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E X T R E M A L P R O P E R T Y OF T H E E Q U A T I O N y" = —*fy 

F. NEUMAN, BRNO 

Received April 2, 1967 

1. We shall study the equations 

fa) y" = 2(0 y 

where <?(£) e C°(—oo, oo). At the same time, let CJ\ denote the set of 
all functions on an interval i having continuous derivatives up to the 
order n, inclusive. Each function y(t) e C2(—oo, oo) satisfying the 
equation (q) is a solution of this equation. A function, not defined at 
a point but which can be extended to be continuous at this point, is 
being understood as a function extended in this way. 

Denote by Qn the set of all functions q e C°(—oo, oo) for which each 
non-trivial solution of the equation (q) has roots distributed in equi­
distances 71. 

si 

In this paper, the integral f q(t) dt for q eQn is considered and it 
o 

is proved: 
at 

Theorem 1: It holds min fq(t)dt = —n for qeQn, the minimum 
o 

being reached only for q EE= — 1 . 
This result may be easy extended to the class Qd of all the functions 

q e C°(—oo, oo) such that the corresponding differential equations (q) 
have every non-trivial solution with roots in equidistances equal to 
d (d > 0, const.). Then we obtain 

d 

Theorem 2: min fq(t)dt = —n2\d for qeQd, the minimum being 
o 

reached only for q == —n2\d2. 
At the same time, we are going to show that the mentioned integrals 

are unbounded from above on the classes Qn and Qd. 
In this paper there is proved further 

d 

Theorem 3: For q ^ 0, q eQd, 0 < a ^ 1, it holds f \ q(t) |adf g 
o 

g d(7t\d)2a;for any a, this estimate cannot be improved for any of classes Qd, 
because the equality sets in only for q == —n2\d2 e Qd for every a. 
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2. Let q(t) eQn- In [1] (or similarly see [2] for a general ease) there 
is proved that all the functions q(t) are given by the relation 

(1) q(t) = /"(«) \-P{t) + 2f'(t) cotg t—l, 

where /(.) e C-(—co, oo), /(« + w) = /(<), /(0) = /'(0) = 0, 

* exp [—2/(0] — 1 
dt = 0; the solution y(t) of the equation (q) 

J sin2 £ 
o 
determined by the conditions y(0) = 0, y'(0) = 1 can be then expressed 
as 
(2) y(t) = ef(t> sin t. 

3. Let g e ^ . Then f q(t) dt = / [ / " (0 + P(t) + 2/'(«) cotg I - 1] d* = 
o o 

ft ft 

-= —rc + / [ / ' 2 (0 + 2/'(0 cotg I] dt ^ —n + / 2 / ' ( 0 cotg £ dt. Since 
o o 

Aim /(0 cotg t = lim /'(0/cos f -= 0, it holds 2 / / ' ( 0 cotg * dt = 
fc->0,^r t->0,^ 0 

= 2 / /(0/sin2 t dL 
o 

Further on, for any t, there holds the inequality e~2f(t) — 1 *> —2/(0, 
where the equality is reached just for these t for which/(0 = 0. Then it is 

/ " * , — * - - * / / » - « • . * 
o o 

and the equality is reached just for /(f) == 0. The left-hand side of 
ft 

the last inequality equals zero, and therefore / #(0 dt ^ —n + 
o 

a n 

+ 2 / / ' ( 0 cotg t dt = — rc + 2 / /(0/sin2 * d* ^ —TC, the sign of 
0 0 

equality in the last inequality holds just for f(t) == 0. Because the first 
inequality of the last relation is becoming an equality again for f(t) ==. 0 

n 
[see the relation (1)], there is min f q(t) dt = —n and this minimum 

sets in only for q(t) = — 1 . Thus, theorem 1 is being proved. 
Let us introduce the immediate 

ft 

Corrollary 1: For q GQn and q ^ —1, it holds f q(t) dt > —n . 



163 

h 4. There exists a 1 — 1 correspondence between the elements of 
the set Qn and the elements of Qd: 

7X i IX \ 

"The function — q \~ft) eQd corresponds to the functionq(t) eQ^" 

And then 
d d „ 

min I q(t) dt = min — I q (™r M & = ~T m i n / 2(0 & = — n ^ 
q e Q d J q e Q ^ » J \ » / » q e Q T J 

0 0 
j r 2 

and this minimum is reached only for q(t) == — (—1) = —n2\d%. 

Thus, theorem 2 is being proved. 

5. Note: Let us show that / q(t) dt is not bounded from above on the 
o 

n 

set Qn. It is enough to take account of f (f2 + 2/ ' cotg t—1) dt = 
o 

= f (f2 — 1) dt, as for the function f(t), in addition being symmetrical 
o 

with regard to the straight line t = jr/2. Let i f > 0 be an arbitrary 
constant. On some interval [a, b], 0 < a < b < rc/4, let f(t) e C2[a, b] 
be chosen so that |/'(l) | > ]/M + n/]/2(b — a). Further on, let /(*) 
be defined on an interval (—oo, oo) so that / e C2(—oo, oo), /(0) = 
= /'(0) = 0, f(t) be symmetric regarding to the straight line t = ctr/2 

n 

and periodic with period n, and especially such that /{exp [—2f(t)] — 1}/ 
o 

/sin2 t dt = 0. It can be satisfied, e.g., in that way that the definition 
of f(t) is extended on the interval [0, TZ/4] so as / e C72[0, TZ/4], /(0) = 
= f'(0) = 0. Furthermore, on the interval [TT/4, rc/2], let / be chosen 

*d2 
so t h a t / e C2[0, n\2],f'(n\2) = 0, a ,<l / {exp [—2/(*)] — l}/sin21 cU = 

nli 
nit 

= — / {exp [—2/(£)] — l}/sin21 dt. Then, with regard to the symmetry 
o 

to t = TT/2, and the periodicity, the function f(t) is determined having 
the required properties. Besides it holds 

a rc/2 b 

fq(t) dt = 2 / (/'2 — 1) d£ > 2 / / ' 2 d* — n > M. 
0 0 a 

Analogically to this procedure, or that in item 4, it is possible to show 
d 

f q(t) dt to be unbounded from above on Qd> a s well. 
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6. Now, let q(t) ^ 0, q e Qd. Since aa ^ aoc + 1 — a for each a ;> 0, 
0 < a ^ 1, we can estimate (using theorem 2): 

d (l 
f Y $2 ~la d2 í 
/ —g(í) —2" d ř ^ 2 a / ?W d ř + d(l — ot) ^ d 

o o 
where the last inequality beia changed into the equality just for 

d d 
q == — 7z2/d2. Thus, / [-^(f)]" dí = / | g(í) |a dč ^ d(njd)^, and the 

o o 
equality may set in and really sets in only for q == —n2jd2. Then, 
theorem 3 is being proved. 

As immediate consequenees be mentioned, e.g.: 

Corollary 2: For q eQn, q ^ 0, p ^ l, there is f ]/—q(t)át^ TI. 
o 

And especially 
n 

Corollary 3 : For q eQn, q ^ 0, q ^k — 1 , there is f ]/—q(t) át < TI. 
o 

Concluding this páper, I beg to thank Prof. M. Greguš for his valuable 
remarks. 
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