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NUMERICAL ANALYSIS OF THE NAVIER-STOKES EQUATIONS

RoLF RANNACHER, Heidelberg

1. INTRODUCTION

This paper discusses some conceptional questions of the numerical simulation of
viscous incompressible flow which are related to the presence of boundaries. The
governing mathematical model are the well-known Navier-Stokes equations

(1.1) Ou—vAu+ (u-V)u+Vp=f, V.u=0,

in a two- or three-dimensional region 2, together with appropriate initial and bound-
ary conditions. Despite its rather simple structure this system represents one of the
most challenging problems in theoretical and numerical analysis. Its solutions de-
velop a rich variety of structures, e.g., vortex shedding and dynamical layers, which
require high quality standards in their reliable numerical simulation. Traditionally
the numerical schemes for solving these equations were based on finite difference dis-
cretizations on quasi uniform grids. In the last decade the trend has shifted towards
discretizations on solution-adapted grids which allow for more flexibility in resolving
the fine structure of a flow. One group of such methods is based on the finite element
approach which has been developed on the bases of a long experience in structural
mechanics. However, the particular difficulties inherent in the Navier-Stokes problem
require various modifications of the traditional finite element concepts. These diffi-
culties consist in the combination of the incompressibility constraint V - u = 0, and
the singular perturbation character for » < 1, with the complicated dynamics of the
solutions which require a very fine spatial resolution and the computation over long
intervals of time. Through the introduction of the Reynolds-number, Re = LU/v,
the problem is set in a dimensionless form, where L is the characteristic length, U
the characteristic speed, and v = u/p the dynamic viscosity. This model parameter,
Re, is normally considered as a measure for the computational difficulties in model-
ing the corresponding flow. For Re & 1, the problem takes on a parabolic behavior
with large dissipative effects, while for Re >> 1, the transport term dominates giving
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the problem more the appearance of a hyperbolic system. In the latter case the
phenomenon of turbulence (chaotic behavior) threatens rendering any deterministic
numerical approach to a heuristic gamble. However, in the intermediate range of
moderate Reynolds-numbers, depending of course on the particular problem, lami-
nar flow occurs which is amenable to a numerical treatment on save mathematical
grounds. Particular difficulties arise when the flow problem has to be solved on
a domain with boundaries, either natural rigid boundaries or possibly artificial in-
lets or outlets. Here, the interaction of the physical boundary conditions and the
constraint V - u = 0 results in “paradox” phenomena which are not present in the
“unbounded” case, e.g., for spatially periodic flows. This leads to interesting and
sometimes unexpected mathematical questions the analysis of which, in turn, helps
to better understand the computational approaches. In this context the following
three topics will be discussed:

1. The treatment of the incompressibility constraint by Chorin’s projection

method: The problem of the nonphysical pressure boundary conditions.

2. The choice of outflow boundary conditions: The problem of well-posedness.

3. The modeling of the nonlinearity: The mechanism behind the success of the

nonlinear Galerkin method.

This selection reflects the current research interests of the author in computational
fluid dynamics. Most of the related results have been obtained in collaboration with
J. G. Heywood from Vancouver (UBC), [13], [14], and S. Turek, [13], [21], and A.
Prohl, [18], both from Heidelberg. The computational results and the illustrative
figures are taken from papers of H. Blum [1] and S. Turek [24]. The work on the
above questions 1is still in progress and some of the “answers” presented here are
necessarily incomplete and sometimes only conjectured. This is to stimulate further
research. Much of the motivationin this study has been raised and supported through
fruitful discussions with Ph. Gresho from Lawrence Livermore Nat. Lab., at various
occasions, see [8] and [9] for his contributions to the first and to the second question.

NOTATION

By L%(Q2) we denote the Lebesgue space of all square integrable functions over
Q, provided with the usual norm || - || = || - |lo and inner product (-,-) = (-, )a.
Further, H™(Q) is the mth-order Sobolev space of those L(2)-functions which pos-
sess generalized derivatives of order m in L%(Q). The norm of this (Hilbert-)space
s llm=(X |ID*- ||2)1/2. The completion in H}(Q2) of the subspace D(Q)

Jalgm

of test functions with compact support in Q is denoted by H}(€2). By Poincaré’s
inequality the Dirichlet form (V-, V-)q is an.inner product on H} (). These are all
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spaces of scalar functions. Spaces of vector functions u = (ui)i=1,...,.n (with values
in R™) are written with bold face type, while no distinction is made in the notation
of the corresponding norms and inner products, e.g., the norm of the space H}(Q)

is ||Vv]| = (ZII(?,:ijz)l/z. All the other notation are self-evident: d;u = du/6t,
1]
Oiu = 0u/dz;, Opu = Vu-n, 9;u = Vu - 7, etc., where n and 7 are the normal and

tangential unit vector along the boundary 2.

2. STABLE FINITE ELEMENT DISCRETIZATION

In setting up a finite element model of the Navier-Stokes problem one starts from
the variational formulation of the problem: Find u = b + v and p, with v € H and
p € L%(Q), such that

(2.1) (01v, ) + ¥(Vv, V) + (v-Vu,0) = (p,V -¢) = (f,¢), Ve €H,
(2.2) (x,V-v) =0, VxeL¥Q).

The choice of the function space H C H!(Q) depends on the specific boundary
conditions chosen for the problem to be solved. On a finite mesh T}, (triangu-
lation, etc.) covering the domain 2, with element width h, one defines spaces
H; x Ly “ C ”Hx L%(Q) of piecewise polynomial trail and test functions. The discrete
analogues of (2.1), (2.2) then read as follows:

Find up = b, + vp and pp, with vy, € Hy, and py € Ly, such that

(2.3) (Otvn, on) + V(Vav, Vap) + (vh - Vo, @n) — (Pr, Vi - 1)
= (fapn), VYeon € Hp,
(24) (Xh) vh : 'Uh) = 07 VXh € Lh.

Using nodal basis representations for the unknowns v (t) and px(t), for any fixed h,
this may be written as a system of ordinary differential equations with an algebraic
constraint, i.e., as a so-called DAE system. In this spatial semi-discretization the
spaces H;, may be “nonconforming”, i.e., the discrete velocities v, are continuous
across the interelement boundaries and zero along the rigid boundaries only in an
approximate sense; in this case the discrete gradient operator Vj occurring in (2.3),
(2.4) is to be understood in the “piecewise” sense. In order that (2.3), (2.4) is a
numerically stable approximationto (2.1), (2.2), as h — 0, it is crucial that the spaces
H; x L, satisfy a compatibility condition, the so-called Babuska-Brezzi condition

(see [7]),

. Vi - wh)
2.5 inf su (————-(qh’ )> > 0.
(2.9) wela/Rupett, \ llaalliVanl] ) 27
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This inequality insures, first, that the problems (2.3), (2.4) possess solutions, which
are uniquely determined in H, x Ln/R, and, second, that these discrete solutions
converge to the true solution of the variational problem (2.1), (2.2); a rigorous con-
vergence analysis of spatial semi-discretizations of the Navier-Stokes problem has
been given in [12; Part 1].

Many stable pairs of finite element spaces {Hj, Ly} have been proposed in the
literature (see, e.g., [7], [12; Part 1], and [21]). Below, two particularly simple exam-
ples of quadrilateral elements will be described which have satisfactory approxima-
tion properties and are applicable in two as well as in three space dimensions. The
incompressibility constraint (2.2) is treated here completely implicitly in computing
stationary as well as nonstationary flows. Both types of elements may be used in the
spatial discretizations underlying the discussions in the following sections.

1) The first example is the natural quadrilateral analogue of the well known trian-
gular finite element of Crouzeix/Raviart (see [7]). This nonconforming element uses
piecewise “rotated” bilinear (reference-) shape functions for the velocities, spanned
by {1, z,y,z%— y?}, and piecewise constant pressures. As the nodal values one may
take the mean values of the velocity vector over the element edges and the mean
values of the pressure over the elements. Though belonging to a classical family of
stable “Stokes elements”, it has apparently not found much attention in the litera-
ture yet. A convergence analysis is given in [21] and very promising computational
results are reported in [24]. This element has several important features:

— It is possible to construct a “divergence-free” (local) nodal-basis, which allows

the elimination of the pressure from the problem resulting in a positive definite

- algebraic system for the velocity unknowns alone. Further it admits simple
upwind strategies in the case of dominating transport, Re > 1.

— The reduced algebraic system can be solved by specially adapted multigrid
methods.

All nonstationary 2-D flows shown in this paper have been calculated by a code
which uses the divergence-free version of this Stokes element.

2) The second example is even simpler than the first one. It uses continuous
bi-linear (or tri-linear) shape functions for both the velocity and the pressure ap-
proximations. The nodal values are just the function values of the velocity and the
pressure at the vertices of the mesh, making this ansatz particularly attractive in the
three dimensional case. This combination of spaces, however, would be unstable, i.e.,
would violate the condition (2.5), if used together with the variational formulation
(2.3), (2.4). In order to get a stable discretization, it was devised by T. J. R. Hughes,
et al., [15], to add certain least squares term in the continuity equation (2.4) (pressure
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stabilization method),

o [e4
(26)  (em Vo) — D hp(Vin, Ve = — 30 hi{(Vm N+ }-
KeTh VKET).

The correction terms on the right hand side have the effect, that this modification is
fully consistent, since the additional terms cancel out if the exact solution {u, p} of
problem (2.1), (2.2) is inserted. It was shown in [15], and later on in a series of math-
ematical papers (see F. Brezzi and J. Pitkaranta [2], and the literature cited therein)
in the context of a more general analysis of such stabilization methods, that this dis-
cretization is numerically stable and of optimal order convergent for all practically
relevant pairs of spaces {Hp, Ln}. This particularly includes the favorable lowest
order continuous quadrilateral element of equal degree approximation for velocities
and pressures. This element has several important features (see [15] and [10]):

— With the same number of degrees of freedom it is more accurate than tis triangu-
lar analogue (and also slightly more accurate than its nonconforming analogue
described above) and it also admits simple upwind strategies in the case of
dominating transport, Re > 1. Further it has a very simple data structure due
to the use of the same type of nodal values for velocities and pressures which
allows for an efficient vectorization of solution processes.

- Thanks to the stabilization term in the continuity equation (2.4), standard
multigrid techniques can be used for solving the algebraic systems with good
efficiency.

In the case of higher Reynolds numbers (e.g., Re > 1000 for the 2-D driven cav-
ity, and Re > 100 for the flow around an ellipse) the finite element models (2.3),
(2.4) or (2.3), (2.6) become unstable since they essentially use central differences like
discretizations of the adjective term. This “instability” most frequently occurs in
form of a drastic slow-down or even break-down of the iteration processes for solving
the discretized problems; in the extreme case the possibly existing “mathematical”
solution contains strongly oscillatory components without any physical meaning. In
order to avoid these effects some additional numerical dumping is required. The use
of simple first-order artificial viscosity is not advisable since it requires the prede-
termination of a numerical parameter and generally introduces too much dumping
for time depending flows. The better choice is “upwinding” which can be defined
also quite naturally for finite element methods (see [10], [24], and the literature cited
therein). Here, the upwinding effect is accomplished in the evaluating of the advec-
tion term through shifting integration points into the negative flux direction. This
modification leads to system matrices which have certain M-matrix properties and
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are therefore amenable to efficient multigrid techniques. This is widely exploited in
the finite element codes in [10] and [24].

The DAE system (2.3), (2.4) is very stiff, with a ration O(vh~2) (or even O(vh™*)
in the case of the “divergence-free” element formulation). Therefore, in the choice of
time stepping methods for solving this system one is essentially limited to strongly
A-stable schemes. Through extensive numerical experience (see [19] and [24]) it has
turned out that the second order “fractional step ©-method” proposed by R. Glowin-
ski, et al. [3], is particularly suitable for simulating nonstationary flows. But, in con-
trast to [3], where this scheme was combined with a splitting approach separating
the incompressibility constraint from the nonlinearity, it is used here as a mere time
stepping procedure. The fractional step f-method is as accurate as the traditional
Crank-Nicolson scheme but it possesses much better stability properties with respect
to rough initial and boundary data.

THE FIRST PROBLEM: TREATMENT OF THE INCOMPRESSIBILITY CONSTRAINT

Suppose, for simplicity, that problem (1.1) is posed with zero Dirichlet boundary
conditions, ul@Q = 0. The classical way of coping with the incompressibility con-
straint in flow computations is the projection method of A. Chorin [4], which reads
as follows. For a given initial value u® € J;(f), choose a time step k, and solve for
m21:

i) i™ € Hy(Q) (“Burgers step”):

1, .
(3.1) -E(u'" —u™ Y —yAT™ 4 4™ - Va™ = f™, in Q,
ii) u™ = Pa™ € Jo(R) (“Projection step”): V-u™ =0, in £,
(3.2) n-umlaﬂ =0.

Here, the function spaces Jo(Q2) and J;(2) are obtained through the completion of
the space {¢ € D(R),V - ¢ = 0} of solenoidal test functions with respect to the
norm of L?(Q) and that of H}(f2), respectively. This time stepping scheme can be
combined with any spatial discretization method, e.g., the finite element methods
mentioned above. The projection step (ii) can equivalently be expressed in the form

(3.3) ii') u™ =a™ - kVpT,

with some “pressure” p™ € H'(£2), which in turn is determined through the proper-
ties

(3.4) i) Apm =gV, in® opm|o2=0.
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This amounts to a Poisson equation for p™ with zero Neumann boundary conditions.
It is this nonphysical boundary condition, aﬂmeBQ = 0, which has caused a lot of
controversial discussion about the principle value of the projection method. Never-
theless, the method has proven to work well for representing the velocity field in many
flow problems of physical interest (see, e.g., Ph. Gresho [10]). It is very economical
as it requires in each time step only the solution of a (nonlinear) advection-diffusion
system for u™ (of Burgers equation type) and a scalar Neumann problem for p™.
Still, it was argued that the pressure p™ were a mere fictious quantity without any
physical relevancy. It remained the question: How can such a method work at all?
A challenging problem for mathematical analysis!

The first convergence results for the projection method was already given by
A. Chorin, but concerned only cases with absent rigid boundaries (all-space or spa-
tially periodic problems). Later on, qualitative convergence was shown even for
the pressure, but in a measure theoretical sense, too weak for practical purposes.
Only recently, J. Shen [22] was able to prove the following suboptimal convergence
estimate:

(35) ™ = ult)ll+ (3 19" ~ ot isaym) | = O(VE), 0< b < T,

=0

which indicates that the quantities p™ may really be reasonable approximations to
the pressure p(t,,). This result has then been sharpened by the author in [20] (see
also [18]) to optimal order,

(3.6) [lu™ = u(tm)llLz@) + [IP™ — P(tm)llH-1(0) = O(k), 0 < tm < T.

This finally confirms that Chorin’s original method is indeed a first order time
stepping scheme for the incompressible Navier-Stokes problem. The key to this
new result is the re-interpretation of the projection method in the context of the
so-called “pressure stabilization methods”. To this end one insert the quantity

u™~! = @™~1 — kVp™~! into the momentum equation, obtaining

(3.7 %(ﬁm — @™ — AT 4 (@™ - V)a™ + Vp™ L = ™ ﬁ"‘|3Q =0,

(3.8) V.-a™ - kAp™ = 0,(9,,p'"|89 =0.

This looks like an approximation of the Navier-Stokes equations with a first order (in
time) “pressure stabilization” term. Pressure stabilization methods for solving the

Navier-Stokes equations have a long history. In these methods the incompressibility
constraint is supplemented by terms involving the pressure thereby giving it a similar
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appearance as the continuity equation in compressible flow models; this approach is
therefore sometimes referred to as “pseudo-compressibility method”. The observa-
tion is that the projection method can (at least on the continuous level) be viewed
as a pressure stabilization method with a global stabilization parameter € = k, and
an explicit treatment of the pressure term. In [20] it is shown how this fact may be
used to derive optimal order error estimates for the projection method. One result of
this analysis is that the pressure error is of better order in the interior of the demain
Q than at the boundary, i.e., for any strict subdomain Q' CC Q, there holds

(3.9) Ip™ = p(tm)llzaarym = Ok), 0< tm <T.

Moreover, it appears that the pressure error is actually confined to a small boundary
strip of width 6 = v/ vk and decays exponentially into the interior of 2 (for a discus-
sion of this matter see also Ph. Gresho [8]). In fact, it is conjectured that, setting

d(z) = dist(z, 092),

(3.10) IP™(z) — p(z, tm)| < 7 exp (— a@)\/h Ok), 0<tm<T.
Vvk

This conjecture is supported by numerical experiments for the pressure stabiliza-
tion method applied to the stationary Stokes problem. In fact, it is even possible
to recover the optimal order accuracy of the pressure at the boundary by simply
extrapolating the pressure values from the interior of the domain. In Figure 1, the
effect of this post-processing is shown for a model Stokes problem solved by using
bi-linear finite elements on a uniform rectangular mesh. ’

Figure 1. Pressure error plots for a polynomial Stokes solution before and after
correction by extrapolation to the boundary (from H. Blum [1]).

Unfortunately, the sharp decay estimate (3.10) has not been proven yet rigorously.
In the course of the argument one considers the singularly perturbed Neumann prob-
lem

(3.11) (%V ARV - eA)q =¢eAp, in Q, 9,q/0Q = 9.p|0Q,
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where Ap denotes the Laplacian operator corresponding to Dirichlet boundary con-
ditions. Clearly, V 'ABIV is a zero-order operator mapping L%(Q) into L(£2). Then,
for this problem one would like to know the decay estimate

(3.12) lalla, < cexp (= a—z=) VE [ Vpll +eve | Arl,

for interior subdomains Q5 = {z € Q, dist(z,0Q) > é}. Such an estimate could be
proved in [20] only for the case that the “global” operater V - Al",lV is replaced by
the “local” identity operator. But in the general case the corresponding result is still
an open problem.

Let us conclude this discussion by pointing out some possible extensions of the
presented analysis to higher order projection methods. One such method which is
formally of second order reads: Choose u® € J;(f2), and p° = 0, and compute, for
m> 1.

i) 4™ € Hi(Q):

(3.13) %(am —uml) = EAGE ) + %(am V™ 4wl vemY)
+Vpml= f'"“%, in Q,

i) p™ € HY(Q): ™ = 4™ — akV(p™ — p™~1), for some a > 1.
For this scheme J. Shen [23] has recently shown the suboptimal error estimate

M / i /
@18 (K3 e - u(tl?) 4 B2 (Y~ B aym) = O,
p=0 p=0

where the bar in the pressure term refers to a certain mean value over time. A
careful examination of this scheme shows that it may again be interpreted as a
certain pressure stabilization method using a stabilization of the form

(3.15) V-u—ak?dAp=0, in Q, 0.p|02 = 0.

This observation, in turn, could then lead to improved error estimates of optimal
second order. Further, it is conjectured that analogously to (3.10) the following
decay estimate holds true:

@16) ")~ sz )] < coxp (- a S VE+ O(H)

To prove (or disprove) these statements has to be the subject of future research. In
particular, it would be very interesting to see, whether this argument can be carried
on to even higher orders of approximation.
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4. THE SECOND PROBLEM: OUTFLOW BOUNDARY CONDITIONS

Many flow problems are posed in generically unbounded domains, e.g., the flow
through a pipe or through a system of pipes, flow around a body, and the flow
through a hole in an infinite wall. For computational reasons, such an infinite flow
region is usually cut to a bounded domain by introducing artificial inflow and out-
flow boundaries. While the “inflow” boundary conditions appear to be naturally
induced through physical evidence, e.g., parabolic Poisseuille flow profile for the in-
let of a pipe, the choice of appropriate “outflow” conditions is a serious problem.
“Paradoxes” can arise if one proposes a variational formulation of a problem on the
basis of intuition and experience, without carefully checking its full equivalence with
recognizable boundary conditions, including flux and pressure conditions. This has
serious consequences on the physical relevance of the numerical results obtained on
the basis of such a formulation, e.g., by the finite element method. In this context
the so-called “do nothing” outflow boundary conditions appears most natural; see
[13] for a more detailed discussion of this matter.

For example, in the study of the flow in a channel around an inclined ellipse one
may prescribe a Dirichlet condition us, = b for the inflow and the usual no-slip
condition along the rigid part of the boundary, I'. Prescribing “nothing” at the
outlet is then expressed by the variational formulation:

Find u = b+ v and p, with v € H = {p € H'(Q): |T US; = 0} and p € L*(Q),
satisfying v);=o = v° and

4.1) (Biv, ) + v(Vo, Vo) + (v-Vv,0)— (p,V-9) =0, Vp€H,
(4.2) (x,V-v) =0, Vx € L%(Q).

This formulation leaving the values for v and p “free” at the outlet Sy implicitly
contains a “natural” condition, ¥v8,v + p = 0, on S3, for any sufficiently smooth
solution {v,p}. This “free outflow” boundary condition is mainly motivated by the
properties of Poisseuille flow. The numerical method based on (4.1), (4.2) works
very well and the results are reasonably independent of the position of the artificial
boundary S;. As an illustration, Figure 2 shows the stream lines of such a flow
(relative to the corresponding Stokes flow), obtained by a finite element method
using the primitive variables {v,p}. The computational domain is first taken of
length L, and for comparison, is then extended to length 2L. Obviously, this has no
visible effect on the pattern of the flow past the obstacle. Now, suppose that one
goes further, and formulates the same problem in a bifurcating channel, in exactly
same way using the “free” outflow boundary condition. It will be found, see Figure 3,
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Figure 2. Laminar pipe flow at Re 500 under the “free outflow” boundary condition
visualized via “relative” streamlines (from S. Turek [24]).

Figure 3. Streamlines of the flow in a bifurcating channel at Re 50 using the “free
outflow” boundary condition (from S. Turek [24]).

that the results depend on the relative position of S; and Ss, even when they are
both placed far downstream. Why?

The solution is that the formulations of both problems are a bit faulty, in that they
contain hidden conditions for the pressure which were not discussed in formulating

the problem,

(4.3) vOpu, =p, on Loy, = |l"out|‘1/F pds=P=0.
out

Hence, the mean pressure is being set equal to zero at each outlet, which is an
essential boundary condition contained in the formulation (4.1), (4.2). This does
not affect the velocity if there is only one outlet, but certainly does if there are
two. So, variational formulations including “artificial” boundary conditions are a
bit tricky. One can propose a formulation, solve it numerically, prove existence and
uniqueness theorems for it—all without understanding what the problem is that is
being solved. A related “paradox” is inherent in the flow “through a hole” which
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has already been observed and analyzed by J. G. Heywood [11]. A thorough analysis
of the described phenomenon, and of many others related to pressure drop and flux
boundary conditions at artificial boundaries together with various numerical tests,
can be found in [13].

The observation of the hidden pressure boundary conditions contained in the “do
nothing” approach leads one to consider various non-standard boundary value prob-
lems for the Navier-Stokes equations, e.g., involving net flux or pressure drop con-
ditions (see [13], and the literature cited therein). Let T’ be the rigid part of the
boundary 99, and let I';, i = 1, ..., N, be those segments of JQ along which inflow
or outflow is allowed. Note that in general, it is not a priori determined what is an
inflow and what is an outflow segment. Then, the “pressure drop problem” reads as
follows:

For prescribed P;(t), find u(t), such that

(4.4) Ou—vAu+ (u-Vi)u+Vp=f, V.u=0,inQ,
(4.5) w=o=u’, u|l'=b, |r,-|-‘/ p(t)ds = Pi(t).
r;

The corresponding natural boundary condition at the “free” segments of Q2 are
(4.6) vopu= (p— P;)n, on I;.

Although the variational problem (4.4), (4.5) looks well set, surprisingly there is
a problem with its well posedness. The related Dirichlet problem of the Navier-
Stokes equations, stationary as well as nonstationary, is well known to possess weak
solutions (not necessarily unique) for any Reynolds-number. The standard argument
for this result is based upon the “conservation property” of the nonlinear term in the
equation, which is obtained by integration by parts and using the condition V-u = 0,

4.7 (u-Vu,u)=0.

In the case of “free” boundary this relation is replaced by

(4.8) (u-Vu,u) = —%/ u,ulds,

u;I;

which generally does not allow to bound the energy in the system without a priori
knowledge of what is an inflow and what is an outflow boundary. As a consequence,
in [13] only the following weak result on the solvability of problem (4.5), (4.6) could
be obtained:
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The “pressure drop problem” possesses a unique solution locally in time. If P =
S‘;Igz |P;(t)| and [IVuol| are sufficiently small, this solution ezists for all time and
t20 ¢

is then also exponentially stable.

Corresponding results are also known for other types of non-standard boundary
conditions including, e.g., prescribed net fluxes across the “free” boundary segments.
This leaves the question open, whether one can also expect “global” existence of
solutions for “large” data. A positive answer is suggested by numerical tests which
do not show any unexpected instability with the discrete analogues of the formulation
(4.5), (4.6) in the case of higher Reynolds numbers.

One may suspect that this theoretical difficulty can be avoided simply by changing
the variational formulation of the problem, i.e., using other representations of the
diffusive and of the advective terms. This, however, is not the case. Replacing in the
momentum equation (4.1) the Dirichlet form a) (Vu, V) by b) (D[u], D[¢]), where
D[u] = 1(8iu;+0; u;)7; = is the deformation tensor, results in a nonphysical behavior
of the flow (streamlines bent outwards) even for the trivial case of Poisseuille flow
through a straight pipe; see the top line in Figure 4. Further, writing the transport
term in the form ¢) v Vu = u- Vu — u- VuT + 1Vu?, or alternatively in the form
d) u-Vu = }{u-Vu+ V- (uTu)}, leads to variational formulations in which the
advective terms are conservative (i.e., vanish if v itself is taken as a test function)
also for the “free outflow” boundary condition. In the case (c) the corresponding
natural outflow boundary condition is v0,u = (p + 1u?) - n, with the so-called
“Bernoulli pressure” p = p+ 3u?, and in the case (d) it is v0u = (p+ 3u2) -n. Both
modifications again result in a nonphysical behavior across the outflow boundary
(streamlines bent inwards), as is shown on the bottom line in Figure 4.

Figure 4. Velocity plots for Poisseuille flow at Re 50 modeled with the forms (a),
(b), (), and (d) described above (from S. Turek [24]).
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In the consequence, for physical reasons, it seems to be necessary to deal with
the existence question for the original formulation (4.5), (4.6). Only very recently,
S. Kracmar and J. Neidstupa [16] have obtained an interesting result which may,
at least to some extent, solve this problem. They reformulate the problem as a
variational inequality, where the amount of possible inflow along I'; is restricted
by some upper bound M. For this new problem they are then able to prove global
existence of weak solutions, which are also solutions of the original problem (4.5),
(4.6) if the inforced restriction is satisfied in the strict sense.

5. THE THIRD PROBLEM: MODELING OF THE NONLINEARITY

The traditional ways of dealing with the nonlinearity in the Navier-Stokes equa-
tions is either by an explicit coupling or by straightforward linearization, first-order
fixed point iteration or second-order Newton iteration. Normally, this approach fails
in the range of large Reynolds numbers when the flow turns from “laminar” to “tur-
bulent”. In this case turbulence models have to be used which are mostly based on
heuristic concepts without a rigorous mathematical justification. Recently an effort
has been made by R. Temam and his collaborators (see [6], [5], and literature cited
therein) to develop a mathematically based “turbulence model” by applying some
new concepts from the theory of infinite dynamical systems to the Navier-Stokes
equations. The key words in this context are “Inertial Manifolds” and “Nonlinear
Galerkin Method”. Below we will briefly discuss the possible relevancy of these con-
cepts for the numerical solution of the Navier-Stokes equations; for a more detailed
account see [14].

An “inertial manifold” is roughly spoken an analytical tool for describing the
mechanism through which in a “turbulent” flow energy is shifted from low frequency
modes into high frequency modes. For the Navier-Stokes equations this is easiest
expressed in terms of Fourier expansion with respect to the eigenfunctions {a;}ien
of the Stokes operator, A’ = PA. Here, P is the orthogonal projection in L%(Q)
onto the subspace Jo(f2) of divergence-free vector fields with zero normal components
along the boundary. For any fixed m € N, let E,, = span{a;,i = 1,...,m}, P,
the L2-projection onto E,,, and Q,, = I — P,,. Further let u(t) = p(t) + g(t) be
the orthogonal splitting of the solution of problem (2.1), (2.2), corresponding again
to zero Dirichlet boundary conditions, into its “low mode” component p(t) € E,,
and the corresponding “high mode” component ¢(t) € EX. Then, the Navier-Stokes
problem can equivalently be written in the form :

(5.1) op—vA'p+ PuN(p+4q,p+ 1) = Puf,
(5.2) Oig —vA'"q+ QmN(p+q,p+9) = Qmlf,
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where N(v,w) = v - Vw. Using this notation the “standard” (spectral) Galerkin
method based on the eigenfunctions of the Stokes operator has the form

(5:3) O1pm — VA'pm + PuN(Pm,Pm) = Pmf.

For this approximation the error estimate ||(pm —p)(2)|| = O(z\?.{4_€), forany e > 0, is
generally best possible due to the incompatibility of the solution along the boundary,
A'u(t)l('?Q # 0. The idea is now to assume the existence of an analytic relation
¢ = ®(p), an inertial manifold, such that the system (5.1), (5.2) can equivalently be
written as

(54) Op—vA'p+ PuN(p+ 2(p),p+ ®(p)) = P f.

Although, the existence of such an inertial manifold has not been proven yet for the
Navier-Stokes problem in general, this concept has become the basis of the so-called
“nonlinear Galerkin method”. In this approach one tries to model the unknown
inertial manifold, if it then exists, by some substitute ®,,(-) called “approzimate
inertial manifold”. The nonlinear Galerkin method then reads

(5.5) Otpm — VA'Pm + PN (pm + @m(pm), Pm + @ (Pm)) = Pmf.

As the simplest example of an approximate inertial manifold it is proposed in [5] and
[6] to use

(56) qm = d’m(i’m): - VAlq_m = Qm.f - QmN(ﬁmyi)m))

which, however, amounts to an infinite dimensional problem in the complement space
EL. It has been proven in [5] that this “correction” (at least in two dimensions) actu-
ally leads to an improved error behavior of the form ||(pm —P)(t)|| = O(A?,{zl log A ).
This has widely been taken as evidence of the superiority of the approximate iner-
tial manifold method over the standard Galerkin method. Even more, it is claimed
that this approach may ultimately lead to a mathematically rigorous way of tur-
bulence modeling. This point of view now comes into questions through a recent
analysis in [14], which shows that the apparent success of the nonlinear Galerkin
method has not so much to do with “turbulence modeling” but with the increase of
the solution’s compatibility at the boundary, which allows for the higher degree of
approximation by Fourier modes. This point is easiest explained at a linear model
of the Navier-Stokes equations,

(5.7) Oiu—vA'u+ N(b,u) = f,
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where b is a given function. Of course, in this case the question of turbulence modeling
is not relevant. However, the mechanism underlying the nonlinear Galerkin method
is still active even in this linear situation. Here, the method reads

(5.8) 8p = vA'D+ PuN(b,p+ @ (p)) = P/,
(5.9) §=®n(p): —VvA'§=Qmf — QmN(b,p).

The error analysis for this approximation gives, setting e = p — j,

’ t
(5.10) lle(II* + V/O IVe(®)l|*ds < () r[r;é;f{llatqn?;-un) +llall- o}

which, for a sufficiently regular solution u is of the order O(A;2). A higher (integer)
order cannot be realized in general for the spectral Galerkin approximation since this
would require the solution u to lie in the domain of definition of the operator (A’)2.
This amounts to the compatibility condition A’u = 0 on 99, which is generally not
satisfied, due to the presence of the pressure term Vp in the momentum equation.
In contrast to (5.10), for the standard Galerkin method the corresponding estimate
reads

t
GA1) @I+ [ IVeOIPds < eft) max (lalr-s oy + ),

which is only of the order O(A;;2). The order improvement for the nonlinear Galerkin
method obviously becomes possible because of the occurrence of weaker Sobolev
norms on the right hand side of (5.10) compared with (5.11). This, in turn, is due
to the relation

(5.12) g—§~vATN(b,p-p),

defining the approximate inertial manifold which acts as a regularization process in
the scheme. From this simple consideration, the following conclusion may be drawn.
The order improvement through the nonlinear Galerkin method possibly occurs for
those approximation schemes (like the spectral Galerkin method) which reach op-
timal order only for those solutions which are sufficiently smooth and compatible
along the boundary. But this effect is not active for most other “real” discretizations
as finite difference, finite volume, or finite element schemes.

Apparently the order restriction of the standard spectral Galerkin method is a
problem of the boundary compatibility of the solution u and has nothing to do with
“turbulence”. In turn, the improvement by the nonlinear Galerkin method is also
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directly related to this boundary compatibility. Therefore, the turbulence modeling
aspect of the success of the nonlinear Galerkin method appears very questionable.
However, there may be some potential for improving on the error constant in a real
discretization for a laminar or only slightly turbulent flow.

The nonlinear Galerkin method, as stated above, is not a practicable scheme,
since the determining equation (5.6) for the high frequency correction ¢, is infinite
dimensional. To make it practicable, (5.6) should be restricted to a finite dimensional
subspace, for example,

(5.13) Gm = ®m(Pm): = VA G = Q7 f = Q1 N(bm, bm),

where for some m’ > m, Q™' denotes the projection onto span{amyi,...,am:}.
However, this apparent simplification of the method looses the mentioned order im-
provement over the standard Galerkin method, unless m’ > m®2. Whether this
enormous amount of additional computational work really pays can only be judged
on the basis of numerical experiments. An extension of the concept of the nonlinear
Galerkin method to finite element discretizations has been proposed by M. Marion
and R. Temam [17], where also some qualitative convergence results but no error
estimates are given. However, due to the principle differences in the approximation
properties of the (global) spectral Galerkin method and those of the (quasi-local) fi-
nite element method the application of this idea to the latter method is less obvious.
Further research is necessary to explore the potential of this approach for practical
methods in computational fluid dynamics. Some quantitative improvement on the
computational efficiency in long time simulations may be possible by combining the
concept of a reduced system complexity on the high frequency level (but retaining
the time derivative!) with that of the multigrid method. This approach, termed
“micro-scale linearization” , reads, again expressed in terms of the spectral Galerkin
approximation, as follows:

(5.14) 01pm — VA'Drm + PnN(Bm + Gm, Pm + §m) = P f.
(5.15) Oidm — VA'im = Q2 f — QXN (pm, Pm)-

Numerical experiments on the basis of this idea applied to finite element discretiza-
tions are presently under work. But the corresponding error analysis, qualitative or
quantitative, has not been given yet and is presumably a very difficult task.

In applying the concept of microscale linearization to a finite element discretization
one first has to decide on the inner product with respect to which the orthogonal
splitting u = up + ujt is made. Note that the L2- and the Ji-projections onto finite
element spaces are different. A brief examination of the error behavior of finite
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element approximations shows that the J;-inner product is the right choice, if there
is then any. Suppose now that Jy and J), are finite element spaces parameterized by
the mesh size 0 < h < H, and satisfying Jy C Jp = J1(2). Note that the inclusion
Ju C Jp is required here only for notational simplicity. Nearly “divergence-free”
approximations can be constructed for instance on the basis of the first example
described in Section 2. Let P,, Py, and R, Ry denote the L2-projections and
the J1-projections onto J, and Jy, respectively, and let P = P, — Py and R =
Ry — Ry. Accordingly, let up = uy + u;L,, ug = Ryup, u;", = up — Ryup, be the
orthogonal splitting of the “fine grid” solution u, € J,. Then the Navier-Stokes
system (1.1) can equivalently be written in the form

(5.16)  Oy(um + Pyujy) + vAsuy + PyN(ug + ujy, uy + up) = Puf,
(5.17) Ou(Piupy + ufy) + vAnuy + Pi N(ug + ufr, ug + ujy) = Pi f,

where Aj, is the discrete analogue of the Stokes operator A’ in J,. Neglecting now the
time derivatives 0, PHu;'; and 3¢PI§uH (which automatically vanish in the spectral
Galerkin approximation), and the term uj in the nonlinearity of the coarse-grid

equation leads to the reduced system

(5.18)8yiy + vRy Aptig + Py N(ay + af, ag + ) = Pu{f + N(ag, ay)},
(5.19) Ovig + vAnay = PE{f — N(ag,an)},

where the nonlinear coupling between the “small-scale modes” if; and the “large-
scale modes” iy has been reduced. This is what we call “micro-scale linearization”.
It is different from the nonlinear Galerkin method as there the acceleration term
Oiij; is neglected in the “small-scale” equation, which appears very questionable if
one is not really close to the (unknown) inertial manifold of the continuous model.
The “large-scale” equation (5.18) amounts to a standard finite element Galerkin
approximation of problem (1.1) in the coarse-grid space Jg. But the evaluation of the
“small-scale” equation (5.19) requires the construction of the orthogonal projections
R# and Pj. This can be done simply by evaluating the identities R4 = R, — Ry
and P;} = P — Py, which in the case h <« H essentially amounts to the solution
of a fine-grid problem, but with reduced (linear) complexity. For the scheme (5.18),
(5.19), based on a second-order finite element approximation, e.g., as that described
in Section 2, one can derive the error estimate

(5.20) {?271,)]("17” - RHu”La(n) < cT(u)Hz’

which shows that microscale linearization does not reduce the order of the underlying
finite element scheme. A proof of this result and others on the basis of the techniques
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in [12] will be presented in a forthcoming paper. But the crucial question whether
this approach can lead to a quantitative improvement in the accuracy, respectively
to a reduction in the computational work, must be left open at present.
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