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VARIATIONAL PROBLEMS IN DOMAINS WITH CUSP POINTS

ALEXANDER ZENi3EK, Brno

Summary. The finite element analysis of linear elliptic problems in two-dimensional
domains with cusp points (turning points) is presented. This analysis needs on one side
a generalization of results concerning the existence and uniqueness of the solution of a
continuous elliptic variational problem in a domain the boundary of which is Lipschitz
contionuous and on the other side a presentation of a new finite element interpolation
theorem and other new devices.

Keywords: finite element method, nonlipschitz boundary, cusp points (turning points),
maximum angle condition, minimum angle condition

AMS classification: 65N30

1. CONTINUOUS PROBLEM

In this paper we shall study elliptic variational problems in two-dimensional
bounded domains with cusp points. A typical domain Q considered is indicated
in Fig. 1. Points B, C, D are cusp points, i.e. the points of the boundary 99 in
which two smooth parts of J2 have the same tangent. For simplicity we restrict
ourselves to the case where these tangents are othogonal to the baseline OF which
lies on the z-axis. The point O is the origin of the Cartesian coordinate system (z, y)
whose axes £ and y are oriented in the directions of OF and OA, respectively.

We assume that Q is a bounded domain (not necessarily simply connected) and
its boundary piecewise smooth; more precisely, 9 is piecewise of class C*. (The
domain 2 in Fig.1 can be considered as an outline of an exotic building. In this
case we prescribe the homogeneous Dirichlet boundary condition on the baseline
OF. However, for a greater simplicity we shall not consider the two-dimensional
elasticity in Problem 1.1 and the homogeneous Dirichlet boundary condition will not
be restricted to the baseline OF.)

We distinquish two kinds of cusp points: internal ones and external ones. The
point C is an internal cusp point, the points B, D are external cusp points.

The variational problem in which we are interested reads as follows (some no-
tions are introduced in Problem 1.1 intuitively and will be explained and precised in
subsections 1.3-1.7). ‘
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Figure 1.

1.1. Problem. Let Q be a bounded two-dimensional domain of the type indicated
in Fig. 1. Let I'; be a part of 9Q with mes;I'; > 0. Let

(1.1) V={ve H(Q): trv=0 ae.onT}.
Find u € V such that
(1.2) a(u,v) = L%v) + LT (v) YveV

where

a(u,v) = / (haugg + hé}‘_?_ﬁ) dzdy
a

9z Oz dy dy
(1.3) (ki = ki(z,y) > po > 0,k € HV®(Q), i = 1,2),
(1.4) LYv) = /nvfdzdy (f € La(Q)),
(1.5) LP(v) = /r (trv)qds (g € La(T3), Ty = 02 — Ty).

1.2. Remark. The symbol H*P(Q) denotes the Sobolev space in the sense of
[3, Section 5.4]. As usual, we denote H*(Q) := H*2(Q).

1.3. Line integral. We divide 02 into a finite number of arcs sy, ..., sy, with
nonoverlapping interiors (i.e., two arbitrary arcs can have common only the end
points). Each arc is either a segment parallel to one of the coordinate axes or a part
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of a smooth curve. In the first case it has one of the expressions

(1.6) z=a, Y€y vl
(1.7 y=b, =z€lzj,zjul;

in the second case it has both the expressions

(1.8) y=fi(2), =€z ze41]
and

(1.9) £=0r(y), YE v Yes1]
We have

(1.10) z = gi(fe(z)), = € [zh,zr41],
(1.11) v=fi(9e(v)), v €y, vena.

Moreover, we assume that the partition sy,...,s,, of dQ is constructed in such a

way that in the case of (1.8), (1.9) at least one of the following inequalities holds
(this is always possible):

(1.12) Ifi(@)| < K, =€ [k, ze41),
| <

(1.13) ot < K, v € [y, yr41]-

Let, for example, inequality (1.13) hold (this is true in a neighbourhood of the cusp-
point B in Fig.1). We say that the function r: sy — R! belongs to L;(s¢) if the
function ¥: (yk, Yk+1) — R! belongs to Ly(yk,yr+1) where

Y(y) = r(9x(y), v)-

In this case we define

(1.14) [ r@nds= | " (0 @) 1+ (@) ds

Yk

provided that yx < yr4+1. Definition (1.14) is not contradictory because

|/ s < VIFRE [ ity < o
Sk Y
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and because we have, according to the theorem on the change of variables in the

Lebesgue integral:
a) in the case zx = gr(yr) < k41 = gre(Ye+1):

/”*n r(9x(y), 9) 1+(y2(y))2dy:/“+l r(z, fi(@))y/1 + (fi(2))* dz;

Yk EN
b) in the case zx = gr(yx) > k41 = ge(Yr+1):

/yk+l 106w, /1 + (L) dy:/n r(z, fi(2))y/1+ (fi(z))? dz.
, Th41

k
1t should be noted that the boundary 92 from Fig. 1 is not continuous in the sense
of [5] in any neighbourhood of the cusp point D. This is the reason that we prove

the following theorem.

Figure 2.

1.4. Theorem. Let 2 be a bounded two-dimensional domain of the type indi-
cated in Fig. 1. Then the set &5(R?) is dense in H'(Q2).

Proof. A) Let us consider the domain Q appearing in Fig.1. Let w be the
interior of the curved triangle whose one side is the segment DE and the remaining
two sides lie on the straight line y = yg and the curve CD. Let A be the domain

defined by
‘ A=QUSUG

where S is the interior of the segment DE and
G=A{[¢n):E=22p -z, n=y, [z, €w}.
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The domain A has a continuous boundary dA in the sense of [5]; thus the set &4(R?)
is dense in H!(A). In part B we shall prove the existence of an extension operator
E: HY(Q) — H'(A). These results imply the assertion of Theorem 1.3.

B) First we prove that the values of u € H!(Q) are almost everywhere uniquely
determined on DE. Let us choose ¢ > 0 arbitrarily small. Let D, = [zp,yp — €]
and let

we ={[z,9): [¢,4] €w, y<yp —¢}.

Then the domain w, has a Lipschitz-continuous boundary dw, and there exists the
Calderon extension operator E%: H'(w.) — H!(R?). This result and the fact that
every Sobolev space H! is the Beppo Levi space (see [5]) imply that the value of
E¢(u), where u € H'(w.), are uniquely determined at almost all points lying on
the segment D, E (because for every u € H'(w,) the extension E%(u) is absolutely
continuous almost on all lines which are orthogonal to D, E and intersect D, E). We
can set u = E&(u) on D, E. As e > 0 is arbitrary we see that u is almost everywhere
uniquely determined on DE.

Now we set

(E'U)(?.’ED —%y) = v(:c,y), [zxy] €w,
(Bv)(z,y) = v(z,y), [z,9)€Q
These relations and the fact that u is on DE almost everywhere uniquely determined

imply that that Eu has on A the structure of a function from the Beppo Levi space.
Hence Eu € H!(A). a

Theorem 1.4 is used in the proof of the following trace theorem.

1.5. Theorem. Let s be a curved arc with the cusp-point B or D as one of its
end points. Then there exists a uniquely determined bounded linear mapping tr:
HY(Q) — La(ex;sx) where La(ex; sk) denotes the weighted Lo space defined on sy
with the weight function

(115) Qk(zvy):dis"([m’y])tQ)

where tq is the straight line tangent to s; at the cusp point Q@ (Q = B or D). Thus
the trace inequality has the form

(1.16) / oe(z, [(tra)(x, V)] ds < Cllull2 o Vu € H'(Q).

Sk

The mapping tr: H'(Q) — La(ek;si) is such that (tru)(z,y) = u(:c y) for all
u € 65(R?) and [z,y] € 5.
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Proof. The proof is a simple generalization of [5, p. 15]. We shall consider the
case T < Tk41, Yk < Yk+1 With @ = [2Q,¥Q] = [Zr41, Yk41]. Let v € &5(R?) be an
arbitrary function. For every y € [yk, yr+1] we have

v =- [

9x(y)

3}
(6 1) d€ + v(,)

where gi(y) < 7 < zg. Applying the Schwarz inequality we obtain

Xy 2
(o(or0), 0 < 28 [ea - 0] [ [526,0)] de + ot |
a(y) L0=
Let us integrate this inequality with respect to T in the interval [gi(y), zg]:

TQ v 2
(sq = ax(lo(ae) 0 < g -ae)F [ [Tiern)] o

gx(y)

zQ
+ 2/ [v(T, y))?dr.
9x(y)

The integration with respect to y in the interval [yg, yr4+1] gives
(1.17)

[ 0 - seo)lotan o), Py < 2max ([ max [zq - ()]’ 1) 1ol .

Yk Vi, Yr41)

Let u € H!(Q) be an arbitrary function. According to Theorem 1.4, we can
find a sequence {v,} C &5(R?) such that |jv, — ulli, 0 — 0. By (1.17) the se-
quence {v,(gx(y),y)} is a Cauchy sequence in La(ok; (Yk,¥r+1)).- As the space
La(ex; (Yk, Ye41)) is complete (see, e.g., [3, p. 37]) the sequence {vn(gx(y),y)} con-
verges in this space to a function which will be denoted (tru)(gx(v),y). Hence
relations (1.17) and (1.13) imply
(1.18)

Yk41
| - aler on), 001+ 0P dy < Cllulit . Vue (@),
k
Transforming the integral on the left-hand side of (1.18) by means of (1.8) we obtain

[ 0 = s ltr w(on(0), 1+ e ay
Yk

a9 = [ ee - alre AT+ @R G

T
As
dist([z,9),1Q) = 2@ —gr(y) =z —z [z, Y] € sk
inequality (1.16) follows from (1.18), (1.19) and the definition of the line integral.
The linearity of the mapping tr : H!(Q) — La(gk, 5k) is obvious. m]
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1.6. Corollary. Let us choose the point E in such a way that
dist(D, E) < lyi — yi41l

where s; is the curved arc which has the cusp point D as one of its end points. Then

1200 [ [eo - sl w(en Wy < CllulE g Vu € H'@).

Yo

1.7. Remark. Combining the preceding results with the standard trace theorem
we can write

(1.21) [ e nltr e Pds < Cllulta Vue H'(@)

where I' is an arbitrary measurable part of 8Q with mes,I' > 0 and o(z,y) =1
outside certain neighbourhoods of external cusp points.

1.8. Friedrichs’ inequality. Let Q2 be a domain of the type indicated in Fig. 1.
Let T be a part of 02 such that mes, I' > 0. Then we have

(1.22) ||u||'fn <C (/F o (tru)’ds + Iulfn) Yu e H'(Q).

Proof. The proof is a simple modification of the proof of [5, Theorem 1.1.8].
We set !|u|| = ||u||1 o and

1

Wl = ([ - Gruyds + fula)

It is easy to se that 2||u|| is a norm in H!(2). By the trace theorem we can write
(1.23) 2llull < C Cllul).

Let us denote By = H!(Q) and let B, is a linear space with the same elements as
Bj and the norm 2|| - ||. It is evident that the identical operator Ij »: By — Bj is
additive. By (1.23) it is also bounded. We can show similarly as in the proof of [5,
Theorem 1.1.8] that the space Bj is complete. Then we use the Banach theorem,
according to which the identical operator I5;: B — By, the inverse operator to I; 2,
is additive and continuous; hence it is bounded:

2llull < CClul).
This is inequality (1.22). a
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1.9. Existence and uniqueness theorem. Let the assumptions of Problem
1.1 be satisfied and let the function ¢ € La(I'2) be on each curved arc s, which has
an external cusp point as its end point, of the form

(1.24) 9(z,y) = Ver(z,y) p(z,y), pE€ La(sk)

and on the segment DE of the form

(1.25) a(z,y) = Vzp — gi(y) p(2,y), p€ L2(DE).

Then Problem 1.1 has a unique solution.

Proof. We have, according to (1.3), a(v,v) > polv|} g. Hence, by Friedrichs’
inequality,

(1.26) loll} o € Ca(v,v) VveV.
By Schwarz’s inequality and (1.3), (1.4),

(1.27) la(v, )| < Mol allwlie Yo,we H'(Q),
(1.28) I @) < flloallllie Yo e H'(Q).

Using trace inequality in the form mentioned in Remark 1.7 and Schwarz’s inequality
we obtain from assumptions (1.24), (1.25) and expression (1.5)

L@ € Y el [ s (tro)2ds
k=1 Sk

(1.29) <C (Z upuo,,k) lolla Vo€ H(Q).

k=1

We see from (1.3)-(1.5) and (1.26)-(1.29) that the assumptions of Lax-Milgram
lemma are satisfied. a
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2. DISCRETIZATION BY THE FINITE ELEMENT METHOD.
CONVERGENCE THEOREMS

To simplify our considerations in this section, we restrict ourselves to the case
(2.1) ki(z,y)=1 (i=1,2), f(z,y)=1, [z,y]€.

Further, in order to be able to apply the finite element technique we shall assume
that

(2:2) 9(z,y) =0 V[z,y)€5(Q)NT2 (@ =B,D)

where S5(Q) (6 > 0) is the square with the sides parallel to the axes z,y, with the
center of gravity at the external cusp-point Q and with mes; S5(Q) = 62. This
assumption is in some elasticity problems quite natural (see Fig.3). In addition we
assume (in accordance with assumptions used in the finite element theory) that the
function q is piecewise of class C2.

Figure 3.
Let us denote
(2.3) Q¢ :=QnS5(Q) (Q=B,D),
(2.4) Qs := Q — (S5(B) U Ss(D)).

We have @ = Q; U 668 U ﬁ?. Every triangulation ; of Q is constructed in such
a way that it is a union of triangulations of Qs, ﬁ,,B and ﬁf. Triangulations of
(_2? (@ = B, D) obey naturally the maximum angle condition (see Fig.4 a,b,c)
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Figure 4.
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minE |
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Figure 5.

and triangulations of Qs can obey (and in this paper will obey) the minimum angle
condition along the curved parts of the boundary 99 (see Fig.5).

2.1. Notation. We shall denote by 5, (h € (0, ho)) polygonal domains approx-
imating the domain € such that Qj is a union of all T € J; (for more detail see
Assumption 2.2). By 7, w, we denote the sets

Th =Qh-—§, Wh =Q—Qh.
We further denote

Ths =ThNQsp, The=mN 92,.,

whs =wpNQs, wpQ=wyN Q?
el oL S . L= —=Q .
where Qs and €25, are the parts of Qs approximating Qs and Q; , respectively.

2.2. Assumption. Let g, = {Py,..., P,} be the set of all vertices in Z,. We
assume:

a) on C Q, 0, N0, C 89,
b) Fl n (69 - Fl) C op,
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¢) the points of 3, where the conditions of C3-smoothness of Q and C?-
smoothness of ¢ are not satisfied, are elements of o},.

2.3. Assumption. Triangulations of Q; obey the minimum angle condition along
the curved parts of 9S2s.

2.4. Assumption. We consider only such domains Q for which

mesy(T — T'¢) < K mes, T

2.5 )
(2:5) VT € ZaNS5(Q) with mesy(TNT) > 0; h € (0, ho)

where K depends only on Q (see Remark 2.5). The ideal triangle T corresponding
to a boundary triangle T is the part of Q which is approximated by T'.

2.5. Remark. The set of domains satisfying (2.5) is not empty. For example,
condition (2.5) is satisfied if 92 is described in Ss5(B) by the relations

zc—zp=x(yp-v)", velyp—4buys] (n>2)

and in S5(D) by the relations

z—zp=—(yp—-y)", vE€[yp—&yp] (m>2)
z=1zp, y€l[yp -6 ypl

Now we generalize the discrete Friedrichs inequality introduced in [8, Section 29].
2.6. Notation. We denote
(2.6) Xn = {w € C(Q): w is a linear function on T for all T € Z}.
Let w € Xx. The function W: 0, U — R! such that @ = w on Qj and
wlTid-T = plTid_T if mesy(T™ - T) >0,

where p(z, y) is the polynomial of first degree satisfying p|T = wlT, is called the natu-
ral extension of the function w. (7'® denotes the ideal triangle which is approximated
by T.)

2.7. Assumption. For a greater simplicity of exposition, which does not concern
the cusp points, we assume that I’y is the segment OF. In this case the finite element
approximation of the space V has the form

(2.7) Vi = {w € Xi: w =0 on the baseline OF}.
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Let us note that Assumption 2.7 enables us both to avoid the use of functions
@ € V associated with w € V4 (see [7, Sections 37-50]) and to satisfy assumptions
of Theorem 2.14.

2.8. Theorem. (Generalized discrete Friedrichs’ inequalities). We have

(28) ”'U”],ﬂ;. < COI'U‘I,Q;. YveV, ,Yhe (0, hg).

Proof. A) We have

1 P o 1 Ao [ P T

o, — Pl 14+ P, RITE - BE.L, RIS

By Theorem 1.8,
I} l7lTa < C VieV.

Considering the relations

0l 1y = 107, s + [0, o + [0l (i=0,1),

i, i,Th,B i,7A,D

3l wp = 0w, (i=0,1)

and inspecting the proof of [8, (29.1)] we see that it is sufficient to prove

(29) Ivlg,ﬂ.,q Iﬁll_,?l S C’
(2.10) oIl ., o 1Tl < C.

In part B we shall prove
(2.11) |vlf‘T_T;d < Klvlf,T“ VT with mesy(TN1yq) > 0.

Summing (2.11) over all T appearing in (2.11) we easily obtain (2.9).
In part C we shall prove that

(2.12) ol 7_7ia < ClIII} gia VYT with mesy(T N 74,Q) > 0.
Summing (2.12) over all T' appearing in (2.12) and using also (2.9) we easily obtain
(2.10).

B) As I(VvIT)| = const. for v € X} we have, according to Assumption 2.4,

012 7 _gia = [(V0] )1 mesy(T — T') < K|(Vol,)|? mes; T < Kol pia.
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C) Let the boundary triangle T € Z, N S5(Q) have the vertices P;(g(b),b),
Ps(g(b), a), Ps(g(a),a), where yg — 6 < a < b < yq (we write for simplicity g(y)
instead of gx(y)). As T € J; we have
(2.13) b—a<h, g(a)—g(b)<h.

Let v(z,y) be the linear polynomial satisfying

v(P,-) =2 (i = ],2,3).

Then
_ 23 — 29 29— 23
(214) v(z,y) - A(zliz21 23) + g(a) — g(b) z+ a—b Yy
where
gd) b 17 1g) b =
(2.15) A(21,22,23) = g(b) a 1 g(b) a 2z21.
g(a) a 1 g(a) a =23

We shall prove (2.12).
Let 2p = max(|z1], |22|, |23])- If zar = 0 then (2.12) is satisfied. Let now zps # 0.
First we consider the case when the condition

(2.16) >0 (1=1,2,3) or 2;<0 (i=1,2,3)
is not satisfied. We have
(2.17) oll3 7—7ia < 234 mesy(T — T'9).
If z2pr = |z1| then either zp < |21 — 22| or
zm < |21 — 22| + |22 < |21 — 22| + |22 — 23]

Using (2.13) with kA < 1 we see that in both cases we have

, An-—2)  Am-z): _ () (ov)’
(218) =M < =Gy +<g(a)—y(b))="2(ay> ”(az) '

If zpr = |z2| or zp = |z3| then we again obtain (2.18).
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Combining (2.5), (2.17) and (2.18) we find that
oll3 7—pia < 2K 0]} gia
which implies (2.12).
It remains to analyze the case (2.16). If 2; = 25 = 23 then (2.12) is evident. In
the opposite case the mean value theorem gives
(2.19) l0ll3 zia = 23 mesy T

where min(zy, 22, 23) < 29 < max(z1, 22, 23). It follows from (2.15) that

A(z1, 22, 23) — 20 = A(z1 — 20, 22 — 20, 23 — Z0).

Hence
v(z,y) = z0+v(z,y) — 20 = 20 + {A(z1 — 20,22 — 20,23 — 20)
(23 — 20) = (22— 20) | (22— 20) — (21 — 20)
(2.20) R R o y}.

Using the preceding results and relations (2.19), (2.20) we find that

10113 7_pia < 223 mesy(T = T') + 2||v = 20|} p_7ia < 2K25 mes, T+
+2K |v — 2013 pia = 2K ||v||3 ia + 2K |v]} ia = 2K||v||f,T;d

which completes the proof of relation (2.12). O

Now we formulate the discrete problem which approximates Problem 1.1 in case
of (2.1)-(2.7) and prove a corresponding abstract error estimate.

2.9. Discrete problem. Find u, € V3, where V), is defined by (2.7), such that
(2.21) an(up,v) = L)+ LE(v) YweVy
with
~ Owdv  Ow v 1
(2.22) ap(w,v) = /n;. (—6—;51—'-*- 5;@) dzdy Vw,ve H' (),
(2.23) L) = / vdedy Vv e H'(Qn)
Qn
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and with L§(v) as an approximation of the linear form
(2.24) Z{(v) = / gnvds Yv e HY(Q)
a2

by means of a quadrature formula. Here sy is the part of Q) approximating I’y
and gp is a function defined on T'ss and approximating q. For our purposes it is
sufficient to know that

(2.25) qn(P) = q(P;)) VP, €ThaNoy

where o, is the set of all nodal points of Z,. (As to the definition of g, see [2].)
Relations (2.25) enable us to use the trapezoidal formula.

2.10. Remark. We shall prove by an example that, in general, we cannot find
any neighbourhood U(Q) of an external cusp point Q such that there exist a linear
bounded operator

Ey: H*(QNnU(Q)) — H*(U(Q))
with the property Exu = uon QNU(Q) for all u € H¥(Q). This is the reason that
we restrict ourselves to the spaces H!(Q2 N 24) in the following theorem.

Let us consider the domain Q bounded by the curves = 29, y = z* and y = —z*
where a > 2+ ¢ (0 < € < 1). The function

u(z‘ y) - x—(l+£)/2

belongs to H() because

g-.E (1 + 5)2 xa-—z—s
- 4 a-2-¢)"°

2 _ T
lll? o = =

Let us assume that there exist any domain Q! € %! and any function @ € H!()
such that @ C © and % = u on Q. Then u € L,(Q) for arbitrary p € [1,00) (because
H‘(ﬁ) is compactly imbedded in Lp(ﬁ) in the two-dimensional case). However, it is
easy to see that u ¢ L,(Q) for p > 2(a + 1)/(1 + €) which is a contradiction.

2.11. Theorem. Let u € V and up € V}, be the solutions of Problems 1.1 and
2.4, respectively. Then

. v w
lu = ualli, 000, < C{ inf (||u —v||l1.ana, + sup [v]1,ml ll,r,.)
G weva [wll1,anq,

+ sup <l"|1,w..|ﬁ|1,w.. 4 Vmes: 7 llwllo,r, 4 Vmesy wn 1®]0,wn

wevi \ llwlliann, — [lwllignq, llwll,nnq.
|LE(w) = L'(@@)| | |LE(w) = Li(w)|
(2.26)  + + .
llwlls a0, el ann.
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Proof. The existence and uniqueness of u € V}, is evident. We have
(2.27) llu = unlli 000, < llu—vll,000, +llus — vllLan0, Vv € Vi.

We estimate the second term on the right-hand side of (2.27). By (2.22), @p(w, w) =
|w|} q,. Using this relation and Theorem 2.8 we find

Cy Hlun = I} gaq, < Co Hlun — vl g, < lun—vlig,
(2.28) =an(up —v,up = v) Vv € V.

Further, using (2.21) and the forms

(2.29) 2@ = / vdzdy Vv € Xa
G
~ dwdr Jwav
(230) ag(w, U) = L (_6—1?5; + —a—y—a—y) d:!}dy, v, w € Xh,

where G C U, is an arbitrary measurable set, we can write
ap(up — v,up —v) = Z‘;}(uh —v) 4+ LE (up — v) = @ (v, up — v)
= L@y — ) — L, (@ — 7) + LT (un — v)
+ L} (up = v) + LY (@h — 7) = LT (@ — 7)
+ ZE(uh —-v)— Z{(uh )]
— [a(7,Tn — D) — @, (T, Tn — T) + @r, (v, up — v)]
= a(u — 7, — 9) — L2, (@ - 7) + LT (us — v)
+{Li(un — v) - L' (3 - 7))
+ {Lk(un — v) - L} (@ - 9)}
(2.31) + @y, (U, 8 — 0) — @y, (v, up — v).
Using the relation

a(u — 7,W) = agnaq, (v — v, w) + dy, (v — 7,0)

and the estimates

ILE(@)| < Vmes, G||Tllo,c (G =, wh),

[ac(v,@)| < 2|7h,cl®Wh,e (G =7h,wn, 2ND)

we easily obtain (2.26) from (2.27), (2.28) and (2.31). O
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The estimates of the terms on the right-hand side of (2.26) are introduced in the
following five lemmas. The proof of the first lemma is based on a very simple (but
new) finite element interpolation theorem and on a density theorem in V.

2.12. Interpolation theorem. Let T be a closed concave triangle with two
straight sides which are parallel to the axes z, y and have the vertex PT as a common
point. Let w € Cz(_T'd) and let wy be the linear polynomial satisfying

(2.32) wr(PT) =w(PT) (i=1,2,3)
where P, PT, P] are the vertices of T Then
(233)  [(D°(w = wn))(=, )| < Clo) Mao(w, TR, ol < 1, [z 0] € T
where hy = max dist(PT, Pl'), C(0) =4, C(1) = 3 and
(2.34) Mi(w,G)= max _|(D*w)(z,y)|
lal=i [z y]eG
with D®w the multiindex notation for derivatives.

Proof. The proof is a simple application of the Rothe and Taylor theorems.

Let z;,y; be the coordinates of the vertex PiT. Then either y; = y2, z; = z3 or
Y1 = y3, 1 = z2. Let, for example, the first possibility hold with £, < z,. We have
w(zi,y1) = wr(zi,y1) (: = 1,2). Hence, by the Rolle Theorem, there exists & such
that (Qw/0z)(€§,y1) = dwy/dz, 1 < £ < zo. Let us choose arbitrary T € [z1, z3),
T # € and let K(Z) be such a constant that

(2.35) a 2z - %—— = K(@)(x - §).

To find the expression for K(Z) let us set
ow OJwy .
9(2) = o—(z,0) = ==~ K(@)(z - §).

The function g(z) satisfies g(Z) = g(§) = 0. By the Rolle theorem ¢'(77) = 0 where 3
is a point on the z-axis lying between T and £. Hence

_ 0w
K(z) = 22 1)
As T is chosen in [1, Z2] arbitrarily we obtain from (2.35) and (2.34)

6w,

(2.36) (z v1)— < My(w, T2y — 24|, 2 € [z1,72)-
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Similarly we find
(2.37) 9% (a1, ) = 22| < My, T — wol, € (w1, w0l-
ay ay ) L

Using relation (2.32) with i = 1, relation (2.36) with ¢ = z, relation (2.37) with
y = y1 and the fact that D*w; = 2 for |a| = 0 we derive (2.33) by means of Taylor’s
theorem written for functions po = D*(w — wy) (|a] < 1) at the point (z1,y1).

a

2.13. Remark. a) If yp # %n, where yr is the angle made by the segments
PT PT and PP P], then we can derive estimate (2.33) with

8
CO =2+, C()=2+

sinyr

This result is a generalization of Synge’s interpolation theorem (see [7, p. 209-213))
to the case of concave triangles.

b) The result mentioned in a) holds, of course, for triangles with straight sides,
77 being the maximum angle of the triangle T'.

2.14. Density theorem. Let Q be a bounded two-dimensional domain of the
type indicated in Fig. 1. Let for each cusp point Qi there exist a neighbourhood By
such that ByNT'y = @ where T'; is the part of 3R on which the homogeneous Dirichlet
boundary condition is prescribed (see (1.1)). Then the set V N C®(Q), where V is
given by (1.1), is dense in V.

Proof. The proof is a combination of the proof of Doktor’s similar result
for @ € €%! (see [1]) and the proof of density theorem in H*¥(Q), 2 € €%° (see
[4, Theorem 5.5.9]) with the generalization introduced in Theorem 1.4.

For a greater simplicity we shall consider the case that 9Q has a continuous bound-
ary in the sense of [5] with one cusp point Q; only. A generalization to a more
general case is straightforward (see also the proof of Theorem 1.4). Let By be the
corresponding neighbourhood of Q. Let {Go,G1,...,Grn} be a family of open sets
such that n n

aclJG. oclG.
r=0 r=1
with G, C Bi, Q1 € G1, @1 ¢ G, (r # 1) and let {pg,¥1,-..,9n} be the corre-
sponding partition of unity. Using the method of the proof of {4, Theorem 5.5.9] we
can find a sequence {vn;1} C C®(Q) (vn,1 = 0 outside of Gi) such that v, 1 — vy,
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in H'(R), where v € H!(Q) is a chosen function. Using the method of [1] we can
find sequences {v, ,} C C®(Q) NV (v, , = 0 outside of T,, r=2,...,n) such that
Vp . — vy in H'(R). Finally, there exists a sequence {vn,0} C C§°(Go) such that
Vn,0 — v@o in H'() (vn,0 = 0 outside of ). Let us set v, = 3 vn . We have
r=0
v, EVNC®(Q) and
Uy — ngo, =vin HI(Q)
r=0

which proves the assertion. a

2.15. Lemma. Let € > 0. Let u, € V N C®(Q) be such that |ju — uc|l1,0 < §.
Then we have for h sufficiently small

[lu = Inuell,ana, <€

where Iyu, € V, is the interpolant of u,., i.e. the function satisfying (Inu.)(P;) =
ue(P;) YP; € on. Moreover, if u € C*(Q) then

[lu = Inulli 0nn, < Ch.

Proof. In both parts of the proof we shall consider for a greater simplicity the
situation that every triangle T € Z, lying along the boundary 99, satisfies one of
the following inclusions:

(2.38) TCcTY or TUCT.

In the general case there exists a neighbourhood of each internal cusp point where
every boundary triangle T satisfies (2.38);. Similarly, there exists a neighbourhood
of each external cusp point where (2.38), is satisfied only.

This means that the situation where we have simultaneously for boundary triangles
Te

(2.39) mesy(T —T') >0, mes;(T" = T) >0

can occur only outside certain neighbourhoods of the cusp points. Outside these
neighbourhoods we can locally extend every function v € H¥(Q). The extension Ev
belongs to H*(Q U A) where A is a strip (or a union of strips) lying along a certain
part 8,9 of 0. This part 9;Q belongs to A and is a part of 9A. (The proof follows
from [6, pp. 22-24].) This fact enables us to use in the case of (2.39) the approaches
introduced in [8]. We omit these technical details.
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A) The existence of the function u, with properties introduced in Lemma 2.15
follows from Theorem 2.14. Thus the proof of the first part of Lemma 2.15 follows
from the inequality

[lu — Inuelh ,ana, < |llu — uelh anan + lJte — Intellr,ona,

provided that
(2.40) llue — Inucll,ana, < 36 Vh < hy(e).

It remains to prove (2.40). We have

(2.41) Nue = Inuell? ana, = O e = Inue|l} gia + Y llue — Tnuell3 7
Tid T

where the sum in the first term on the right-hand side of (2.41) is taken over all 74
for which 7' C T; in the second term we sum over all interior triangles of J, and
all boundary triangles satisfying T C T'9. Owing to Remark 2.13b Theorem 2.12
can be used on all terms appearing on the right-hand side of (2.41) and we obtain

Jue — Inuel)r,0n0, < Chy/mesy QMg(ue,—ﬁ).

Thus estimate (2.40) is satisfied for h < hy(¢).
B) If u € C%(Q) then considering similarly as in part A of this proof we find that

llu = Inull1,000, < C hy/mes; Q Ma(u,Q)
which proves the second part of Lemma 2.15. 0

2.16. Lemmma. We have
[nuelymlwl,r, < CK(ue)hZ||wlliann,, w€ Vi, h<hie),

nuly,zy wh s, < C K(u) h¥|lwllanny, v €Vh, b < ho.
where K(v) = max {M;(v,Q)}.

Proof. Similarly as in the proof of Lemma 2.15 we consider the simplified
situation (2.38).
A) As |(Vw]|r)| = const. we have, according to Assumption 2.4,

(2.42) [wl} ronse(@) < Kllwll ang, -
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Assumption 2.3 and [8, Lemma 28.8] give
(2.43) |wli .6 < Ch3wli,ana,.

Similarly we obtain

(2.44) Ilhuelf,Th055(Q)<]< Z |1hue|f,'rid»
TideSs(Q)
(2.45) Unttelirs SChT Y |[lhuely pa.
Tid¢S55(Q)

Inequalities (2.42)—(2.45) imply

1

2
el ol < Cllwlls o, (3 el )
Tid
1 1

2 2
(2.46) S 2C“w“l'nnnh{ (E IuEI?,Tid) + (Z |u, - Ihus[iTid) }

Tid Tid
The i-th term in the brackets on the right-hand side of (2.46) is bounded by
CM;(ue, Qb3 (i = 1,2)

because the measure of the union of 7% is bounded by C'h. Hence the first assertion
of Lemma 2.16 follows.

B) The second estimate of Lemma 2.16 can be obtained in a similar way. It
suffices to replace u. by u. In the case of triangulations indicated in Fig. 4 we cannot
obtain better estimate than in the case of u,. (It should be noted that the term h?
appearing in (2.43) and (2.45) has not any influence on the resulting estimate in this
case. For further developments see Remark 2.21.) O

2.17. Lemma. We have for u € H/(Q) (j = 1,2) and all w € V},

- 4L
Iull,wh |w|1,wh < Ch]+2”w”1,ﬂnﬂm h < ho.

Proof. The proof follows from Assumption 2.3 and [8, Lemmas 28.3 and 28.8].
O

2:.18. Lemma. We have for all w € Vj,

vmesz G ||Bllo,g, < Chllwlliana, (Gh = Th,wh).

Proof. As mesy G, < Ch? the proof follows from considerations similar to the
proof of Theorem 2.8 which give ||@|lo,c, < C|lwl|l1,ana.- : a
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2.19. Lemma. Let q be piecewise of class C2. Then we have for all w € V},

L} (w) — LT(@)] + |L} (w) - Li(w)] € C h[lwll1,0na,-

Proof. The proof follows from [8, Lemmas 30.1 and 30.2] and the assumption
that ¢ = 0 on ', N S5(Q) (Q = B, D). O

The following theorem is an immediate consequence of Theorem 2.11 and Lemmas
2.15-2.19.

2.20. Convergence theorem. Under the preceding asuumptions we have

hl_l{gl+ [l — unll1,0n0, = 0.

In addition, if u € C*(Q) then

llu — unlj1.ana, < Ch3.

2.21. Remark. If we refine the triangulation 2, along the boundary 99 in the
neighbourhoods of external cusp points by segments which are tangent to 9 (see
Fig. 6 where the corresponding part of 9Q is only dashed) then we improve the rate
of convergence in Lemma 2.12 (and thus also in Theorem 2.16) from O(V/h) to O(h).
This result follows from the fact that the measure of the new narrow triangles is

O(h3), according to Taylor’s theorem.

Figure 6.
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2.22. Remark. The procedure just described and its analysis is not restricted
to the case of linear triangular finite elements. We can use also quadratic and cubic
triangular finite elements of the Lagrange type. In the neighbourhoods of external
cusp points we use the following modifications of these finite elements:

a) In the case of quadratic finite elements we prescribe along the curved side the
function values only at the vertices of the concave triangle. The remaining four
parameters are as follows: function values at the third vertex and at the mid-points
of two straight sides and the second mixed derivative at the vertex not lying on the
boundary.

b) In the case of cubic finite elements we again prescribe along the curved side
the function values only at the vertices of the concave triangle. The remaining
eight parameters are as follows: function values at P, (the vertex not lying on the
boundary) and at the four points which divide the straight sides into thirds and the
mixed derivatives

03p
" 0zdy?

¢) The accuracy of interpolation is O(h;H-M) (n=2,3; |a| <1). (The proof is
similar to the proof of Theorem 2.12.)

0%p 83p
6z6y(Pl)’ 31:26y(P1) (P1).
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