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A P A R A M E T E R CHOICE FOR TIKHONOV REGULARIZATION 

FOR SOLVING NONLINEAR INVERSE PROBLEMS LEADING 

T O OPTIMAL CONVERGENCE RATES 

OTMAR SCHERZER,* Linz 

Summary. We give a derivation of an a-posteriori stratégy for choosing the regularization 
parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads 
to optimal convergence rates. This stratégy requires a speciál stability estimate for the 
regularized solutions. A new proof for this stability estimate is given. 

We study nonlinear ill-posed problems of the form 

(1) F(x) = y0, 

where F: D(F) C X —• Y is a nonlinear operátor between Hilbert spaces X and 
Y. As the notion of a "solution" of the equation (1), we choose the concept of an 
x*-minimum-norm-solution xo (x*-M.N.S.), i.e., 

(2) F(x0) = yo 

and 

(3) l k o - * * | | = min {\\z-z'\\: F(x) = yo). 
x£D(F) 

In the following, we always assume the existence of an x*-M.N.S. for exact da ta t/o-
If (1) is ill-posed in the sense of lack of continuity of its solutions with respect to 

the data , regularization techniques are required. Tikhonov regularization has been 
investigated in [2], [5], [7] to solve nonlinear ill-posed problems in a stable manner. 
In Tikhonov regularization, a solution of problém (1) is approximated by a solution 
of the minimization problém 

(4) m i n i i \ \ F ( x ) - y s \ \ 2 + a \ \ x - x * \ \ * } , 
xčD(F) 

* Supported by the Christian-Doppler Society 
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where a > O is small parameter and ys G Y is the available noisy data, for which we 
háve the additional information that 

(5) \\yt - j/o|| ^ 6. 

Convergence and rates of convergence results for this method were developed in [2] 
and [5]. In these papers, the regularization parameter a is chosen in dependence of 
the noise level 6 and smoothness assumptions on XQ. The disadvantage of a~priori 
strategies as discussed in [2] and [5] is that one cannot check in generál whether 
these smoothness assumptions are fulfilled, and this has the consequence that wrong 
smoothness assumptions lead to a bad choice of a and consequently to a bad approx-
imation of the x*-M.N.S. On contrast a-posteriori strategies determine the regular­
ization parameter from quantities that arise during calculations. The most widely 
ušed a-posteriori stratégy is "Morozov's Discrepancy Principle". In this method the 
regularization parameter a(ó) is determined by 

(6) \\F(xí)-y£ = 6\ 

The disadvantage of Morozov's Discrepancy Principle is, as one sees from the linear 
čase [4], tha t the regularized solutions converge (beside in trivial cases) at most 
like 0(Vó). We outline the basic idea of an a-posteriori parameter choice stratégy, 
which leads to (quasi-) optimal convergence rates [6]: By x6

a} we denote regularized 
solutions, i.e. any solution of the minimization problém (4), and by x a , any solution of 
(4) with the perturbed da ta ys replaced by the exact dáte t/o- The total error between 
the regularized solution x6

a and the x*-M.N.S. XQ can be estimated as follows: 

(7) l-\\x6
a-x0\\^\\xa-Xo\\2+92(^6), 

where g(a,ó) is a stability estimate, i.e. a bound for the term \\xó
a — xa\\, which 

depends only on the regularization parameter a, the noise level 6 but not on the 
speciál feature of ys. The idea of the stratégy (proposed in [1], [3] for the čase of a 
linear operátor, applied to nonlinear operators) is to choose a := a(ó) such that the 
right hand side of (7) is minimized with respect to a. This is achieved by putt ing the 
derivative with respect to a equal to 0. Of course, this stratégy is not implementable 
in this form, due to the fact that minimizing the right hand side of (7) would require 
knowledge of the unknown x*-M.N.S. XQ and of the unknown exact data yo. To rnake 
this stratégy implementable, the term coming from the differentiation of \\xa — XQ\\2 

has to be approximated by computable terms in such a way that the asymptotic 
behavior remains unchanged. 

A stratégy which yields an optimal rate of the regularized solutions requires a 
choice g(a,6) of the form yc — ^ as one sees from the linear čase. In the nonlinear 
čase, such a stability estimate seerns to be not possible in generál. 
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Throughout this páper it is assumed that F is weakly (sequentially) closed, contin-
uous and Fréchet-differentiable with convex domain D(F). This implies in particular 
the existence of regularized solutions xa and xó

a. Moreover, we assume that xo is an 
interior point of D ( F ) , i.e., that {x E \\x - x*\\ ^ k\\x0 - x*\\} C D ( F ) , with jb > y/2\ 
this assumption guarantees that for ~- ̂  ||aro — x*\\2 both xd

a and xa are interior 
points. 

The following assumptions are ušed in [6] to guarantee that x6
a —• xa like 0{-4=). 

— There exists a constant A'0 such that for every (x,z,v) E D(F) x D(F) x X 
there is a &(#, z, i;) G X such that 

(8) ( F , ( * ) - F ' ( * ) ) w = F'(z)Jb(x,«,»), 

where 

(9) ||*(*,«,«)lk^/řolHUII*-*lk. 

— Moreover, there exist constants A'i, A'2 such that for every (x,z,y) E D(F) x 
D ( F ) x Y there are / i ( x , z , y ) E 7 , / 2 (x , ar, F'(xYy) E X such that 

(10) (F'(xy - F'(zy)y = F'(zyii(x,z,y) + h(x,ziF'(xyy)y 

where 

(11) ^(í.z.yJHy^íTilIfflIylIx-žllx, 
||/a(of, z, F'(x)*y) \\x ^ K2\\F'(xyy\\x\\x - z\\x. 

Examples illustrating ( 8 ) - ( l l ) can be found in [6]. A further assumption in [6] was 
that 
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(12) — ^ ||xo — x 
* i | 2 

For fixed a > 0 this condition is satisfied for all sufficiently small values of 8. For 
asymptotic results where a = a(8) —> 0 as 8 —» 0, (12) is satisfied if ̂ y —• 0 and 
if 8 is sufficiently small. This is a well-known sufficient condition for convergence of 
xó

a —> XQ [2], [7]. Condition (12) can be replaced by "—• sufficiently small". 
In the following we will show that a stability estimate \\x6

a — xa\\ ^ O{-4%) even 
holds under weaker assumptions than those proposed in [6]: 

T h e o r e m 1 (Stab i l i ty E s t i m a t e ) . Let F' be Lipschitz-continuous in xo, i.e., 
there exists L > 0 such that 

\\F'(x0) - F'(z)\\ ^ L\\x0 - z\\, for all z E D(F). 
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Moreover, let one of the following assumptions (I), (II) hold: 
(I) Let (8), (9) and \\x0 — x*|| sufficiently smáli; 
or 
(II) there exists a w £ Y satisfying XQ — x* = F'(xo)*iu, where 2L||u;|| < 1. 
Then, 

H4-*a|Ko(^=). 

P r o o f . In this proof we will make use of the first order necessary optimality 
conditions for the minimax„, xs

a of \\F(x)- y0\\
2 + a\\x-x*\\2, H-F^) —2/a||2 + a | | ; r -

**||2, i-e., 

F'(xay (F(xa) - 2/0) + a(xa - ť) = 0, 
F ' ( x t ) * ( F ( x * ) - W ) + a ( 4 - i ' ) = 0 . 

Since 
I W 4 ) - Ž/*II2 + «ll*« - **ll3 ^ WH**) - ysf + *\K - **||2, 

(13) \\F(xí)-F{xa)tf + a\\xí-xatf 
< \\F(xi) - ys\\2 + \\F(xs

a) - F(xa)f - \\F(xa) - ys\f 
+ a{\\za-x*\\* + \\xi

a-xa\\*-\\xl
a-x*\\*) 

= 2(F(xa) - yt, F(xa) - F(xs
a)) + 2o(x« - ar«, x* - xa) 

sj 2(F(xa) - 2/o, F(xa) - F(xs
a)) + 2(x6

a - xa, F'(xay (F(xa) - y0)) 
+ 26\\F(xa) - F(x6

a)\\ 
= - 2(F(x«) - j/o, F(x6

Q) - F(x„) - F'(xa)(x°a - *„)) 
+ 2* | |F (x«) -F(x*) | | . 

In the first čase we obtain from (8) and (9): 

\(F(xa) - 2/0, F(xs
a) - F(xa) - F'(xa)(xs

a - xa))\ 
1 

= | (F(xa) -y0,j (F'(xa + t(x6
a - xa)) - F\xa)) dt(x6

a - xa)) | 
o 

i 

= I {F(xa) - t/o, F'(xa) / k(xa + t(x6
a - xa), xa, x6

a - xa) dtj 
o 

^ a ^ | | z a - z ' | | | | 4 - * « l | 2 . 
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Together with (13) follows 

| | F ( * Í ) - F ( * 0 ) | | 2 + a | | x i - * a | | 2 *$ K0a\\xa-x'\\ \\xí-xa\f + 26\\F(xs
a)-F(xa)\\. 

Therefore, 

\\F{xi) - F(xa)f + a ( l - K0\\xa - x*\\)\\xs
a - x a | |2 < 26\\F(xs

a) - F(xa)\\. 

If q := K0\\XQ - ar*|| < 1, then K0\\xa - x*\\ ^ g. Thus 

| | F ( x * ) - F ( x a ) | K 2 í , 

and consequently 

||xt-xa||2< ^ ^ I I ^ . ^ H -• 

In the second čase it follows from (13) that 

| |F (**) -F(* 0 )H 2 + a | |x- t -*« | | 2 ^ L\\F(xa)-y0\\ | | * £ - x J 2 + 2 á | | F ( x i ) - F ( x a ) | | . 

Following the proof of Theorem 2.4 in [2] one finds 

\\F{xa) - y 0 | K 2 |M|a. 

Thus 

\\F(x6
a) - F(xa)f + (1 - 2I |h | | ) | |x* - x a | |2 ^ 26\\F(xi) - F(x a) | | . 

Therefore, 
\\F(xs

a) - F(xa)\\ < 26, 

and thus 

l l * á - * « l l 2 š l-2L\\w\\ "o7' 

D 
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DERIVATION OF AN IMPLEMENTABLE PARAMETER CHOICE STRATÉGY 

Our parameter choice stratégy is based on minimizing the right hand side of (7), 
where we use g2(a}6) = c—-. Since we do not know the x*-M.N.S. XQ and the 
exact data yo, we háve to approximate the right hand side of this inequality in an 
appropriate way by computable terms. For the moment, we assume that we háve 
unperturbed data yo- The effect of perturbed data is taken into account afterwards. 

It follows from the first order necessary optirnality condition for a minimum of (4) 
(if we replace the perturbed data ys by the unperturbed data yo) that 

(14) F\xay (F{xa) - j/o) + a(xa - x ' ) = 0. 

Formal differentiation of the equation (14) with respect to a yields 

(15) F\xa)*F'(xa)^ + (F'(xay)'(F(xa) - y0)^- + a ^ = -(xa - **), 

or equivalently, 

(16) ^ = - ( a / + F'(xayF'(xa) -f (F'(xay)'{F{xa) - yo))~\xa - ar*), 

if the operátor (al + F /(xa)*F /(-ca) -f (Ff(xa)*) (F(xa) — yo)) is positive definite. 
Taking the weak form of (15), using the speciál test function xa — x0 and (14) we 
obtain 

/ óx \ 
(17) ( ^ ( ^ a ) ~ 2/0, F'(xa)(xa - XQ)) - OL ( - j - ^ , xoc ~ *o] 

+ a ( F ' ( x a ) ^ , F / ( x a ) ( x a - x 0 ) ) 

+ ot \F(xa) - 2/o, F"(xa) y-^-j xc* - XQJJ . 

The first order necessary optirnality condition for the minimum of the right hand 
side of (7), where we use g2(a, S) = c~- is 

(18) c ó 2 = ( ^ « 2 , x a - x 0 ) . 

Inserting equation (18) into (17) yields 

(19) (F(xa) - y0, F'{xa)(xa - x0)) = cS2 

+ a^F'(xa)^-,F'(xa)(xa-xo)) 

+ a(^F(xa) - y0, F"(xa){^-r^,xa - xojj. 
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If we approximate F'(xa){
x<* ~ *o) by F{xa) - F(x0) and neglect the inner product 

containing the second derivative of F, we obtain from (19) 

(20) \\F(xa) - yo||2 -a(F(xa)- y0,
 F \ ^ ) ~ ) = cb\ 

íf we replace yo by y$ in (14), (16) and (20) (and consequently xa by x6
Q) then we 

arrive at an irnplementable stratégy: All terms occurring then in the equation (20) 
are eomputable. 

For reasons of computational complexity, we propose one additional approximation 
and drop the second derivative term also in the formula (16) for ^ ^ : 

(21) ~ - ~ - ( « / + F'(xay F'(xa))-\xa - x*). 

Using this further approximation we obtain instead of (20) 

(22) \\F(xa)-yo\\2 + a(F(xa)-y0, F'(xa)(aI + F'(xayF'(xa))-\xa-x*)) = ch\ 

Using (14), we can write (22) also as 

(23) \\F{xa) - j/ojl2 - (F(xa) - 2/0, (aI + ^ ( x . , ) ^ ^ . , ) * ) " 1 

xF'{xa)F'(xay{F(xa-y0))-c82 

or equivalently 

(24) a(F(xa) - y0) ( a / + F'(xa)F'(zayyl(F{xa) - Uo)) = có2. 

Replacing yo by ys and consequently xa by x6
a we obtain the following equation for 

a: 

(25) <*(F(xi)-y0,(aI+F'(x6
a)F'(xs

ay)-1(F(x6
a)-y0))=c62. 

This is nowour proposed parameter choice stratégy. 
In [6], for the proof that the stratégy (25) yields an optimal convergence rate, the 

problém of solving F(x) = y0 is compared with the problém of solving the linearized 
problém F'(xo)x = F'(xo)xo. It seems to be reasonable that the regularized solutions 
of the originál nonlinear problém and of its linearization háve some relation with each 
other, if the operátor F is not "too nonlinear". Assumptions on the operátor F which 
guarantee such a relation are ušed in [6] to prove the following Theorem: 

Theorem 2. Let c (as in (25)j be chosen appropricitely (see [6]) and \\xo — x*\\ 
sufficiently small. If R(F'(XO)) is not dosed and F/(XO)(XQ — x*) ^ 0, then the 
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parameter choice stratégy presented in (25) is of quasi-optimal order (see [1] for the 
defínition of quasi-optimal order). If, in addition, there exists a decreasing sequence 
(Aib) in a(F,(x0)Ft(x0y) with 

(26) lim Afc = O and sup{XkXZL : k G N} < oo, 

then this parameter choice stratégy is of optimal order (compare [1] for the defínition 
of optimal order). 

E x a m p l e 3. Here we estimate a in the differential equation 

(27) -(aux)x = -ex, 

i/(0) = 1, t i( l) = c. 

This problém of estimating a can be formulated via an operátor equation 

F(a0) = ti0, 

where F is the "parameter to solution map" of the differential equation (27), i.e. 

F: D(F) := {a G / /*]0 ,1[ : a(x) ̂  y > 0}-^ L2. 
a —» w(a) 

It can be shown tha t F is weakly closed, continuous, Fréchet-difFerentiable and 
tha t the Fréchet-derivative is Lipschitz-continuous in a neighbourhood of ao- The 
Tikhonov functional for this problém reads as follows 

\\F(a)-u6\\h + a\\a-a*fH1, 

where we denote be ys given perturbed data of UQ. 

If tío = ex i then exact parameter is unique and is given by ao = 1 if a* is chosen 
as below. Instead of IÍO, we ušed in our calculations usy where us was a high-
frequency) perturbat ion of u$ with ||wo —ua||x,2 ^ 6. We ušed the speciál perturbation 
us = u0 + 6\/2(lQny). 

Let a* = 1 + 0.05(ai/5 + by4 + cy3 + dy2 + ey + / ) , where a = 1.428065.. . , 
b = -4 .381893049 . . . , c = 1.043027472 . . . , d = 3.629082416 . . . , e = 0, / = 1. The 
coefficients a, 6, c, cř, e, / were calculated using MAPLE and are chosen such tha t 
ao — a* G i^ (F / (ao)*F / (ao) ) . In this čase the best possible convergence rate for 
Tikhonov regularization to be expected is O (S 3) [5]. 

The regularized solutions a6
a were obtained by minimizing the Tikhonov functional 

on the finite dimensional subspace of piecewise linear splines on a uniform grid with 
subinterval length Ar with a damped Newton method. 
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The difFerential equation (27) was solved approximately with a Galerkin Method 
on the finite dimensional subspace of piecewise linear splines on a uniform grid with 
subinterval length jg. 

In the Table below one can see the results obtained by using the parameter choice 
stratégy (25) with c = 1. The realization of the stratégy (25) involves the somtion 
of a nonlinear equation. To rninimize the numerical error for this step, a bisection 
technique on a ílne grid was ušed. 

In [5] it has been proved that if a0 — a* G R(F'(ao)* Ff(a0)) and if | |a0 — a*\\Hi is 
sufficiently small, then the regularized solutions converge to ao with a rate 0 ( ó § ) . 
This convergence rate can be seen in the numerical example. 

For more numerical computations and a comparison of Morozov's Discrepancy 
Principle with the stratégy (25) see [6]. 

T a b l e 

s 
0 .46e -2 
0 . 4 6 e - 3 
0 .46e -4 
0 .46e -5 
0.46e - 6 

a 
0.12e- 1 
0.26e - 2 
0 .33e -3 
0 .73e -4 
0 .12e -4 

e := ||a* -ao||jtfi 
0.27e - 1 
0 .81e-2 
0 .17e-2 
0.45e - 3 
0 .93e-4 

6/a* 
0.35e + l 
0 .35e+l 
0.77e + l 
0.74e + l 
0.11e + 2 

e/Si 
0.98e + 0 
0.14c + 1 
0 .13e+l 
0.16e + 1 
0 .16e+l 
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