrary, let 4 be a normal monomorphism. Admit that
(N) p is not convex in P. So ¥ € P — (N) u exists such that (z)y =s
for all y: P — (8, s, o) for which uy == o. Let P’ be the convex hull
of (N) u in P (i.e. the least convex subset in P containing (N) u). Let o
be the mapping of P’ in P induced by the identity 1, . Then ay =
and o cannot be written as o'u. So P’ = (N) u. Let u, be the induced
mapping of N onto P’ induced by u. Then 1, = oy, and so y, is an
inversible mapping. So y is an relation-isomorphic mapping of N into P.

10.2. In the sequel following commonly known proposition will be
used without any reference.

Let o: N — P, x € P. Then (x) o' is & convex set in N.

10.3. Let R be a decomposition of N € O(X), elements of which are
one-element subsets with one possible exception and this exceptional
element, when exists, is a convex subset of N. In R one defines the rela-
tion ¢ in an usual way, i.e. XpY == there exist e X, ye ¥ so that
z £ y. The transitive hull of ¢ will be noted as < and it is clearly an’
order of R. The distinguished element of R will be defined as that
containing the distinguished element of N.

10.4. u: N —» (P, p, n) ts a normal epimorphism, iff xe P, x # p =
= (x) u~1 is one-pointed and the mapping p of the decomposition R belong-
ing to u s a relation-isomorphism of R on P (for order in R see 10.3).

Proof. Let u have the demanded properties. Let «e M(JH ),
a:N—>U and yp =0 =>ya=w. Let ze(p)ut, y;: {x, n} >N
be inclusion mapping. It is y,u = . So ye=m and (z) a = u.
Therefore (u) ! = (p) u2. Let T' be the decomposition on the set N
belonging to the mapping «. The relation < on T' will be defined as in
10.3 for R. As « is an isotone mapping, < is an order. 7' is a covering
of R, let 6 be the mapping of R onto T given by incidence of elements.
d is clearly a relation-homomorphism of R onto 7'. i is by assumption
relation-isomorphism of R onto P. It holds a = u(u)~'da’, where a' is.
the mapping of N onto (N) « induced by «.



55

On the contrary, let u be a normal epimorphism. Let E be the de-
composition on N, elements of which are (p) u~ and one-point sets {z}
forx € N — (p) p~2. Let (p) ! be the distinguished element of R ordered
according to 8.3. Let a be the canonical mapping of N onto R. Clearly
ae M(H ). If Eu = w, so Ex = w, too. Hence o = pua’. Let x, ye N —
— (p)pu, ¢ #y. Then (#) « # (y) « and so () u # (y) u- That proves
that the decomposition belonging to u possesses the demanded properties.
Let (X)& = (Y) R vcX,ye Y. Then (@) pu = (X) i = () i = (4) p.
ie. ()ua = (y)po', ie. X =(x)a = (y) x = Y. So @ is a relation-
isomorphism.

10.5. By [5] a regular product is defined in such a way:

Let A be a category with zero morphisms. An object a is called
a regular product of objects a;, jeJ # 0, if for every jeJ o, :a; - a,
7;: @ — a; are given and it holds:

L crn =1, o;m; = o for j #j'.

1I. For cach be 0(3() and «, f € Hf(a b) the equalities o;a == ;3

for all jedJ imply « = . Put a = HR
je
Let us remark that (a) from [5] is not satmﬁed in A as it can be seen

from 10.4. (i.e. there exists a morphism not possessing a normal image).
Following theorem is valid.

10.6. nR =Y*4, ;(Z* means a free join in 7).
jed jeJ
Proof. Let C = HR A; be a regular product of objects A; € O(H),
jed ’

7; being the corresponding morphisms. Let T = |J (4;) ;. It is

;.

eJ
7 ¢. Admit xe ¢ — T. Put T, — T U {z}. Construct T, from T,
by taking an embedded antichain {y,z} in the place of z. The
distinguished element of T, be that of C. It belongs to 7. Let ¢,(¢,)
be the mapping of 7' in T, which is the identity on T and (z) ¢, = »

[(z) Py = z]. It is @, # @, and 0,9, = 0;¢, for jed. So « does not
exist, in other words, € = T'. Let j,, j, €J,j; 7 Js- Let ¢ be the distin-
guished element of C. Let =z e (4;) g5, n (4;) 0j,- Let (x) 7, = =,,
(@) mj, = 2. Tt is ojm, = 0 and ojm;, = ly, . Hence (2)) 05, ==
and 2, is the distinguished element of 4;,. From o;,7;, = 1, 5 it follows

that ¢j, is & monomorphism and (2,) gj, = . S0 = ¢c. We see that
(4;) o; have pairwise only the element ¢ in common. As g; are mono-
morphisms, we can take )" A; as a carrier of C' and the relation <; on
jeJ X
is greater or equal to the relation of Z* A; (this relation will be denoted
jedJ
as <). 0; is injection in the free join. The equa,hty o;m; = 14, implies
that o; is a relation-isomorphism of 4; onto (4;) fzor J#J omy =
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= w = (4;) 0;7; = {a;}, where a; is the distinguished element of 4.

Let xeA,l ye A,B, (%) 05, = ( Y) oj,.

1. j, # 3, Then (x)o;m;, < (y) 0,7, = ;, < y. Analogously we
get * < a,. Hence (x) 0;, = (y) 0j,.

2. Let j, = j,. Then x < y in 4; and so (z) 0;, < (y) gj,. This implies
that the relations <, and < are equal.

10.7. The assertion 10.6 can be deduced from the results of [5], in
the fact from 4.3, 4.4, 4.5., 4.6 of [5], as those results have been mostly
proved under weaker assumptions as a) or b) (b): every bimorphism
is inversible).

10.8. An object a of a category ¢ will be called a special subdirect
sum of objects a;, j € J, J €0, if for each j € J the mappings o;: a; - a.
7;: @ — a; are given and it holds:

I') ojm; = 1. n,:wforji}

IT') If Bn; = ym; for be O(X'), B, y € H(b. a) and each jeJ, then
p=r

We shall write a = . a;.

jeJ

10.9. Let {( A,, a;, &; )}]EJ, J # 0 be a system of objects in .£7g. Let C
be its special subdlrect sum. Similarly as in 10.7 o; are rela,tnon iso-
morphic mappings of 4; in C. Let zeC. Put () n; = ;. One can
easily see that a one-to-one mapping ¢ of C'into ¢° rtesua.n product I1 4;

jed
is defined, namely (x) ¢ = (..., x;, ...). So the carrier of C' can be
considered to be equal to (C) ¢ < I1 A The corresponding order of
jedJ

(C’)q9 will be denoted as <*. From o;m; = l,, oy = w for j +#
#J' it follows for z € 4; that () o; :( a,l,...,x, @y )
where « stands for j- coordlnate of (x ) ;. Further if x = y in 4;, it is
(%) 0; = (y) 0;. So C contains all elements of the form (... a,l,
z, ..., 0, . )for zed;, jeJ and the ordering <, on this subset
(for a given Jj) defined coordinafoewise is contained in <*.

Define the relation p on C in the following manner; #, y € C, zpy iff
there exists j such that j'-coordinate of the elements « and y, j' #j,
isequal to a; and z; < y;. Let <, be the transitive hull of g. <, is clearly
an ordenng of C. Ev:dent]y x 5 W =@ =*y.

Let # <* y. Then (v) n; < (y) 7;in 4, i.e. x =<, y (<, coordinatewise
order).

The foregoing properties of C in I A; are characteristic for special

jeJ
subdirect sum. Let C* be now a subset in | | A; with the following pro-
jeJ
perties.
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®) C* contains all elements all coordinates of which with possible
exception of one are equal to the distinguished elements of the cor-
responding 4;.

B) Let <+ be an ordering of C* containing =, and contained in <,.

Then C* is a special subdirect sum of {4};e/.

Proof is evident.

So we can conclude.

10.10. A set D is a special subdirect sum of A;,jedJ # 0, iff it is
isomorphic to C* < n A; with the properties ), f).

je

J

10.11. Now we shall describe all natural transformations between
direct and free joins of two objects (+ denotes free join, x direct join,
A, B in A + B are supposed to be disjunct).

Define two functors F,, F,: Ay x H'¢ — Ay as follows:

Fy: Let A4;,B;eO0(X), j=1,2, a:4, > 4,, f: B~ B,. Then
(4, B) F, = A, + B;, (z) (o, B)F, = (x) « for x € A}, = # ay;
() (a, B) Fy = (2) B for x € By, « # b,; if x is the distinguished element
of A, + B, (see 6.13) then (z) (a, f) F, is the distinguished element
of 4, + B,.

F,: Under the same assumptions as for F,

(Ay, By Fy =4, X By, (&) (@, f) Fy] =
(@) o, () .

Following mappings ¢ and ¢', ¢”, ¢” are evidently natural transfor-
mations of F, to F,. .

@wap, A+ B—>A X B, (%) gy =<xb) for zed, x+a,
() @ca,8> = <a, y) for y e B, y # b and if ¢ is the distinguished element
of A + B, then (¢) (4,5, = {a, b).

@iapy: A+ B—> A X B, (2) @¢a,py = <a, by for ze 4 + B.
a5y A+ B—>A x B, () pcapy = <z, b) for xe A, x # a,
(%) @48y = <a, b) otherwise.
¢apy A+ B—>AXB () g¢a,8> = {a,x) for xe B, x # b,
. (%) @¢ 4,85 = <@, by otherwise.

We shall prove that no other natural transformation of F, to F, exists.
Let x be a natural transformation of F, to F,. Let 4;, B; have the above
meaning. Admit that there exists z € 4, + B,, z € 4 so that (2) y¢a,8>=
=<4z, ¥, ¥y # b;.

‘Lot a: A, — A, be the identity, 8: B, — B, the zero map. Then

[(Z) [(d, ﬂ) F].]] X{4,B,)> = <x! ?I> #* <z! b1> = [(z) X<A1,Bx>] (“’ ﬂ) F2! a
contradiction.
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S0 x¢ 4,8, induces a mapping of the set 4, into the set of the elements
of the form (z, b,>. Let (2) x¢u, By =<z, b)) for ze A;, z # a,. Put
(=) T4, = 7, (ay) 74, == a,. We shall prove that 74, is independent on B, .
Let n4, be an analogical mapping defined by means of 4, + B,. Let
o =1y, f: B, — B, be the zero map. Then, if ze 4, 4 B;, z€ 4,,
we get [( ) XAy, Bl)] (“’ ﬂ) FZ - <(z) T4y 2>: Z) [(ec, ﬂ) FI]] X{41,Bgy =
= (2) x¢anB)> = {(2) 4y, by)y; hence (2) w4y, = (2) 74,

Let- a1 4, — 4,, 2€ 4;. Then (2) anmy, = (2) mq,x. So 7y, gives
a natural transformation of the identity functor I on X, g to I.

Suppose there exist 4; € O(H ) and 2 € A, such that & 5% (z) 74, % a,.
Let 4 = {:v, (x) 74,, @y}, as for order let it be an antichain with a, as
the distinguished element. Let a: 4 — 4,, () x =, ((x) 74) x =
=(a)a=ga,. If (x)7, =2, then (v)m,a =1z # (x).an4, = (¥) 74,,
a contradiction. If (x) 7, # @, then (z) @ o0 = a; # (%) anmy, = (x) 7y,

So always (z) m, = « or a. Suppose there exist A, € O(H ) x,y € 44,
z # a, # y such that (x) w4, = a,, (y) m4, = y. Let 4 = {z,y, a,} be
an antichain with @, as the distinguished element. One immediately
sees that (y)n, =y. Let : 4 >4, @) a=y, (¥) a ==, (2,) & = a,.
Then z = (y) w0 # (y) amy, = (x) w4, = @,

So 7, is identity map or zero map. We sha]l prove that =z, is simul-
taneously for all 4 identity or zero map. Let A’ € O(X), card A’ > 1,
' the zero map 4’ —> A’, w, = w'. Let A; € 0(Hg). Let a: 4" — A,
be such that (4') « is a two-point set. Then amy, = w'a = w, so
74, = o a8 ;4 # ly,. Let A, have Hasse diagram

1

!

According to the previous considerations 74, = w. There exists o:
Ay — A with card 4, =2, x € M(X) for all 4 e O(H ) with card 4 = 2,
As above on gets 7, = w.

Combining these results with similar ones for B we get the assertion.

Remark. In X, and the more in J; no natural transformation for
functors analogous to F,; and F, exists.

10.12. It is easy to see that the only natural transformations of F,
in F, are induced by zero maps or the projections (to 4 or to B).
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