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A MODIFIED CAYLEY TRANSFORM
FOR THE DISCRETIZED NAVIER-STOKES EQUATIONS

K. A. CLIFFE, Harwell, T.J. GARRATT, Cambridge, A. SPENCE, Bath

Summary. This paper is concerned with the problem of computing a small number of
eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed
finite element discretizations of time dependent equations modelling viscous incompressible
flow. The eigenvalues of importance are those with smallest real part and are used to de-
termine the linearized stability of steady states, and could be used in a scheme to detect
Hopf bifurcations. We introduce a modified Cayley transform of the generalized eigenvalue
problem which overcomes a drawback of the usual Cayley transform applied to such prob-
lems. Standard iterative methods are then applied to the transformed eigenvalue problem.
Numerical experiments are performed on large matrices arising from a discretization of the
flow over a backward facing step.
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1. INTRODUCTION

Let A and B be N x N real large matrices with the following block structure

K C M 0
1. = =
(1L.1) A [CT 0] » B 0 0] ’

with K n x n sparse nonsymmelric, C n x m sparse of rank m, M n x n sparse
symmetric and positive definite, n > m, and N = n+m. We consider the generalized
eigenvalue problem

(1.2) Aw = pBw

and assume that the eigenvalues p; (i.e. the finite values y; € C such that det(A —
p; B) = 0) are ordered by increasing real part, i.e. i < j = Re(;) < Re(y;). This
paper is concerned with the derivation and analysis of an ilerative method for the
calculation of the eigenvalues of (1.2) of smallesl real part. In our applications we are
mainly concerned with the case where y; is complex, thus us = fi;, and so there are
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(at least) two eigenvalues of smallest real part. Note that since (1.2) is a large sparse
problem, standard software such as the QZ algorithm [8] will be at best inefficient or
almost certainly not be feasible. Matrices of this type, with n = 2m, arise in mixed
finite element methods for time dependent 2-D Navier-Stokes equations modelling
viscous incompressible flow. Briefly, such discretizations produce nonlinear finite
dimensional systems of the form

(13) Mz, + H(l’],/\)l] + Lzy + Czxy = by, CT:c] = by

where z;,b; € R®, 25,02 € R™ and A € R is a parameter, say Reynolds number or
Rayleigh number. Here M is a mass matrix. The study of the linearised stability of
a steady state, (29, £9, A?) say, gives rise to the generalized eigenvalue problem (1.2)
where K = H(z?,A%)+ H (23, A°)z{ + L and a steady state is stable if all eigenvalues
of (1.2) lie in the positive half plane. Clearly if the eigenvalue(s) of smallest real part
are known then the linearised stability of the steady state is known.

Our motivation is the design and analysis of algorithms for the detection of Hopf
bifurcations which occur when complex conjugate pairs of eigenvalues of (1.2) cross
the imaginary axis. An obvious idea is to calculate the eigenvalue(s) of (1.2) of small-
est real part corresponding to the steady states as A varies and note the occurrence
of a sign change in the real part of a complex conjugate pair. In applications the
eigenvalues of interest are often called the “dangerous” eigenvalues and we shall use
this nomenclature here. In this short paper we shall restrict attention to discussion
of an algorithm to compute the dangerous eigenvalue of (1.2), and hence will deter-
mine the stability of the corresponding steady solution of (1.3), but shall not discuss
its implementation in a routine to detect Hopf bifurcations. For more details of the
problem and the techniques used here we refer the reader to [3], [6].

To help focus the discussion in the following sections we shall assume that the
eigenvalues of the generalized eigenvalue problem (1.2) satisfy the following condition:
(P) Equation (1.2) has eigenvalues which satisfy p; 2 = vy £iw; (w1 > 0) and u3 € R

~with v1,w; € R, and v; < p3. (Thus the eigenvalues with smallest real part are
complex, with Re(pu,2) < p3.)

2. SOME BLOCK MATRIX EIGENVALUE PROBLEMS

In this section we discuss some theory for the eigenvalue problem (1.2) and its
Cayley transform which we define below. Firstly we restate the problem:
Consider the N x N eigenvalue problem

(2.1) Aw = pBw
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with
K C M 0 u
A= , B= , w= ,
[er o] =[5 3] == ]
where K, C and M are as in the Introduction, and where in analogy with the
application from the discretized Navier-Stokes equations we use u € R” and p € R™
to correspond to velocity and pressure degrees of freedom respectively.
Since C is full rank, the QR factorisation of C has the form

R11

(2.2) C=QR=[Q1,Q1] [ 0

] (=Q1Ry)

where R is nxm, R; is mxm nonsingular and upper triangular, Q) is n xn orthogonal,
Q1 is n x m and provides a basis for range (C), and Q5 is n x (n — m) and provides
an basis for C*.

The block structure of (2.1) and that fact that C has full rank allows a particularly
simple analysis of the eigenvalue problem which we now describe. The “second row”
of (2.1) is CTu = 0. Thus u € C*, and hence 3z € R"~™ such that u = Q2. The
“first row” of (2.1) gives KQ2z + Cp = pM Q32 and multiplication on the left by QT
produces (since QT Cp = 0) the (n — m) dimensional eigenvalue problem

(23) 1(222 = ﬂMzzZ

where Kq3 := Qg'KQg, My, = Q;FMQQ. Since M is positive definite it follows that
M3, is also positive definite, and hence (2.3) has precisely n — m eigenvalues. It is
not difficult to show that for any solution (g, z) of (2.3) the corresponding p in (2.1)
is p=—R7'QT(K — pM)Q2z. We thus have

Theorem 1. a) The eigenvalue problem (2.1) has precisely n — m eigenvalues y;,

t =1, ..., n—m, which are those of the “reduced” eigenvalue problem (2.3). If z;
is a corresponding eigenvector of (2.3), then corresponding eigenvectors of (2.1) are
given by

(2-4) U = Q2z;, pi=—-RI'QT(K—mM)y; i=1,...,n—m

b) In addition (2.1) has an “infinite” eigenvalue of multiplicity 2m.

Proof. Part a) was proved above. Part b) follows by considering ﬁAw = Buw,

or may be deduced by considering the Weierstrass-Kronecker Canonical Form [10].
a

283



A technique for transforming the eigenvalues of a matrix to help numerical methods
is the (Generalized) Cayley transform [5], [11], [2], [6], [3]: for a1, @2 € R with

(2.5) a) ag<az b) e #F {w}i™"

define the Cayley transform of (2.3) by

(2.6) C := C(Ka2, M23) = (K22 — ay M23) ™! (K22 — aa Ma2)
which has eigenvalues 6;, satisfying

2.7) 0; = (i —a2)/(pi —a1) i=1,...,n—m.
(Note that under (2.5a), 8; # 1.)

It is straightforward to show that under (2.5b) the matrix K=oM C] is

cT 0
nonsingular and hence we may introduce the Cayley transform of (2.1), namely,
-1
(2.8) C(A,B) := (A —a\B)" (A - a2B) = [ “‘M C] [1‘ C‘;?M g]

which has (n + m) eigenvalues 0;, satisfying
(2.9) Y-
;=1 i=n—-m+1,....n+m.

i=1,...,n—m

It is easy to verify that the eigenvector(s) of C(A, B) corresponding to 8; are precisely
the eigenvectors of (2.1) corresponding to y;.

The key property of the Cayley transform (2.7) is that eigenvalues p; to the right
(left) of the line Re(y) = %(al + a2) in the p plane are mapped into (outside) the
unit circle in the @ plane. Specifically

Lemma 2. Re(y;) > (< 0) 4% «— |6;| < (>)1.
Thus an approach to finding the dangerous eigenvalues of (2.1) is now clear:

Choose a; and a3 such that Re(u;2) < %492 and that Re(p;) > *492 for
i =3, ..., n—m. Hence the eigenvalues of (2.8) given by (2.9) satisfy

|01,2|>1, l0.|sl i=3,...,n+m.

Now the idea is to apply Arnoldi’s method [1] or subspace iteration [12] to C(A, B) to
find the dominant eigenvalues 6, 3 and hence recover y; 3 from p = (a1 0—a2)/(0—-1).
In fact the 2m eigenvalues at 1 can cause difficulties in large systems when |0; 2| = 1,
but a minor modification can eliminate this feature with no extra computational
cost, and this is the topic of the next section.
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3. THE MODIFIED CAYLEY TRANSFORM

In this section we consider a small modification of the Cayley transform defined
by (2.8). Specifically, for a;,a; € R satisfying (2.5) we define the modified Cayley
transform by

K—-aiM Cl'[K-asM 0
lold 0 0 0

(3.1) M(A, B) := [

where we note that the difference between M(A, B) and C(A, B) is that the C' and
CT blocks have been dropped from the rightmost matrix in (2.8). The next theorem
tells us about the eigenvalues and eigenvectors of M(A, B) and shows the reason
for the introduction of M (A, B). Let us denote the eigenvalues of M(A, B) by £;,
i=1,..,n4+m.

Theorem 3. Assume (2.5), and in addition

(3.2) a2 # {w}i™™

a)Fori=1,...,n—m, B = (ui — az)/(t: — a1) with corresponding eigenvector
[vi, 4] given by

vi= Q22 (Fwi), ¢i= (I—fi'?;)m

where u;, p; and z; are as in Theorem 1.
b)yBi=0,i=n—-m+1,..,n+m.

Proof. The eigenvalues of M(A, B) satisfy

I e [l

First we determine the non-zero eigenvalues of (3.3). For B # 0, the “second row”
of (3.3) implies CTv = 0. Hence v = @,z for some z € R*~™ and similar analysis
to that in Section 2 now follows: The “first row” of (3.3) provides (K — aa M)Q2z =
B(K — a1 M)Q2z + BCq. Premultiplication by QT shows that (K22 — aaMap)z =
B(K22 — a1 M33)z, which is precisely the Cayley transform C(Ka22, M22) given by
(2.6), and has (n — m) eigenvalues (g; — a2)/(ti — @1), i = 1, ..., n — m. Note
that (2.5a) and (3.3) ensure that §; ¢ {0,1},i =1 ..., n — m. The eigenvector
corresponding to B; has the form [v;, ¢;] = [u;, Bipi /(1 — B;)] with [u;, p;] as in (2.4).
B = 0 provides the remaining 2m eigenvalues. [If in addition K —a2 M is nonsingular,
then B = 0 has precisely m null vectors of the form [v, ¢]T = [0, qT, g€ R™] O
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The advantage of M (A, B) over C(A, B) is now clear. First, the modified Cayley
transform leaves the important eigenvalues unchanged, i.e. the eigenvalues §;, i =
1, ..., n—m are precisely the 6; given by (2.8). Second, the 2m infinite eigenvalues
of (2.1), which play no role in the stability analysis of (1.3) are mapped by M (A, B)
to zero, clearly the best place for them. In contrast C(A, B) maps the 2m infinite
eigenvalues to 1, which may slow up convergence of an iterative algorithm applied
to C(A, B). Note that in the applications of interest here, n = 2m and so N = 3m.
Thus the 6; = 1 and B; = 0 eigenvalues of (2.9) and (3.1) respectively correspond to
about 2 of the eigenvalues of (2.1). In Section 4 we have a case where N = 2 x 10°
and hence 2m ~ 1.4 x 10°.

An analysis similar to the proof of Theorem 3 provides the generalization:

Corollary 4. The matrix

[K—a,M C]“ K —asM  a3C
CT 0 (!3CT 0

has eigenvalues 3; = (pi —a2)/(pti—a1),i=1,...,n—m, and §; = a3, i = n—m+1,
oo n4m.

Though it is natural to make the choice a3 = 0, the choice a3z = % proves to be
more appropriate in certain instances (see [3]). In many situations it is important to
check the sensitivity of the eigenvalues of a matrix. This is measured by the condition
number of the eigenvalue defined for the standard eigenvalue problem Aw = pw by
si = yfw; where Aw; = pyw;, y# A = gyl with yHy; = 1, wHw; = 1 [13]. It is
straightforward to show that the corresponding condition number of an eigenvalue

of (2.1) is
(3.4) si =y Muw;

where yf My; = 1, wAMw; = 1.

The strategy used to find the dangerous eigenvalues of (2.1) is essentially to apply
an algorithm for finding the dominant eigenvalues of a matrix to M (A, B) defined
by (3.1) (see [3] for details). This is the technique used to provide the numerical
results in Section 4, where the subspace iteration method [12] was the iterative
eigenvalue solver used. Initial estimates for a; and a; were obtained by first finding
the eigenvalues of (2.1) nearest the origin by inverse iteration. Note also that the
(matrix) x (vector) operation M (A, B)z = y can be implemented as y = z + z, where

I{—(IlM C] _ [(al —az)M -C
cT  o]°T| -c7 0)°
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which is preferred when multiplications with the nonsymmetric matrix K are expen-
sive.

Finally we note that to check the accuracy of a computed eigensolution, say
(2, [&, p]), we form the relative residual ||(A — i B)[4, p)||2/||#l|2 which is easily shown
to equal the standard residual for the “reduced” problem ||(K22 — fiM22)z|l2/||2]|2
where z = QT 4.

4. NUMERICAL RESULTS

The strategy outlined at the end of the previous section (and given in more de-
tail in [3]) was used to compute the dangerous eigenvalue in a classical problem in
fluid mechanics, namely, the stability of the flow over a backward facing step [4], [7],
and we refer to the reader to these papers for the details of the equations and their
discretization. The equations were discretized using 4 different meshes, giving rise
to 4 eigenvalue problems. The dangerous eigenvalue in this case is real and approxi-
mations to ji; are computed with residuals less than 10~%. Subspace iteration with
10 vectors was applied to M (A, B) to find its dominant eigenvalues. The numerical
results for Reynolds number 800 are given in Table 1.

N | 8426 22842 89682 200522 |
jn | 16.584 14.946 15.068 15.065 |

Table 1: The calculation of the dominant eigenvalue at Re = 800 for the backward
facing step problem [7], [4].

Numerical results for other problems in fluid mechanics, for example, flow past a
circular cylinder where the dangerous eigenvalues are complex [9] will be reported
elsewhere.
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