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ON SOME CONVERGENCE TESTS FOR S E R I E S 
AND INTEGRALS 

E. BARVINEK (BRNO) 

Received November 31, 1966 

1. For determining convergence of a series ]T an6n the four following 
w=-0 

theorems usually are applied, see [1]. 
[AB-J Abel's test. The series S anbn converges if S an converges 

and if (bn) is a monotonic convergent sequence. 
[DRX] Dirichlet's test. Let S an be a series whose partial sums form 
a bounded sequence. Let (bn) be a monotonic sequence which converges 
to 0. Then S anbn converges. 

[DBRJ Du Bois-Reymond's test. If both series S an and S | bn — 
— 6n+1 | converge then S anbn conveges too. 

[DDJ Dedekind's test. Let S an be a series whose partial sums 
form a bounded sequence. Let S | bn — bn+l \ converge and (6n) con­
verges to O. Then S an6n also converges. 

Let f(x) and g(x) be functions defined in an interval [a, 6[ on the 
b' 

set of real numbers. Let the proper Riemann integrals / f(x) dx and 
a 

f g(x) dx exist for any b' e [a, 6[. 
n 

b 
For determining convergence of the improper integral / f(x) g(x) dx 

a 
the two folowing theorems usually are applied. 

b 

[AB2] Abel's test. If the integral / f(x) dx converges and g(x) is 
a 

b 

monotonic and bounded on [a, 6[, then / f(x) g(x) dx converges. 
a 
b' 

[DR2] Dirichlet's test. If there is | / f(x) dx \ <J M for some con-
a 

stant M and any 6' e [a, 6[, g(x) is monotonic on [a, b[ and lim g(x) — 0, 
x-^b-

b 

then f f(x) g(x) dx converges. 
a 

We wish to get two theorems on improper integrals which would 
correspond to the theorems [DBRJ and [DDX] about series. 
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2. The proofs of the theorems [AB2] and [DR2] are based on the 
Second Mean Value theorem for Riemann integrals. For our purpose 
we would need any mean value theorem in which no monotonic beha­
viour is supposed. Let us mention both classical theorems. 

[Lx] First Mean Value theorem. Let proper Riemann integrals 
// b' 

f f(x) dx and f g(x) dx exist. Let g(x) = 0 and m _ f(x) g M on [a, b'], 
a a 

where m, M are real numbers. Then there exists a real number 
V b' 

s e [m, M] such that f f(x) g(x) dx = s f g(x) dx. 
a a 

[L2] Second Mean Value theorem. Let proper Riemann integral 
b' 

f f(x) dx exist. Let g(x) be monotonic on [a, b']. Then there exists 
a h' s b 

s e [a, b'] such that f f(x) g(x) dx = g(a) f f(x) dx + g (b) f f(x) dx. 
a a ft 

The two theorems we are giving below also function as mean value 
theorems. 

b' b' 

[L3] Let f f(x) dx and / g(x) dx exist and g(x) ^ 0 on [a, b']. Then 
a a 

b' s 

there exists s e [a, b'] such that f f(x) g(x) dx = sup f(x) f g(x) dx + 
a xe[a,b'] a 

b' 

+ inf f(x) f g(x) dx. 
xe[a,b'] s 

Proof. Let us put M = sup f(x), m = inf f(x). For the continuous 
xe[a,b'] xe[a,b'] 

x b' 

function F(x) = f (M — m) g(t) dt — f f(t) — m) g(t) dt there holds 
a a 

F(a) g 0, F(b') ^ 0. Hence there is a number s e [a, b'] such that 
F(s) = 0. 

[LJ Let f(x) and g'(x) = I—-—J be Riemann — integrable on 

b' b' s b' 

[a, b']. Then (1) f f(x) g(x) dx = — / (g'(s) ff(x) dx) ds + g(b') f f(x) dx. 
a a a a 

Proof. Let us compute the derivation at an arbitrarily fixed xe]a, b'[ 
X 8 x 

of the function F(x) = f (g'(s) f f(t) dt + f(s) g(s)) ds — g(x) f f(s) ds 
a a a 

according to the definition of derivation. We have F(x + h) — F(x) = 
x+h H x+h 

-= / (9'(s) f f(t) dt + f(s) g(s)) ds - (g(x + h) — g(x)) f f(s) ds — 
x a a 
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X+Һ x+h x+h 

g(x)f /(*) d s = f (9'W If(t)dt+f(s)9(s))^~f 9'{s) dsff(s)ds — 
x x a x a 

x+h x+h * xyl 

• g{x) f f(s) da = / [?'(«) f f(t) dt +/(«) (t7(«) — ,?(.-))] ds = j (gr'(«) 
*-f h 

f f(t)dt+f(s)fg'(t)dt)ds. 
x+h * 

We can suppose that |/(«) | g M and | g (s) | g M on [a, 6']. Because 
s lies between x and a + h we obtain | F(x + h) — F(x) \^\h\(M\h\ 
M + M \h\M) = 2Jf2/i2. Hence F'(x) = 0. Thus F(z) is constant on 
K VI 

From the continuity of F(x) on [a, 6'] there follows that for x e [a, b'] 
there is F(x) = F(a) = 0. Putting x = ft' we obtain the formula of the 
theorem. 

Theorem [L4] presents integration by parts, see [3], and implies 
the formula of [L2] provided moreover g(x) is monotonic, see [2]. E.g; 
if g(x) is nondecreasing, it is g'(x) ^ 0 and [L-J can be applied to the 

b' * *o b' 

integral / g'(s) f f(x) dxds. We get / f(x) dx f g'(s) ds = (g(bf) — 
a a a a 

*o 

— 9(a)) f f(x) dx where s0 is a convenient number in [a, b']. Hence the 
a 

formula of [L2] follows. 
We do not give here any application of [L3], whereas [L4] will be 

applied to obtain the following theorems [DBR2] and [DD2]. 
3. Let f(x) and g(x) be functions defined in an interval [a, b[ on the 

b' 

set of real numbers. Let the proper Riemann integrals / f(x) dx and 
a 

b' 

f g'(x) dx exist for any b' e [a, b[, where g'(x) dg(x) 

dx 
b b 

[DBR2] If the integrals / f(x) dx and / | g'(x) \ dx converge then 
ь 

the integral / f(x) g(x) dx converges. 
a 

Proof, For arbitrary b' e [a, b[ there holds formula (1). For b' -> b~ 
v 8 

the integral / (g'(s) f f(x) dx) ds converges absolutely, because the 
a a 

s b' 

function f f(x) dx of the variable s is bounded and the integral / g'(s) ds 
a a 

b' 

converges absolutely. As to the term # ' ) / / ( # ) dx, there exists lim 
a V->b~ 
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b b' 

g(b') = g(a) + f g'(s) ds and hence a finite limit of g(b') f f(x) dx exists. 
a a 

b' 

[DD2] Let | f f(x) dx | ^ M for every b' e [a, b[. Let the integral 
a 

b b 

f | g'(x) \ dx converges and lim g(x) = 0. Then the integral f f(x) g(x) dx 
a x-+b~ a 

converges. 
Proof. For all b'e[a, b[ there holds formula (1). For b' -> b~ the 

b' s 

integral J (g'(s) f f(x) dx) ds converges for the same reasons as in 
a a 

b' 

[DBR2] and g(b') f f(x) dx converges to 0. 
a 

4. For i = 1 or i = 2 there are certain relations among the theorems 
[AB(], [DB{], (DBBt], [DD{], see [4]. 

[DG] For i = 1,2 there holds the implication-diagram 

[DD,] => [DBR{] 

V V 

[DP,] => [AB{] 

Proof, a) [DPX] => [ABX]. Under the suppositions of [ABX] there 
exists a finite limit lim bn = b. Let us write anbn = anb + an(bn — b). 

n—>oo 
N 

The series 2 an(bn — b) converges according to [DRX], because | £ an | ^ 
n = 0 

_ M and (bn — b) converges to 0. 
b) [DP2] => [AB2]. Under the assumptions of [AB2] there exists 

a finite limit lim g(x) = s. Let us write/(.r) g(x) = sf(x) -f f(x) (g(x) — s). 
x^b-

b 

The integral f f(x) (g(x) — s) dx converges according to [DP2]> because 
a 

b' 

| f f(x)dx | ?g M and g(x) — s converges monotonically to 0 if x -> b \ 
a 

c) [DBRX] => [ABX]. Under the assumptions of [ABX] the series 
S(6M — &n+i) converges absolutely. 

d) [DBR2] => [AB2], Under the assumtions of [AB2] a finite limit 
lim g(x) = e exists, Let u$ put ^ = 1 or 2 = —1 according to g(x) 
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r b' 
being nondecreasing or nonincreasing. Then J | g'(x) \dx = z f g' (x) dx = 

« a 
b 

= z(g(b') — g(a)). Hence the integral / | g'(x) | da; converges. 
a 

e) [DDX] => [DRX]. Under the assumptions of [DRX] the convergence 
of the series 2 | bn — 6n+1 | follows. 

f) [DD2] => [DR2]. Under the assumptions of [DR2] the integral 
b 

J I 9(x) I d# converges. 
a 

g) [DDJ => [DBRX]. Under the assumptions of [DBRX] from the con­
vergence of the series 2(6n — 6n+1) the existence of a finite limit lim bn = 

n—»oo 

= 6 follows. Let us put anbn = anb + an(bn — 6). The series 2 an(bn — 6) 
n 

converges according to [DDJ because | £ av \ ^ M, and 2 | (bn — 6) — 
— (6M+1 — 6) | = 2 | 6n — 6W+1 | converges. The sequence (6n — 6) con­
verges to 0. 

h) [DD2] => [DBR2]. Under the assumptions of [DBR2] the existence 
of a finite limit lim g(b') = s follows from the convergence of the integral 

b'-+b~ 
b 

f g'(x)dx. Let us put f(x) g(x) = sf(x) + f(x) (g(x)—s). The integral 
a 

b b' 

ff(x) (9(x) S) d.r converges according to [DD2] because | / f(x) dx \ g M, 
a a 

b b 

the integral / | (g(x) —5)' | dx = / | g'(x) | dx converges and 
a a 

lim (g(x) — s) = 0 
x->b~ 

5. For the uniform convergence of the series 2 an(y) bn(y), y e Y, 
where Y is an arbitrary set of real numbers, the tests analogous to 
[ABX], [DRX], [DBRX], [DDX] are used. For uniform convergence of 

b 

improper Riemann integrals / f(x, y) g(x, y) dx, y e Y Abel's and Dirich-
a 

let's tests [AB±] and [DR4] are used. 
Suppose that the functions f(x, y) and g(x, y) are defined for x e [a, 6[ 

b' b' 

/

C do(x 11} 
f(x, y) dx and l —-r--— d# 

a a 

exist for any b' e [a, b[ and y e Y. 
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[AB4] Abel's test. If the integral f f(x, y) dx converges uniformly 
a 

for y e Y, \ g(x, y) | ^ M for x e [a, b[ and y e Y, and for any y e Y 
the function g(x, y) of the variable x is monotonic in [a, b[, then 

b 

f f(x* y) 9(x> y) dx converges uniformly for y e Y. 
a 

b' 

[DRJ Dirichlet's test. If | f f(x, y) dx | < M for any b' e [a, b[ 
a 

and y e Y, lim g(x, y) -= 0 uniformly on Y and g(x, y) as a function of x 
z-+b~ 

b 

is monotonic in [a, b[ for any y e Y, then f f(x, y) g(x, y) dx converges 
a 

uniformly on Y. 
Below we give two tests for uniform convergence of improper Riemann 

integrals analogous to [DBR2] and [DD2]. 
[L5] Let f(x) and g'(x) be integrable in [a, b'] for any b' e [a, b[. Let 

b 

the integral f f(x) dx converge. Then for every b', b" e [a, b[ there holds 
a 

the formula 
b" b" b b b 

(2) ff(x)g(x)dx=f(g'(s)ff(t)dt)ds-g(b")ff(t)dt + g(b')ff(t)dt. 
b' b' s b" b' 

Proof. Applying formula (1) for the intervals [a, b'] and [a, b"] 
a b" 

and subtracting we get a formula containing f f(t) dt, f f(t) dt and 
a a 

V s' b" b' 

f f(t) dt. For s' == s, b", b' let us put f f(t) dt = f f(t) dt — f f(t) dt. 
a a a s' 

Then we obtain (2). 
b 

[L6] Assume that the integral f f(x, y) dx converges for any y e Y, 
a 

b" b 

that for any b" > b\ bf->b~ the integral f ( 9^ y- ff(t,y)dt\ds 

b' s 

converges for y e Y uniformly to 0, and for b' -> b~ the function g(b\ y) 
b 

ff(t>y)dt converges for y e Y uniformly to 0. Then the integral 
b' 

b 

f f(x> y) 9(x> y) dx converges uniformly on Y. 
a 

Proof. We are to show that for b" > V, b' -> 6~ the integral 
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b" 

J i(x> y) 9(x> y) dx converges uniformly to 0 on Y. For any y e Y accor-
v 

b" b" b 

ding to (2) we have f f(x, y) g(x, y) dx = f (^j^ [f(t, y) dt\ ds — 

b' b' s 
b b 

~~~ <](b\ y) f f(t, y) dt + g(b', y) f f(t, y) dt. All terms on the right 
b" b' 

converge uniformly to 0 on Y whenever 6" > b', b' -> 6~. 
b b 

C C 3o(x v\ 
[DHR4]. Let the integrals / f(x, y) dx and / — ^ ~ ~ dx converge 

J J I dx I 
a a 

uniformly on Y. If | g(x, y) \ <Z M for x e [a, b[ and y e Y, then 
b 

J f(x> y) g(x >y) dx converges uniformly on Y. 
a 

b" b 

Proof. The integral / J—~^~— / f(t, y) dt\ ds converges uniformly 
b' 

to 0 on Y whenever b" > b', b' -> b~, because for s -> 6~ the integral 
ь 

f f(t> y) dt converges uniformly to 0 and thus there exists a constant K 
,s 

b 

such that | f f(t, y)dt\ <* K for x e [a, b[ and y e Y. Hence 
8 

\f(^fJM^iKf]^ 
b' s b' 

and the right-hand side converges uniformly to 0. The affirmation 
follows from [E6]. 

b' 

[DD4] Let | ff(x, y)dx\ <i M for b' e [a, 6[, y e Y. Let the integral 

i ' I Sg(x, y) 

ôx 
dx converge uniformly on Y and let be lim g(x, y) == 0 

x-+b~ 

b 

uniformly on Y. Then integral / f(x, y) g(x, y) dx converges uniformly 
a 

on Y, 
Proof. For any y e Y and any b' e [a, b[ we can apply [D4] and write 

according to (1) 
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v 
Jf(x,y,)g{x,y)âx = - J -9-^- Jf(t,y)dř)d* + g(b', y) Jf(x,y)d.s. 

The first term on the right converges uniformly because | f f(t, y) dt | ^ 
a 

b 

< M and 
/ 

- — —'—- I d.§ converges uniformly. The second term 
as 

converges uniformly to 0. 
As to the implication-diagram for the uniform convergence of inte­

grals we can prove only the following propositions. Analogous results 
may be obtained for series. 

b 

[Pi] I f I / M y)^x I .S K for y e Y, then [DDJ => [DBRJ. 
a 

Proof. Under the suppositions of [DBRJ there exists a uniform 
b 

limit lim g(x, y) = s(y) and there is | s(y) \ g M. Let us wTite f f(x, y) 
x-+b~ a 

b b 

g(x, y) dx = s(y) f f(x, y) dx + f f(x, y) (g(x, y) — s(y)) dx. The first 
a a 

term on the right converges uniformly because s(y) is bounded. 
The second term converges uniformly according to [DDJ because 

b' 

I f f(Xj y)dx\ ^ K' for y e Y and every b' near b, the integral 
a 

b 

/

! A I 

—— (g(x, y) — s(y)) I dx converges uniformly and there is uniformly 
I ox ' I 

a 

on Y lim (g(x, y) — s(y)) = 0. 
x->b~ 

[PJ It holds [DDJ ^ [DRJ. 
Proof. Under the assumptions of [DRJ let us put z(y) = 1 or z(y) = 

= —1 for any y e Y according to g(x, y) being a nondecreasing or 
b 

/

OQ(X 1/\ i 
—-^-—- I da: 

a 
b' b' 

/
! 3Q(X u) C BQ[X H\ 

— ~ - dx = z(y) I — ^ - - ^ d x = 
a a 

= z(y) l9(b', y)—9(a,y)] which converges uniformly to the limit 
—z(y) g(a> y). Hence the assumptions of [DDJ are fulfilled. 
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[P3] Let Y be a bounded and closed set of real numbers. Let g(x, y) 
be continuous on Y for any x e [a, b[ and s(y) == lim g(x, y) be conti-

x-+b~ 

nuous on Y. Then [DBR4] => [ABJ. 
Proof. Under the assumptions of [AB4] there exists a finite limit 

lim g(x, y) = s(y) for any y e Y because g(x, y) is monotonic in x for 
x~>b-
any y e Y and | g(x, y) \ __l M. Let z(y) be defined like in [P2]. The 

b' 

/

c)o(x •?/) 
— ^-— dx = z(y) (g(bf, y) — g(a, y)] converges uniformly 

a 

if and only if g(x, y) -> s(y) does so. This follows from DINI'S theorem. 
b 

[P4] Let \ff(x,.y) dx\ g K for y e Y where Y is a bounded and 
a 

closed set of real numbers. Let g(x, y) be continuous on Y for any 
x e [a, b[ and s(y) = lim g(#, y) be also continuous on Y. Then [DR4] => 

.r->6-

=> [ABJ. 
Proof. Under the suppositions of [AB4] there exists a finite limit 

b 

lim g(x, y) = 5(2/) for any y e Y and | s(y) | 5j M. Let us write f f(x, y) 
x->b~ a 

b b 

g(x, y) dx) = s(y) f f(x, y) dx + f f(x, y) (g(x, y) — s(y)) dx. The first term 
a a 

on the right converges uniformly. So does the second term according 
b' 

to [DRJ because for b' near b and y e Y there is | / f(x, y) dx | ^ K' 
a 

and lim [g(x, y) — s(y)] == 0 on Y uniformly by Dini's theorem. 
x-+b~ 
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