
Archivum Mathematicum

Bohumil Šmarda
Topologies in ℓ-groups

Archivum Mathematicum, Vol. 3 (1967), No. 2, 69--81

Persistent URL: http://dml.cz/dmlcz/104632

Terms of use:
© Masaryk University, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/104632
http://project.dml.cz


69 

TOPOLOGIES JN f-GROUPS. 

B. ŠMARDA (BRNO) 

Receivod March 30, 1967 

This paper deals with the considerations of lattice-ordered groups 
which are topological groups and topological lattices at the same time 
(briefly with topological 1-groups). Topology of 1-groups is defined 
altogether by means of the complete system of neighbourhoods of zero 2 , 
what is possible with regard to homogeneity of 1-groups. 

First of all, it deals with the investigation of topological properties 
of 1-groups in connection with their algebraic structure. A number of 
results about topological groups (they are not necessary topological 
lattices) is transferred here, as is given by Pontrjagin in [8]. Up to this 
time, considerations of similar kind for topological 1-groups have been 
carried through only for special topologies, as it is e.g. the order topology 
(see [1]), or the interval topology (see papers [3], [4], [5], [6], [7], [11]). 

Further on, some special kinds of topological 1-groups are investigated. 
They are determined either by the algebraic character of 1-groups or 
by the special topology of investigated 1-groups. In the first case, it 
deals with 1-groups with realization, and in the second case with topo­
logies defined by means of a filter in the lattice of polars of 1-group. 
The results in this part of this paper come out of the ideas of theory of 
disjunctivity and out of the properties of 1-groups with realization 
which are mentioned in papers [9], [10]. 

PRELIMINARY NOTES AND DEFINITIONS 

0.1: A topological space is the space in the meaning of Bourbaki 
(i.e. 0 = 0, A g A, A = A, A U B = l u B) — see [2]. This space 
is not a T0-space which is usually defined by this condition: To arbitrary 
two different points of space there exists a neighbourhood at least of 
one of them that does not include the second point. 

0.2: Lattice operations be indicated V, A. Let A be a A - semilattice 
with zero. A filter x in A is a non-empty subset of the set A with the 
following properties: 1. 0 £ x, 2. a, b e x => a A b e x, 3. a ex, ceA, 
c ^ a => c e x. Each chain of filters (ordered by inclusion) is upper 
bounded and then accordingly to Zorn's Lemma, each filter is included 
in a maximal filter in A. Maximal filters are called ultrafilters in A. 
Further on, if Q is a lattice, then the set of all filters in Q, and the 
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set of all ultrafilters in Q, be desiganted g(C), and SH^(Q), respecti­
vely. A dual object to a filter be called antifilter, a maximal antifilter 
be called ultraantifilter. The set of all ultraantifilters in Q be designa­
ted «l(g). 

0.3: An l-subgroup of an 1-group G is a subgroup in G which is a sub-
lattice of a lattice G as well. A convex l-subgroup in G is an l-subgroup 
H in G with the following property: a, beH,geG,a>g>b => g e H. 
A convex l-subgroup which is a normal divisor in G as well is called 
I-ideal in G. 

0.4: Elements a, b e G are disjunctive iff | a \ A | b | = 0; notation 
a<56. An element a e G is a. weak wnit element in 6r, if the only disjunctive 
element to g in G is zero. The needful terms as for the disjunctivity are 
given in introduction of [9]. Especially, the disjunctive complement of 
a set A c: G is the set A' = {g e G : gda for arbitrary ae A}. Fur ther 
on, A" = (AJ and it holds A" = A. The set 4 c (? for which it holds 
A" = 4̂ is called a polar iw- G.1) The set a" and a' for any element a e 6r 
is called principal polar and dwal principal polar, respectively. The set 
of all polars, principal polars and dual principal polars, be designated 
r, 17, and IF, respectively. 

0.5: The complement of a set Q <= G be indicated cQ. Fur ther we 
shall indicate g+ = g W 0, g~ = g A 0, \g \ =gV — ^.If the elements a, b 
are incomparable, we write a\\ b. If a set has no incomparable elements, 
then it is a fully ordered set. 

0.6: We say t h a t an l-group G has a realization if it is isomorphic 
with a subdirect sum of fully ordered groups Gx, x e M (notation 
(Gx : x e M)). We shall assume t h a t Gx ^ 0, for any x e M. An 1-group 
with realization is briefly called an r-group. F u r t h e r let us introduce this 
indication for / e G, P c G, A c M : Z(f) = {x e M : f(x) = 0}, cZ(f) = 
= M\Z(f) = {XEM : f(x) # 0}, Z(P) = {x e M : f(x) = 0 for arbitrary 

feP}, !P(-4) ={feG : f(x) = 0 for arbitrary x e A}. A realization 
(Gx : x e M) of an 1-group G be called completely regular if for any element 
/ e G and any element x e Z(f) there exists an element g e G so t h a t 
x e cZ(g) e Z(f). Every r-group always has a completely regular reali­
zation, see [10]. 

0.7: Let G be an 1-group and x an arbitrary ultrafilter in the set F 
of all polars in G; let us indicate Ux the union of all polars in x. Then 
the system % = {GjUx : x G21(JT), UX ^ G} defines a realization of the 
1-group G, which is called the T-realization of G. Similarly the system 
3 = {GjUx : x etyL(]T)} defines a realization of G, which is called the 
TIf-realization of G. The introduction of these terms is given in [10], 

This s t A is som tim я call d a component гn O. 



1. 

Definition: A topological space G is called a topological l-group if G 
has the following properties: 

1. G is an 1-group. 
2. The group operation (notation •+) and lattice operations are 

continuous in G, it means to hold: 

Let the symbol o indicates any of the following symbols: + , —, V, A 
and let a, b e G. Then for each neighbourhood W for which it holds 
a o b e W there exist neighbourhoods U, V such tha t aeU, b e V 
and for arbitrary elements x e U, y e V it holds x o y e W. 

Let 6r be a topological 1-group. Everywhere on, we shall indicate 
with 2 * the complete system of neighbourhoods in G and with 2 # the 
complete system of neighbourhoods of zero in G. In the case it does not 
come to misunderstanding, we shall write briefly 2 * and 2 . With regard 
to homogeneity of 1-group G, 2 determines fully 2 * . A topological 
1-group G with the complete system of neighbourhoods of zero 2 be 
indicated (G, 2 ) . 

1.1: Let G be an 1-group which is a topological group and one of 
operations V, A is continuous. Then the second operation is also continuous. 

P r o o f : Let the operation A b e continuous and let We2* be a ne­
ighbourhood of the point a V b. Then —(a V b) = —a A —b e —W. 
Accordingly to [8], p . 104, def. 22 b) there exists a neighbourhood 
W0e2* such tha t —a A — b e W0 c: —W. According to supposition 
there exist neighbourhoods U, U0, V. V0 e 2 * such tha t a e U0 c: —U. 
b e V0c: — V and U A V c W0. Hence — U 0 A — V0 c U A V c W0 c 
c: —W. Together U0 V V0 c W, such tha t the operation V is continuous. 
The second par t is proved dually (with the change V and A). 

The following theorems are principal for further considerations: 
1.2. Theorem: Let (G, 2 ) be a topological 1-group. Then 2 fulfils the 

following conditions: 
1. The intersection of two arbi trary sets of 2 contains a set of 2 . 
2. For any set U e 2 there exists a set V e 2 such tha t V — V c: U. 
3. For any set Ue2 and any element ueU there exists a set 

V e 2 such tha t V + u <z U. 
4. For any set U e 2 and any element g e G there exists a set V e 2 

such tha t —g + V + g c: U. 
5. For any set U e 2 and any element g e G there exists a set V e 2 

such tha t (V — g+) V (V + gn) <= U. 
Note: In the condition 5., it is possible to write equivalently (V — 

~g-)A(V + g+) cz U. 
Proof : The validity of conditions 1.—4. is proved in [8], p . 107, B. 
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We shall prove the condition 5: Let us choose Ue2, g e G. The set 
U + (g V 0) is a neighbourhood of the point g V 0 and as the operation V 
is continuous, there exist neighbourhoods V V"e2*, such tha t 
g G V', 0 e V" and V' V V" c [7 + (g V 0). According to the condition 4., 
there exists a neighbourhood V0 e 2 such tha t V0 + g c: V' and con­
sequently (V0 + g) V V" cz U + (g V 0). Hence ( V0 + g — g+) V (V" - -
-g+) = [07o + (7) V H T g + c: U, i.e. (V0 + g-) V (V — g+) c= U. 

Finally in accordance with condition 1., there exists a neighbourhood 
K G 2 such that V <=• V0 n 1'" and therefore it holds (V + g") V 
V (V — g+) c (/. 

1.3. Theorem: Let 6r be an 1-group. Let 2 be a system of subsets of G 
fulfilling the conditions 1.—5. of Theorem 1.2. Then (G, 2 ) is a topological 
1-group. Topology in G defined by means of 2 is determined uniquely. 

Proo f : According to [8], p. 108, Th. 9, (G, 2 ) is a topological group. 
Topology in G defined by means of 2 is uniquely determined. The 
continuity of lattice operations with regard to this topology is remaining 
to be proved: Let g, h e G, U be a neighbourhood of the point g V h. 
I t holds g V h = [(g — h) V 0] + h = (g — h)+ + h. Let us ' indi­
cate / == g — h. Then in accordance with [8], p . 104, def. 22 a), there 
exist neighbourhoods U x, U2 such tha t f+e Ux, he U2 and Ux + 
+ U2 cz U. Further there exists a neighbourhood U3 e 2 such that 
^3 + / + ^ U\- Regarding the condition 5, of 1.2. there exists a neigh­
bourhood F G 2 such tha t (V + / - ) V"(V — /+) c U3. Hence (V + 
+ / " + / + + A) V ( V - / + + / + + h) = [(V + / - ) V ( F — / + ) ] + f + ' 
+ h cz U3 + /+ + h cz U1 + h c: C7X + U2 <-= U and consequently 
(V + / + h) V (V + h) c U. Together (V + gr) V (V + h) cz U, what 
means the operation v in G to be continuous . The continuity of operation 
/\ follows from 1.1. and the proof of the Theorem is finished. 

1.4: Let (G, 2 ) be a topological 1-group. Then it holds: 
1. The topological space G is discrete if, and only if, { 0 } G 2 . 
2. The topological space G is a Kuratowski space if, and only if, the 

intersection of all neighbourhoods of 2 is zero in G. 
3. The topological space G is regular. 
4. If G is a Kuratowski space, then G is completely regular. 
P r o o f : 1. I t results from [8], p . 106, A. 2. With regard to the homo­

geneity of G it holds, the intersection of all neighbourhoods of 2 is zero 
in G if, and only if, all points of G are closed. 3. Let C / G S . Then in 
accordance with the condition 2. of 1.2. there exists F e S such tha t 
y — y cz U. We shall prove tha t V <=- U. In fact if it is p e V, then an 
arbitrary neighbourhood of the point p has a common point with V. 
Consequently for the neighbourhood p + V of the point p it holds 
(p + V) n V ¥* 0, i.e. there exist elements a,b e V such t h a t p + a = b. 
Hence p = b — aeV — V <=• U. In conclusion, for arbitrary f / e S 
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there exists V e _ such tha t V cz U and consequently with regard to 
the homogeneity of 1-group G, G is a regular topological space. 4. I t 
follows from [8], p. 114, Th. 10. 

Let us give now some examples of topological 1-groups. 
2 .1 : Let G be a complete 1-group. Then w is a topological 1-group 

with respect to the order topology. The space G is, moreover, Hausdorff 
and completely regular. 

P roo f : I t follows from the corollary of Th. 18, [1], p . 320. 
2.2: A fully ordered additive group of real numbers R with the order 

topology is a topolotical 1-group. 
2.3: Let Rn be an n-dimensional Euclidean space. Let a partial 

order on Rn be introduced in the following way: 
(xx, x2, ...,xn) _ (yx, y2,...,yn), where x{, y{eR, * = 1,2, . . . , n 
<=> xi _ y{, for i — 1,2, . . . , n. 

Then Rn is a topological 1-group with respect to the order topology. 
The 1-groups in the examples 2.2 and 2.3 are complete 1-groups and 

so they have the properties described in 2.L 
2.4: The interval topology in an 1-group G is usually defined by means 

of the subbasis of closed sets. This subbasis is formed by closed intervals 
{g G G : g _ a}, {g e G : g _ a}, for all a e G. The interval topology in 
an 1-group G is a Kuratowski one. If & is a topological group with 
respect to the interval topology, then its space is regular and also 
Hausdorff. 

Northam has given in [7] an example of the additive group of con­
tinuous functions on the closed interval [0, 1], the space of which is 
not Hausdorff with respect to the interval topology. Choe in [5], Conrad 
in [3], Jakubik in [6], Wolk in [11] have been investigating the classes 
of 1-groups with the request so tha t these groups may form topological 
groups with respect to the interval topology. In all cases, these 1-groups 
had to be fully ordered and it arose a presumption tha t an 1 -group which 
is a topological group with respect to the interval topology is fully 
ordered. This presumption has been disproved by Holland in [4] with 
the case of non-fully ordered topological 1-group: 

Let G be the set of all o-automorphisms / of the fully ordered set R 
of real numbers tha t fulfil this condition: 

(x — \)f=xf— 1, for all x e R. 

The group operation in G is defined by composition of o-automorphisms 
and the partial order in this way: 

/ _ g <=> fx _ gx, for all xe R. 
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2.5: Let R be the fully ordered additive group of real numbers. The 
topology in R is defined by means of the system S , which consists of the 
sets Ur = Kj{x e R : m — r < x < m + r}, m = 0, + 1 , + 2 , . . . , for 

m 
all rational numbers r, 0 < r < 1. 

Then R is a topological group with the complete system of neighbour­
hoods of zero S . I t is neither a topological 1-group nor a Kuratowski 
space. 

N o t e : If we define the system S in the example 2.7 with the sets 
Ur = {x e R : —r < x < r}, for all rational numbers r, 0 < r < l , then 
it holds for R the s?Jme as in 2.7 and R is a Kuratowski space. 

3. 

Let us go on in investigation of topological 1-groups, whose complete 
system of neighbourhoods of zero is formed with subgroups. 

3 .1 : Let (G, S) be a topological 1-group r.nd let U e S be a subgroup 
in G. Then U is a closed set. 

P roo f : Let ge U. Since U + g is a neighbourhood of the point g, 
the sets U + g and U have a common point. Then there exist e lements / , 

e U such tha t / + g = h. Hence g = —f + h e U i.e. g e U. Thus U a U 
and evidently U c: U, so tha t U = U. 

Corollary: Let (G, S) be a topological 1-group and let any neighbour­
hood U G S be a subgroup in G. Then it holds: 
1. Each open set in G is the union of closed sets. 
2. Each closed set in G is the intersection of open sets. 

P roo f : Results follow immediately from 3.1. 
3.2: Let (G, S) be a topological 1-group, let any neighbourhood 

U G S be a closed set in G. Fur ther on, let the topological space G be 
a T0-space. Then G is a Kuratowski space. 

P r o o f : Let G be a T0-space and let us assume tha t n U ^ 0. 
UeS 

I t means, there exists an element 0 ^ g e G such tha t g e U for every 
neighbourhood U e S and g is also element of every neighbourhood of 
zero (which is not necessary an element of S ) . 

Then there exists a neighbourhood W of the point g such tha t 0 ^ W. 
Further there exists a neighbourhood VeS such tha t V + g c W. 
The neighbourhood V + g is a closed set and thus P = G\i V + g) is 
an open set, 0 e P, g $ P. There exists evidently a neighbourhood 
Q e S such tha t 0 e Q, g $ Q, what is a contradiction. Thus, n U = 0 

UeS 
and G is according to 1.4 a Kuratowski space. 
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Corollary: Let (G, 2) be a topological 1-group and let any neighbour­
hood U e 2 be a subgroup in G. Let further G be a .ro-space. Then G 
is a Kuratowski space. 

Proof: It follows from 3.1 and 3.2. 
3.3: Let (G, 2) 7- 0 be a topological 1-group and let a neighbourhood 

U e 2 exists, which is a proper subgroup in G. Then G is a disconnected 
topological space. 

Proof: Let us assume G be a connected topological space and let U 
be a subgroup in G. According to 3.1 U is a closed set in G. And so is 
the set G\U closed in G and it holds U U (G\U) = G. That is 
possible if, and only if, G \ U = 0 i.e. G = U and this is a contra­
diction. 

3.4: Let (6r, 2) be a topological 1-group and let any neighbourhood 
U e 2 be a subgroup in G. Further let G be a T0-space. Then G is a totally 
disconnected topological space. 

Proof: Let E be a maximal connected set containing zero in G. 
Then E (] U -̂  0 for any neighbourhood Ue2. Both sets E and U 
are closed and U is open, too. Therefore E (] U and (G\U) (] E are 
closed sets in G. Thus, (G\U) (] E = 0 and hence E cz U for any 
neighbourhood U e 2 . Further E cz p> U == {0} and in accordance with 

UeS 
3.2 and [8], p. 137, B) the space G is totally disconnected. 

Note: All previous statements of this paragraph and the statement 
1.4 hold in topological group, too. 

3.5: Theorem: Let (G, 2) be a topological l-group. Then the intersec­
tion of all neighbourhoods from 2 is a normal 1-subgroup in G. 

Proof: In the proof, the theorem 1.2 is used (conditions 2.—5.). 
Let / = n U^ {0}. To each U e 2 and to each a e U there exists a 

UeS 
neighbourhood V e 2 such that V + a cz U. Particularly for any neigh­
bourhood U e 2 and for any element j e I is / + j cz U i.e. / + j cz p> U =-

= / . Hence / + / cz / . Further, to any neighbourhood U e 2 there 
exists a neighbourhood Ve2 such that —V cz U. But / cz V i.e. 
—/ cz —V cz U and hence —/ c ^ [/ = 1. Thus / is a subgroup in G. 

Ue.2 
For any neighbourhood U e 2 and any element g e G there exists 

a neighbourhood V 6 2 such that —g + V + gr cz U. Thus, —g + / + 
-\- g a —g + V + g cz U for any U e 2 . It means to be —g + / + 
+ ?<= J. 

To the end, it follows from the continuity of lattice operations, neigh­
bourhoods V, W e 2 exist to any neighbourhood U e 2 such that 
VV V cz U,W AW CZ U.Then/V/ cz n U = / a n d / A / cz / so that 

/ is a normal 1-subgroup in G. 
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Corollary: Let (G, 2 ) be a topological 1-group and let any neighbour­
hood in 2 be a subgroup in G. Then the intersection of all neighbourhoods 
from 2 is a closed normal 1-subgroup in G. 

If it is, moreover, any neighbourhood from 2 a convex subset in G, 
then the intersection of all neighbourhoods from 2 is an 1-ideal in G. 

P r o o f : Results follow from 3.1, 3.5 and from this fact, t ha t the 
intersection of convex sets is a convex set. 

4 . 

In this paragraph, topological 1-groups are investigated, whose 
complete system of neighbourhoods of zero is formed by convex 1-sub­
groups . 

Definition: A system (£ of convex 1-subgroups of an 1-group G be 
called an 0-system, if following properties are fulfilled: 

1. The intersection of arbitrary two elements of (£ contains an element 
of (L 

2. The system (£ contains with each element both all elements con­
jugated with it. 

An 0-system be called a zero 0-system, if the intersection of all its 
elements is zero in G. 

4 . 1 : An 0-system (£ in an 1-group G is a zero one, iff (G, (£) is a Kura-
towski space. 

P r o o f : Evident from 1.4. 
4.2: A right (left) decomposition of an 1-group G modulo a convex 

1-subgroup H is a congruence in the lattice G. 
P r o o f : We carry out only for the right decomposition G/H. 
I t is sufficient to prove, for arbitrary elements a, b e G, hx, h2eH 

it holds (hx + a) V (h2 + b)~(aVb)eH and (hx + a) A (h2 + b) — 
— (aAb)eH. I t holds (hx + a) V (h2 + b) <> [(hx V h2) + a] V [(hx V h2) + 
+ b] = (hx V h2) + (aVb) and hence (hx + a) V (h2 + b) — (aV b ^ 
g hxV h2. In an analogical way, it holds (hx + a) V (h2 + b) ^ 
^ [(hx A h2) + a] V [(hx A h2) + b] = (hx A h2) + (aVb) and hence 
(hx + a) V (h2 + b) — (aVb) ^hxAh2. Together hxV h2 ^ (hx + a) V 
V (h2 + 6) — (aVb) ^ hx A h2 and with regard to a convexity of H 
it is (hx + a) V (h2 + b) — (aV b) e H. Similarly we can prove (hx + a) A 
A (&2 + b) — (a A b) e H. 

4.3 : Let K be a convex 1-subgroup in an 1-group G. Then for any 
element g e G it holds (K + g~) V (K — a+) c K. 

P r o o f : According to 4.2 there is (K + g~) V (K — g+) c K + 
+ (g- V —0+ ) = K — (g+ A —gn) = K, because a+ A —gn = 0. 

Corollary: Any set of convex 1-subgroups of an 1-group G fulfils the 
condition 5. of the Theorem 1.2. 
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4.4: Theorem: Each 0-system of an 1-group G is a complete system 
of neighbourhoods of zero. 

P r o o f : Let L be an 0-system of an 1-group G. We are going to prove, 
L fulfils the conditions of the Theorem V2. The condition 1. is fulfilled 
evidently. In the conditions 2. and 3., it is sufficient to pu t V = U and 
their validity is guaranteed by the fact, it is dealt with 1-subgroups in G. 
The condition 4. is fulfilled for V = g + U ~-g (it follows from the 
definition of an 0-system). At the end, the condition 5. is fulfilled for 
V— U with regard to the corollary 4.3. Thus, according to the theorem 
V3, (6r, L) is a topological 1-group. 

Each filter x in a lattice of Videals of an 1-group G forms an 0-system. 
A topology defined in G in this way is not a discrete one, because the 
filter x does not contain zero in G. If, moreover, the intersection of 
Videals belonging to the filter x is zero, then it is dealt with a Kuratowski 
space. Let us investigate similar questions for an ultrafilter in the lattive 
of convex 1-subgroups of an 1-group G. Everywhere in this and in the 
next paragraph, let us denote K the lattice of convex 1-subgroups 
of an 1-group G. 

Definition: A filter xe$(K) be called a normal filter if x contains 
with each element of x all with it conjugated elements. An ultrafilter 
x eW$(K), which is a normal filter, be called a normal ultrafilter. 

Each normal filter in K forms an 0-system and its corresponding 
topology in G is evidently not a discrete one. 

5 .1 : An ultrafilter x e2 lg(K ) is normal, iff it holds: 
To arbitrary elements g e G and x ex there exists an element c e x, 
(N) c ^ 0 such tha t —g + c + g e x. 
Proof : Let x be a normal ultrafilter. Then for arbitrary elements 

x ex and g e G there exists an e l e m e n t X e x such tha t —g + x + g = A. 
Let us choose an element d e x 0 A. Then it holds g + d — g = c, 
for some element c e x. Thus, —g + c + g e x and the condition of the 
statement is fulfilled. 

Conversely, let x eW$(K) be not a normal filter. Then there exists 
xex such tha t —g + x + g $ x for suitable element g e G. As x is 
an ultrafilter, there exists Xex such tha t A ft (—g + x + g )== 0. 
Hence (x ft A) n [—g + (x ft A) + g] = 0 and x does not fulfil (N). 

5.2: Let it be cce2lg(K) . Then the ultrafilter x forms an 0-system 
in G, iff the condition (N) is fulfilled. 

Proo f : 1. If (N) is fulfilled, then a; is a normal ultrafilter according 
to 5.1, and so is an 0-system. 

2. An ultrafilter xeW$(K) forms an 0-system. Then itJ contains 
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with each element all elements conjugated with it, thus it is a normal 
ultrafilter and according to 5A the condition (N) is fulfilled. 

Corollary: Let xeW$(K) fulfils the condition (N). Then (G,x) is. 
a topological 1-group and the topological space G is not a discrete one. 

Proof follows from 4.4. 

6. 

Let us state further the conditions guaranteeing the topological 
space of a topological 1-group, for which the system 2 is a normal 
ultrafilter in K, to be a Kuratowski space. 

6.1: 1. Let Q be any lattice with zero. Then the infimum of elements 
of an ultrafilter x in Q is zero if, and only if, x is not principal filter. 

2. Let Q be any lattice. Then an ultrafilter £ in Q is principal filter if, 
and only if, x is generated by a minimal element in Q \ {0}. 

Proof: Let xe$lg(Q), which is not principal. If it is K e Q, K < X 
for all elements Xex, then it is K $ x. Thus, there exists an element 
rex such that T n K = 0. As K < r, it is K = 0 i.e. /\ 6 = 0. 

dex 

Conversely, let /^ 6 = 0 be for some ultrafilter x in Q. Then x is not 
dex 

principal, because for each principal filter y it holds n d = ju # {0}, 
dey 

where ju is the least element in y. 
The proof of the second part is evident. 
6.2: In the lattice K of convex 1-subgroups of an 1-group G atoms 

are exactly these convex 1-subgroups that are isomorphic with a sub­
group of a fully ordered additive group R of real numbers. 

Proof: If J e K is isomorphic with a group Rt <-- R, <p is the cor­
responding isomorphism and J0 £ J, J0e K, then J0(p is a convex 
1-subgroup in Rx. Thus, J0<p = 0 or J0(p = Rx, and hence J0 — 0 
or J0 = J. Hence J is an atom in K. 

If J is an atom in K, then it is a fully ordered group. If it is not namely 
a fully ordered group, then there exist elements a, b eJ, a ^ 0 7- 6, 
abb. Thus, b ea' ft J, a e a" n J, i.e. a' (] J e K, 0 ^ a ' n J £ J and J 
is not an atom in K, what is a contradiction. Further J is an Archime­
dean group. If namely elements a, beJ,Q<a<b existed, such that 
it holds na < b for all positive integers n, then the set of all elements 
c e J such that \ c \ ^na for some positive integers n, would be a convex 
1-subgroup different from zero and J , what is again a contradiction. 
Thus J is according to Holder's Theorem isomorphic with a subgroup 
ini?. 

6.3: Theorem: Let x e3Ig(K). Then the ultrafilter x is a zero 0-system, 
iff the following properties are fulfilled: 
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1. To arbitrary elements g e G, Kex there exists an element c e K 
such that O ^ c and —g + c + g e K. 

2. The ultrafilter x does not contain any convex 1-subgroup in G, 
which is isomorphic with a subgroup of the fully ordered additive group 
of real numbers. 

Proof: It follows from 4.1, 5.2, 6.1 and 6.2. 

Let us specialize the considerations from topological 1-groups to 
r-groups, whose complete system of neighbourhoods of zero is formed 
by a filter in the set r, respectively 77'. 

7.1: Let G be an r-group, xe'ft(r). Then x is an 0-system. 
Proof: According to [9], Lemma 3 or [10], I., Theorem 2.2, all polars 

in G are 1-ideals and then x is an 0-system. 
7.2: Let G be an r-group. Then (G,n') is a topological 1-group for 

which it holds: 
1. U' is a zero 0-system in G. 
2. G is a discrete topological space, iff G contains a weak unit element. 
Proof: For an arbitrary element g e G, g' is a convex 1-subgroup in G. 

Further for arbitrary elements gx, g2 e G it holds g[ 0 g'2 = (| gx | V | g2 \)'. 
Elements of II' are according to [10], I., Theorem 2.2. normal 1-sub-
groups and by that it is proved II' to be an 0-system in G. Further for 
0 ^ g e G it holds g $ g' and thus, n g' = 0 and II' is a zero 0-system 

g'eW 

in G. Finally, let ( ?bea discrete space. Then {0} e 2 = II' i.e. {0} = a', 
for a suitable element ae G and this is possible if, and only if, a is 
a weak unit element in G. 

Note : If it is 2 == F or 2 = II, then a topology in G is discrete as 
{0} = 0 " e i 7 c : r. 

Let (G, 2) be a topological 1-group and let 2 e 'S(II'). Then we denote 
G(Z)={geG+:g'e2}. 

7.3: Let (G, 2) be a topological 1-group, 2E{5(IT). Then it holds: 
1. 6r(2) does not contain any weak unit element in G. 
2. G(1i) is a convex A-subsemilattice of the lattice G. 
Proof: As 2 is a filter in II', it is {0} ^ 2 . Let a e (r(2) be a weak unit 

element in G. Then {0} = a' e 2 , what is a contradiction. Further let 
r, seG(Zi), geG, 0 ^r < g < s. Then s' <=• g' and thus, g'eHi.e. 
g e G(L). Finally for r, s e C7(2) it holds (r A s)' 2 r' and then r Ase G(L). 

7.4: Let (G, 2) be a topological r-group, 2 e SKIP). If we identify 
the r-group G with some of its complete regular realization, then for 
arbitrary elements r, se G(L) there exists an element t e G(L) such that 
it holds 0 =£ Z(t) c Z(r) n Z(s). 
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P r o o f : Let r, s e G(L). Then there exists an element t e G(£) such 
tha t t' = r' n s'. Then it holds Z(t') == Z(r' fl *') 2 £ ( / ) U Z(s') = 
= cZ(r) U cZ(«) = c[Z(r) 0 Z(s)] according to (10], IV., 8A0. Moreover, 
t is not a weak unit element in G and thus according to [10], V., 12.11 
it is 0 ^ Z(t) = cZ(t') c Z(r) 0 Z(s). 

7.5: Let (G, 2 ) be a topological r-group, 2 e^(H'). Then 2 is a zero 
0-system, iff to any element g e G, g ^ 0 there exists an element 5 e £ (2) 
such tha t | g | A 5 ^ 0. 

P r o o f : 2 is a zero 0-system if, and only if, n U = 0, what is equi­
ties 

valent with the fact, tha t to any element 0 # g e G there exists an 
element s e (2(2) such tha t g $s'. 

Example: Let G be an r-group, which has a weak unit element . Let 
2 e $ l g ( I 7 / ) be a principal filter. Then (G, 2 ) is a topological r-group 
according to 7.1 and accordintg to 6.1 it contains an atom inII'. Further 
it holds n g' -= m' ^ {0}, what means G not to be a Kuratowski space. 

(7'e2 

7.6. Theorem: Let G be a complete regular realization of an r-group 
and let 2 e^(II'). Then 2 is a zero 0-system in G, iff to any element 
g G G, g T-: 0 there exists an element s e G(L) such tha t Z(g) non 2 cZ(s). 

P r o o f : Let g e G, seG(L), g ^ 0. According to [10], IV., 8.10, 
g e s' is equivalent with Z(g) 2 Z(s') = cZ(«§). Hence it follows | g | A s ^ 
7-- 0 to be equivalent with Z(g) non 2 cZ(s). I t occurs according to 7.5 if, 
and only if, 2 is a zero 0-system in G. 

N o t e : A realization of an r-group G, which is complete regular, is e.g. 
a IP-realization, see [10], I. 

Corollary: Let G be a complete regular realization of an r-group and 
let 2 e g ( I P ) . Then (G, 2 ) is a topological r-group, the space of which is 
a Kuratowski one, iff to any element g ^ 0, g e G there exists an element 
s E G(L) such tha t Z(g) non 2 cZ(s). 

P r o o f : Results follow from 4.1, 4.4 and 7.6. 
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