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THE MONOTONICITY OF EXTREMANTS OF
INTEGRALS OF THE DIFFERENTIAL EQUATION

v +q(tly =0
J. VOSMANSKY

Received June 12, 1966

In papers [1] and [2] L. Lorcr and P. Szeao have deduced a simple,
sufficient condition for the monotonicity of the sequence of zeros of an
arbitrary integral of the differential equation " + q(t)y = 0. The subject
of this paper is to deduce similar conditions for the monotonicity of
the sequence of extremants for an arbitrary solution of the same differen-
tial equation.

By ‘“‘extremant’ of the function y(¢) € C, we understand any number #
in which the function y(t) acquires an extreme value.

A function F(t) will be said to be of class M,(a, b) or monotone of
order » in (@, b) (see [1]), if it has n(n 2 0) continuous derivates F®,
F', F”, ..., F® complying with the relation

(—1)y/FUXt) = 0forte(a, b),j=0,1,...,n

- If the previous inequality is fulfilled for j =0, 1, . . ., then thefunction
F(t) will be said to be completely monotone in (2, b) and we shall denote
it by M (a, b). M, will stand, as abreviation, for M,,(0, oo).

Futhermore, let {t,} denote the sequence and At, the n-th differences
of the sequence {t;}, so that
A% =8, At =t —1,... AM, = AN, — Ar-1g,,
k=12, ... n=12 ...

The sequence {t,} will be said to be monotone of order =, if
(—1)A#, 20,k=0,1,2,...,j=12,...,n

In the case n = co the sequence {f,} will be said to be completely
monotone.

Lemma 1. Let ¢(t) > 0 for te(a, b) and q'€ M, (a,” b). Then, for
P < n <4 1-—14, there holds

N
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[ o .
whereOSv,k_p+a, -—1,2_.....e,'Elv,,k:pqL—ifork,:l,‘..., N.
=
C, and N are suitable positive integers and

g [ I g
g = (- 1)r+i-1gj n{ r }v
¥ g q q

80 that all non-zero terms of the expression (1) have the same sign. At the
same time, sign f 0, if f(t) =0, sign f= +1, +f f(t) 2 0 and sign
J=—Liff() S 0 for te (a,b).

Proof We use the mductlon with regard to p for r=1 2 ...,

n+1l—p
a) For p = 0 one has, accordmg to the supposition,

’ (n+1)
o0 Lo I apse
, q q q
30 that ‘ : '
9“) q(f) L . q(")
= g~ ., where ¢ = (—1)%+!si {——}
q q &n q
which evidently applies.

 b) Let us suppose that the assertion for p = 1 holds. Then

[%0. ] @ Z‘fk {[ q<;,.)] q«;.) q(;..;) .

v1.8) ver) | Veo.x)
+q("[q('].‘.q('+...+
q q q
gy g(ve-re) [ g®en ]’}
+ cen .
8t g -4 q9 ]/
ince o
[ S ]"2 q(":.l'f'l)q —_ q(’:.;)q' _ gvsatl) L g .2.,.
4 ' q ¢ q 7 g
an .
q(": o+ . q(”l.l) ’ q’
sign 7 = — sign and sign—=1,
there holds .
. q( vs.x) ]' . q(': »)
81 = —8 .
e R



107

Hence we get

. q(i) (r+1) . [ q(i)] t»)
si = — gign]—1] . .
m |2 o[ 2
Consequently

@ . [ q(;)] (»+1) 2 - __ q(u, *) q(“m,l)
k 1 |

where all the terms on t.he right-hand side of (2) have the same sign

m
a.ndO§“j',c§i~}-7)«}-1fox‘j=l,2,...,m,.Zl Lr =P+ i+1 for
7::

all k.
Thereby Lemma 1 is proved.

Lemma 2. Let ¢(t) > 0 for t& (a, b) and q' € M, (a. b). Then
o 3¢ .
(_—“1)'“——&—6ll([,,__i‘H (@b for i=1.2 ....,n+1L

Proof. From the suppositions of the lemma it follows that 3% pag

continuous derivatives up to and including the order n -1t +q1 and
(i) Y»)

there holds (—1)-1=_ qq 2 0. By Lemma 1,|Z_| may be expressed

in the form (1), where all terms on the right-hand side have the same
signs and the sign of every terms equals

. Y1.x) Ve,x) (¥1.x) Vo)
s‘gn[fk g .-... q(q.]naksign[q q( ]Q

q q q .
= (—1)p+i-1 {sxgn[ q(’x.:) o q(v..u) ]}2 : (_'«l)p-H‘——l_
q q '
Thus : ;
g ® , :
[T] (—1)ytP-1 20 for psn—i1+41

and the lémma is proved.
Lemma 3. Let q(t) > 0 for te(a, b) and ¢’ € M, (a, b), (n 2 2). Set

Q(t)-q————( ) + = 2

Then Q'(t) € M, _,(a, b) and in the case b = oo there holds Q(co) < g(c0):
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" Proof.
3 ’ ” ’
e Rl

At the same time g’ = 0, (%—’ ( g ) <0 (gq—) 2 0and therefore @'(t) 2 0.

Now we are going to show that [—— (%) ( qq )] eEM, _y(ab). The p-th

derivative of this expression can be written in the form

(- S )

q: k) (i+1) q' (p-9%)
Sign{=—] = (—1)*, so that, sngn( ) = = (—1)?+1, cohence

mgn[ ( ) )]‘ ' (—1)? and t}:erfafore[ (g)’(qq’)]eﬂ,,_l(a,b).

From Lemma 2 we have that -q? €M, ,(a, b). All the members

on the right-hand side of (3) belong to M, ,(a, b) and therefore
Q'(t) e M, _sa, b).

To proVe @(o0) =-g(oo) we consider two cases:
a) Let ¢'(c0) = 0. Since ¢'€ M, (a, 00), it is obvious, that

¢"(00) =0, ..., ¢" Y (oo) =0

and therefore Q(co) = ¢(o0),
b) Let ¢’'(00) = ¢ > 0. Since ¢'€ M, (a, o0), then ¢ < oo, g(c0) = oo
¢"(00) = 0 holds and therefore Q(co) = ¢(00).

In the proofs of Lemmas 1,2 and 3 we have assumed, for simplicity,
that q(")% 0 for any ¢ < n. It is, of course, evident that the Lemmas
remain valid even in case of ¢ = 0 for ¢, < ¢ < n.

favy

Now let us denote M, f ! V_
the sequence of extremants of the integral y(t) of the differential equation
(4) ¥ +atly=0

_ Now let {t,} denote the sequence of extremants of a different integral
y(t) of the same differential equation. Then the following theorem holds.

dt for l > —1, where {t,} signifies
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Theorem. Let g(t) > 0 for t & (0, o) and ¢’ € M, , s0 that (—1)’gU+) > 0
forte (0, ©);j=0,1, ..., n
Then one has

6) (—1PAM, 20 (i=01 ...,0—2 k=12, ...)

and, in particular

6) (1A, 20  (i=01,...,n—2 k=12 ...)
consequently, the sequence of the differences of successive extremants of

any solution of the differential equation (4) 8 in the interval (0, o0),
monotone of order n — 2.

Furthermore, if one has t, > t,, then
(N (1A —5) 20 ((=0,1,...,n—2 k=12 ...)

Proof. y(t) being an arbitrary solution of the differential edua.tion @,

the function ¥ = - satisfies the equation
q

®) Y'+ Q)Y =

g ”
where Q(t) = ¢ _%(q?) L1

of the differential equation (8), there exist such a solution y of the

and conversely; if ¥ is the solution

differential equation (4) that ¥ = 1;—/_—.— holds.
: q

According to Lemma 3 one has Q'(t) € M, _, and @(co) > 0. P. Hartman
has shown ([1]) that, under these assumptions, there exist integrals ¥,, Yyof
equation (8) such that, for W= Y% 4 Y, there holds We M,, _,. Then, by [3]

for N, = T l Y@)|*dt (k= 1,2, ...), where {T',} signifies the sequence
of zeros of the integral Y(t) of equa,tion (8), there applies
(—1¥AN, 20 (=0,1,....,n—2 k=12 ...)
and, if T, > T,, then ‘
(—1A(T, —T,)20 (i=0,1,...,2-2; k=12, ...)
Since ¥ |lg = ¢, we have {T,} = AR where {t;} denotes the sequence
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of extremants of arbitrary integral y of the differential equatlon (4)
lray

S '”V‘

If q(t) is completely monotone in (0, o), then

dt = M, and the theorem is proved.

9) (—1)ig¥(t) > 0 for te(0, ), i=12, ...,

unless q is a constant (see [2]). From the preceding theorem and Theorem
2.1 from [2] the corollary follows.

- Corollary. If q(t) is not a constant and q'(t) is completely monotone in
the interval (0, ), then

(10) (—LyAM, > 0 for all 4, k

and for that reason the sequence of extremants of an arbitrary integral of
equation (4) is completely monotone. The inequalities (7) may then be
written tn a stronger form:

(1) (—1)Ai(t, —t,) > O for all 4, k

Remark. The above results may be extended on the interval {0, o0).
If ¢(0) = 0, ¢’ € M,,, then zero cannot be an extremant of any integral y
of equation (4). Consequently, the expression M, always has a meaning.
In this case, if ¥'(0) = 0, then y"(0) = 0, and %""’(0) % 0 holds and it is
possible to define.
. "

' y
(12) M, = ||
J17i

and to take k = 0 in all the inequalities introduced above.

The mentioned results may be applied to a number of important diffe-
rential equations. ' :
- The general solution of Bessel’s differential equation

4 2
t 1 .
di or A> 3

Y2 — —

(13) v 4+ 11— y=0 (>0

can be written in the form

1 1
(14 v = (5 ™) T {ad0 + .0}
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where J,(t), Y,(t) are the Bessel functions. In this case
2 1
qt) =1 —‘-9:—- , where o? =v“‘~1— , o> 0.
1
For |» | > 5 one has ¢(t) > 0 for t€ («, ),

g™ = (—1)""e?(n + 1) ——, n=1,2,

tn+2 ’

Evidently ¢'(f) € M »(x, )

3(d\* 1¢q" o? o?
W=a—g (7) I R
whence it can immediatly be seen, that Q'(¢) € M o(a, 00).
If y(t) is an arbitrary solution of equation (13), then the sequence
of the differences of successive extremants of this solution is, in the

interval («, ©0), completely monotone. Especially the extremants of
the functions

1 1
2 T, ¢ Y,

form a completely monotone sequence in this interval.
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