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ON SOME CONVERGENCE TESTS FOR SERIES
AND INTEGRALS

E. BarviNEK (BRNO)

Received November 31, 1966

1. For determining convergence of a series ) a,b, the four following
n=0
theorems usually are applied, see [1].

[AB;] Abel’s test. The series X a,b, converges if X a, converges
and if (b,) is a monotonic convergent sequence.

[DR;] Dirichlet’s test. Let X a, be a series whose partial sums form
a bounded sequence. Let (b,) be a monotonic sequence which converges
to 0. Then T a,b, converges.

[DBR,] Du Bois-Reymond’s test. 1f both series £ a, and X | b, —
—b,+; | converge then ¥ a,b, conveges too.

[DD,] Dedekind’s test. Let X a, be a series whose partial sums
form a bounded sequence. Let X | b, —b,, | converge and (b,) con-
verges to O. Then X a,b, also converges.

Let f(z) and g(z) be functions defined in an interval [a, b on the

b

set of real numbers. Let the proper Riemann integrals f f(x) dz and
a

b

f g(z) dz exist for any b’ € [a, b[.

b
For determining convergence of the improper integral f f(x) g(x) dz
the two folowing theorems usually are applied. ’
b

[AB;] Abel’s test. If the integral f f(x) dz converges and g(z) is
a
b
monotonic and bounded on [a, b[, then f f(x) g(x) dz converges.
a

"
[DR,] Dirichlet’s test. If there is | f f(z)dz | < M for some con-
a

stant M and any b’ € [a, b[, g(x) is monotonic on [a, b[ and lim g(z) = 0,
b~

b
then f f(z) g(x) dx converges.

a
We wish to get two theorems on improper integrals which would
correspond to the theorems [DBR,] and [DD,] about series.
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2. The proofs of the theorems [AB,] and [DR,] are based on the
Second Mean Value theorem for Riemann integrals. For our purpose
we would need any mean value theorem in which no monotonic beha-
viour is supposed. Let vs mention both classical theorems.

[Ll] First Mean Value theorem. Let proper Riemann integrals

ff dx andfg(z dz exist. Let g(x) = 0 and m < f(x) < M on [a, b'],

where m, M are real numbers. Then there exists a real number
14

se[m, Mlsuchthatff dxusfg

[Lz] Second Mean Value theorem. Let proper Riemann integral
ff( ) dx exist. Let g( ) be monotonic on [a. b’]. Then there exists
b
s’e[a b]suchthatff x) dx = a)ff ydz -+ g (b ff

The two theorems we are giving bolow also funetion as mean value

theorems.
b

b
[Lg] Let ff(x) dx and f g(x) dx exist and g(x) = 0 on [a, b']. Then

a b s
there exists s € [a, b’] such that ff z) dr = sup f(z) f g(x) de +

xela,b’]

4+ inf f(z) fg:c)dx

zela,b’)

Proof. Let usput M = sup f(x),m= inf f(x). For the continuous
zela, ') bze[a ,b']
T

function F(x) = f (M —m)g dt—ff ) —m) g(t) dt there holds

Fa) =0, F(b') = > 0. Hence there is a number s € [a, b’] such that
F(s) = 0.
dg(x)

[L] Let f(z) and ¢'() = ( i

) be Riemann — integrable on

s b
[a, b']. Then ( f @) g(z) dz = — f (s) [ f(@) dz) ds + g(¥) [ f(z) d=
[ a
Proof. Let us compute the derlvatlon at an arbitrarily fixed z € Ja, b'[
x

of the function F(x) = [ (¢'(s) [ f(t) dt + f(s) g(s)) ds — g(=) f f(s) ds

a a a
according to the definition of derivation. We have F(x + k) — F(x) =
z-+h x+h

f(g(s)ff(t ) dt + f(s) g(s)) ds — (g9(x + h) — g(=)) ff ds —



57

z+h z-+h 8 z-+-h z+h
2) [ f(s) ds f (g'(s) [ f(t)at + f(s) 9 ds~fg () dsff(s ds—
zz+h z+h ¢ rth

xr

z) [ fls)ds = f [g'(s ff at + f(8) (9(s) — g@))ds = [ (g'(s)

[ 0 at -+ fs fg dt) ds.

z-+h

+We can suppose that | f(s) | < M and | ¢'(s) | = M on [a, b']. Because
s lies between z and x + b we obtain | F(x + h) — F(z) | < |h | (M |} |
M+ M| k| M)=2M2h2. Hence F'(x) = 0. Thus F(x) is constant on
a, b'[.
] FrE)m the continuity of F(x) on [a, b'] there follows that for z € [a, b’]
there is F(x) = F(a) = 0. Putting x = b" we obtain the formula of the
theorem.

Theorem [L,] presents integration by parts, see [3], and implies
the formula of [L,] provided moreover ¢g(x) is monotonic, see [2]. E.g;
if g(x) is nondocreasmg it is g'(x) = 0 and [L,] can be applied to the

b

integral f g'(s) ffx) dzds. We get f flz dxf g'(s)ds = (g(b") —

a

— g(a)) ff(x) dax where s, is a convenient number in [a, b']. Hence the

formulaaof [L,] follows.
We do not give here any application of [L,], whereas [L,] will be
applied to obtain the following theorems [DBR,] and [DD,].

3. Let f(zx) and g(z) be functions defined in an interval [a, b[ on the
Iy
set of real numbers. Let the proper Riemann integrals f f(z) dz and

b
fg'(x) dz exist for any b’ € [a, b[, where g'(z) = dg(x)
‘ z

b b
[DBR,] If the integrals f f(x) dz and f | g'(x) | do converge then
b a a
the integral f f(x) g(x) dz converges.
a
Proof. For arbitrary b’ € [a, b[ there holds formula (1). For b’ — b~
L3 8

the integral f (g'(s) f f(z) dz) ds converges absolutely, because the
. a a b
function f f(z) dx of the variable s is bounded and the integral f g’'(s) ds

converges absolutely. As to the term g(v') f f(x) dz, there exists bhn;
ed
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b b
gb') = gla) + fg’(s) ds and hence a finite limit of g(b") ff(x) dx exists.
a a

»
[DD,] Let [ff(x) dz | < M for every b’ €[a, b[. Let the integral

b b
f | 9'(x) | da converges and lim g(z) = 0. Then the integral ff(x) g(x) dx

T—>b~
converges.

Proof. For all b €[a, b[ there holds formula (1). For b — b~ the
b’ ]
integral j (g'(s) f f(x) dz) ds converges for the same reasons as in

b
[DBR,] and g(b") ff(x) dx converges to 0.

4. For 1 = 1 or ¢ = 2 there are certain relations among the theorems
[4B,], [DR,], (DBR,], [DD,], see [4].
[DG] For ¢ = 1,2 there holds the implication-diagram

[DD,] = [DBR,]
¥ Y
[DR;] = [4B]

Proof. a) [DR,] = [4B,]. Under the suppositions of [AB,] there
exists a finite limit lim b, = b. Let us write a,b, = a,b + a,(b,, —b).
n— o0
N

The series 2 a,(b, — b) converges according to [DR,], because | Y a,| <
n=0

< M and (b, — b) converges to 0.

b) [DR,] = [AB,]. Under the assumptions of [4B;] there exists
a finite limit lim g(z) = s. Let us write f(z) g(z) = sf(z) + f(z) (g(x) — s).

z-+b-

b
The integral f f(@) (9(x) — s) dz converges according to [DR,], because

b ‘
| f flx)dz | £ M and g(x) — s converges monotonically to 0 if x — b-.
J ;

¢) [DBR,] = [AB,]. Under the assumptions of [4B;] the series
(b, — b,.,) converges absolutely.

d) [DBR,] = [AB,]. Under the assumtions of [4B,] a finite limit
lim g(z) = s exists, Let us put 2 =1 or z = —1 according to g(z)

z—b~
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v v
being nondecreasing or nonincreasing. Then f lg'(x) | dz = 2 f g (x)de =
a a

b
= 2(g(b’) — g(a)). Hence the integral f | ¢'(x) | dz converges.
a
e) [DD,] = [DR,]. Under the assumptions of [DR,] the convergence

of the series 2 | b, — b,,,, | follows.
f) [DD,] = [DR,]. Under the assumptions of [DR,] the integral
b

[ 19'@) | dz converges.

g) [DD,] = [DBR,)]. Under the assumptions of [DBR,] from the con-
vergence of the series X(b, — b,,,) the existence of a finite limit lim b, =

Nn—> 0

= b follows. Let us put a,b, = a,b + a,(b, — b). The series T a,(b, — b)

non n
converges according to [DD,] because | Y, a, | < M,and X | (b, — b) —
v=0

~— (b1 —0b) | =21b,—b,,, | converges. The sequence (b, — b) con-
verges to 0.

h) [DD,] = [DBR,]. Under the assumptions of [DBR,] the existence

of a finite limit lim g(b’) = s follows from the convergence of the integral
b'—b-

b
fg’(z)dx. Let us put f(z)g(x) = sf(zx) + f(x) (g(x) —s). The integral

b ¥
f f(z) (g(x) —s) dz converges according to [DD,] because | f flx)ydz| = M,
a a

b b
the integral f | (g(x) —s)’ | dz = f |g'(x) | dz converges and
a a

lim (g(z) —s8) =0

b~

5. For the uniform convergence of the series X a,(y) b,(y), y€ Y,
where Y is an arbitrary set of real numbers, the tests analogous to
[4B,], [DR,], [DBR,], [DD,] are used. For uniform convergence of

b
improper Riemann integrals f f, y) g(x, y) dz, y € Y Abel’s and Dirich-
a
let’s tests [AB,] and [DR,] are used.
Suppose that the functions f(z, y) and g(z, y) are defined for z € [a, b[
% b

and y € Y. Let the proper Riemann integrals f f(z,y)dzand f agg:, y) dx

a

exist for any b’ €[a, b[ and ye Y.
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v
[4B,] Abel's test. If the integral [ f(z, y) dz converges uniformly

a
for ye Y, |g(x,y) | < M for x€[a,b] and ye Y, and for any ye ¥
the function g(z, y) of the variable x is monotonic in [a, b[, then
b

ff(x, ¥) g(x, y) dx converges uniformly for y € Y.
b

[(DR,] Dirichlet’s test. If| f_f(x, y)de | < M for any b €[a,d[
and y € Y, lim g(2, y) = 0 uniformly on Y and g(x, y) as a function of =

r—b~
b

is monotonic in [a, b] for any y € Y, then ff(x, y) 9(z, y) dx converges

uniformly on Y.
Below we give two tests for uniform convergence of improper Riemann
integrals analogous to [DBR,] and [DD,).
[Ls] Let f(x) and ¢'(x) be integrable in [a, b’] for any b’ € [a, b[. Let
b

the integral [ f(z) dz converge. Then for every b’, b” € [a, b[ there holds

a
the formula
b b b

b b
@) [f@ g@)de = [ (') [ ) d)ds—g(6") [f®dt+ ') [ S

v
Proof. Applying formula (1) for the intervals [a, b'] and [a, b"]
] b
and subtracting we get a formula containing f f(¢) de, f f(t)dt and
74 s ¢ /4 ¢ b
[ftydt. For & =s, b", 8" let us put [ f(t)dt = [ f(t) dt — [ f(t) de.
a a 8

Then we obtain (2).
b

[Lg] Assume that the integral f f(x, y) dx converges for any y € ¥,
a b

b
that for any b"' > b', b — b~ the integral f (ag(s, y) f fit,y) dt) ds
p

as

8
converges for y € ¥ uniformly to 0, and for ¥’ — b~ the function g(b', ¥)
b

[ f(t, y) dt converges for ye ¥ uniformly to 0. Then the integral
v

b
f f(x, y) g(x, y) dz converges uniformly on Y.

Proof. We are to show that for 5" > b, & — b~ the integral
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b
ff(iv, ¥) 9(x, y) dx converges uniformly to 0 on Y. For any y € Y accor-
2

% % b
ding to (2) we have f fe ) gl ) d — f (69(;, Y) f f(t, ) dt) ds —

—g(b’, y) fftydt+gb Y) fjtydt All terms on the right

converge umformly to 0 on Y whencver b > b’ b’ —b-.

dz converge

uniformly on Y. If \g(x,y |§M for xe[a,, b[ and ye Y, then
b

f f@, y) g(x y) dz converges uniformly on Y.

Proof. The integral [ ( Bg(s y) f fit, ) dt) ds converges uniformly

to 0 on Y whenever b” >b, b - b because for s — b~ the integral
b

[ £, ) at converges uniformly to 0 and thus there exists a constant K

b
such that | ff(t, y)dt | < K for x € [a, b and y € Y. Hence

b b b
9g(s, y) [ dg(s, y) |
J ST frena)asx [[2520
b s b

and the right-hand side converges uniformly to 0. The affirmation
follows from [Lg].
e

[DD,] Let |ff(x, y)dx | < M for b' €[a, b,y € Y. Let the integral

b
| 99(x, y)
ox
¢ b
uniformly on Y. Then integral f fx, y) g(x, y) dx converges uniformly

on Y.
Proof. For any y € Y and any b’ € [a, b[ we can apply [L,] and write
according to (1)

dx converge uniformly on Y and let be lim g(z,y) =0
T—pb~
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jf(wy gz, y)d =—fag°yfftydtderg(b’y)ffxy

The first term on the right converges uniformly because ] f fit, ) dtl =
a

<M and [ 1 698 ‘w ‘ds’ converges uniformly. The second term

converges unlformly to 0.

As to the implication-diagram for the uniform convergence of inte-

grals we can prove only the following propositions. Analogous results
may be obtained for series.

(P,] If| [ fx,y)dz | < K for y € Y, then [DD,] = [DBR,].
Proof. Gnder the suppositions of [DBR,] there exists a wuniform

b
limit lim g(x, y) = s(y) and there is | s(y) | =< M. Let us write ff(x, Y)
a

xr—b~

g(z, y) de = s(y) ffxydx—}-ffz y) (g(x, y) — s(y)) de. The first

term on the rlght converges umformly because s(y) is bounded.
The second term converges uniformly according to [DD,] because

‘ff(x, ) dxl <K' for yeY and every b’ near b, the integral
“

0 | .
f \ 5— (g(x, y) — s(y)) ldx converges uniformly and there is uniformly

on Y hm L (g(x, y) — s(y)) = 0.

[P,] "It holds [DD,] = [DR,].

Proof. Under the assumptions of [DRy] let us put z(y) = 1 or 2(y) =
—1 for any ye Y according to g(x,y) being a nondecreasing or
b

nonincreasing function of x. Then the integral f

a

b b
39(%1/)\ dz = 2(y) f G

converges uniformly on Y, because f 3
x

a a
= 2(y) [g(b’, y) — g(a, y)] which converges uniformly to the limit
—=2(y) g(a, y). Hence the assumptions of [DD,] are fulfilled.
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[P,] Let Y be a bounded and closed set of real numbers. Let g(x, )
be continuous on Y for any x € [a, b[ and s(y) = lim g(x, ¥) be conti-

b~
nuous on Y. Then [DBR,] = [AB,].
Proof. Under the assumptions of [AB,] there exists a finite limit
lim g(z, y) = s(y) for any y € Y because g(x,y) is monotonic in = for

L—>b~

any y € Y and |g(z,y) | = M. Let 2(y) bc defined like in [P,]. The

og(
mtegralf’ ga: y)

if and only if g(x, y) — s(y) does so. This follows from DINI’S theorem.
b

dz = z(y) (9(b", ¥y) — g(a, y)] converges uniformly

[P,] Let ]ff(rc,.y) dxl < K for ye€ Y where Y is a bounded and

a
closed set of real numbers. Let g(x, y) be continuous on Y for any
x € [a, b[ and s(y) = lim g(x, y) be also continuous on Y. Then [DR,] =

= [AB,].
Proof. Under the suppositions of [AB,] there exists a ﬁnite limit

lim g(z, y) = s(y) for any y € ¥ and | s(y) | < M. Let us write ff (, y)

r—>b~

915, ) 8) = st |z, 1) &5 + [ fe,1) 0(2,)— o) d. The firtterm
a a
on the right converges uniformly. So does the second term according
b
to [DR,] because for b near b and y € Y there is | f flzx, y) dxl =K’
a
and lim [g(x, y) — s(y)] = 0 on Y uniformly by Dini’s theorem.
b~
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