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Summary. A Necessary and Suflicient Criterion to Guarantee Feasibility of the Interval
Gaussian Algorithm for a Class of Matrices. We apply the interval Gaussian algorithm
to an » x n interval matrix [A] the comparison matrix {[A]) of which is irreducible and
diagonally dominant. We derive a new necessary and sufficient criterion for the feasibility
of this method extending a recently given sufficient criterion.

Keywords: linear interval equations, Gaussian algorithm, interval Gaussian algorithm,
linear systems of equations, criteria of feasibility
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1. INTRODUCTION

Starting with an n x n interval matrix [A] and a corresponding interval vector
[6], the interval Gaussian algorithm produces an interval vector [2]¢ = IGA([A], [b])

which contains the solution set
S:={reR"| A€ [A],BE [b]: AF = i)}

The formulae to describe [2]¢ are given analogously to those of the well-known
Gaussian climination process in non-interval analysis, combined with a forward and

backward substitution (cf. Section 3). Unlike the non-interval case, [x]% does not
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necessarily exist if [4] is nonsingular! —even if pivoting is taken into account (cf. [9],
[11]). Therefore one looks for classes of interval matrices for which the feasibility of
the method is guaranteed. An overview of such classes can be found in [7]. In [5], a
sufficient criterion for the existence of [z]¢ has been derived if [4] has an irreducible
and diagonally dominant comparison matrix ([A]) defined in Section 2. Generally
such interval matrices are no more H-matrices (cf. Section 2 again) as can be seen

_ 1 1
W‘(u,u [u})‘

This example also shows that [x]¢ may no longer exist.

by the example

In the present paper, we modify the criterion from [5] this time ending up with a
necessary and sufficient one.

2. PRELIMINARIES

By R*, R"*" IR, IR", IR"*" we denote the set of real vectors with n components,
the set of. real n x n matrices, the set of intervals, the set of interval vectors with
n components and the set of n x n interval matrices, respectively. By ‘interval’
we always mean a real compact interval. We write interval quantities in brackets
with the exception of point quantities (i.e., degenerate interval quantities) which we
identify with the element they contain. Examples are the null matrix O and the
identity matrix I. We use the notation [A] = [A, A] = ([a];;) = ([a;;,@;]) € IR™*"
simultaneously without further reference, and we proceed similarly for the elements
of R* ,R"*" IR and IR".

By A > 0 we denote a nonnegative n x n matrix, i.e. a;; > 0 for 7,j = 1,...,n.
We call z € R" positive writing 2 > 0if2; >0,i=1,...,n.

We also mention the standard notation from interval analysis ([2], [10])

@ := mid([a]) := "—;—E (midpoint)
rad([a]) := 52 (radius)
|[a]] := max{|a| | @ € [a]} = max{|q], |G|} (absolute value)
. min{|al, [a]} if 0 & [q] -
([a]) :=min{|@| | @ € [a]} = .~ (minimal absolute value)
0 otherwise
int([a]) := (a,q) (interior)

Y An n x a interval matrix [A] is termed nonsingular if all real n x n matrices A € [A]
are nonsingular.
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for intervals [a]. For [A] € IR®*" we obtain A, |[4]| € R**" by applying “and | - |
entrywise and we define the comparison matrix ([A]) = (c;;) € IR?*" by setting

cn_:{—ltahn ifi#j
YU W as)y ifi=g

Since real quantities can be viewed as degenerate interval ones, | - | and () can also
be used for them. We call [a) € IR® symmelric (with respect to zero) if [a] = —[d],
ie. if [a] = [-]|[a]], |[«]]]- Note that @ = 0 if and only if [a] is symmetric.

We tern [A] € IR®*" an H-matriz if ([A]) = (cij) is an M-matrix, i-e. if {[A]) is
nonsingular with ([4])~! > 0.

We define A € R"*" to be diagonally dominant iffori=1,...,n

n
M laiel > Y lajl,
j=1

j#i

i.e. (A)e > 0; here and in the sequel the vector e is defined by e := (1,...,1)T € R".

According to [12], A is called irreducibly diagonally dominant if it is irreducible and

diagonally dominant with strict inequality in (1) for at least one index i.

~ We equip IR, IR", IR"*" with the usual real interval arithmetic as described e.g.
in [2], [3], [8], [10]. Thus, we define the addition, subtraction, multiplication and

division of two intervals [a], [0] by

[a]+ [b]) := [a + ba+ 0], [a]-[b] := {min P, max P} where P := {ab, ab,ab, @b},
[@]=[b) :=[a—b,a— 1], [a]/[b] :=[q]- [.ll;, iF]’ provided 0 ¢ [0] .

n

We set [z] + 4] := ([2)i + [v)i) and [2]7 - [y) := 3 [2)i[y)i for the addition and for the
i=1

scalar product of two vectors [z], [y] € IR", and we proceed similarly for matrices.

We assume that the reader is familiar with the elementary rules of the interval
arithmetic.
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We now mention some formulae given in [2], [10] for intervals [a], [b]:

|[a]l = la| + rad([a]) )
(fal) = Ial - rad((al), if 0 ¢ int([a])
I[a] £ 6]} < I[a]l + (8]I
I[a] - [6]1 = |{a]] - I(0]]
([a] £ [6]) > ([a]) - I[]I
@) {—,,H={H} ir0 ¢ [0 »
rad([a] £ [8]) = ra(l([ft]) + rad([t])
mid([e] £ b)) = axb
mid([a][b]) = ab +vsign(('llvv)x
x min{rad([a]}|b], |@| ra(l([b]),vrad([a]) rad([b]) },'
hence sign(mid([a][b])) = sign{ab) = sign(a) - sign(b). )

A simple calculation yields

b .
mid ([l’]) = TOIED if 0 & [b],

which implies

3) sign [ ) = sign(ab) = sign(a) - sign(b).
0]

With these tools we can prove the following lemma which was stated in a modified
form already in [5] and which was proved there in an abbreviated way.

Lemma 2.1. Let [a],[b],[c],[d] € IR with 0 ¢ [d]. Define [a] € IR by [a] :=
[a]—%ﬂ and A by A := sign(a) sign(b) sign(¢) sign(d). Then the following assertions
hold:

(a) The equation

411 el
(4) . lfa)'| = lfa]| + @

is valid if and only if
(5) A#1l, ie AKO.

In this case

S sign(a), ifa #0
(©) sign(d) = { — sign(b) sign(¢) sign(d), ifa = 0.
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(b) If we have

(e el
(M ([a]) 2 @
then

_ leliifell

®) () = o) - Sz
is true if and only if
9) A#-1, ie A20.
In this case
(10) sign((l’) =sign(a), provided [a]' #0.

Proof. Let [f] := u,[]('l[]d Then |[t]| = %ﬂ by (2).

(a) By (2) we get

l[a]'| = |&'| + rad([a] )
= |a — ] + rad([a]) + rad([t])
= |a—£| = (Ja] + |£]) + |[a]] + |4

Therefore (4) holds if and only if
la— 1] = lal + |,
ie.,
(1) sign(a) = 0 or sign({) =0 or sign(a) = —sign({) # 0.

By (2) and (3) we obtain A = sign(a)sign({), hence (11) implies A # 1, and con-
versely.
Again by (2) we get
sign(a' ) = sign(a — {);
thus (11) proves (6).

(b) [t] = 0 implies [a] = [a], and (8)-(10) hold. Therefore let [t] # 0. Together
with (7) this implies

(12) ([a]) > 101} > 0,
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hence 0 ¢ [a] and (a > |[t]} or —@ > |[t]]); thus 0 & int([a] — [t]) = int([a] ). By (2)
we get

([} = |a'| - rad([a]') = | — | — (rad([a]) + rad([(]))
= |a =1 = (lal = [{]) + ({a]) - |[8}-

Therefore (4) holds if and only if
Ja — il = fal - I,

i.e. sign(a) = sign(f), since |a| > |{] > 0 by (12). This implies (9), and conversely.
Inequality (12) and [a] # 0 yield |@| > |{], hence

sign(@') = sign(a — £) = sign(a).

It is obvious that sign(a) determines whether |[a]] = a or |[a])] =@

3. RESULTS

Mainly for reasons of notation, we start this section by recalling the formulae
describing the interval Gaussian algorithm.
Let [A]*®) € IR™™™, [)]*) € IR*, k = 1, ..., n, and let [z]° € IR" be defined by

(A1 =4, [0V = [b]

fork=1,,..,n-1,

[a](k) i=1,...kji=1,...,n,
(k+1) . _ A e . )
["] = [](“ [—]—["a—](krkél— i=k+1,...,nj=k+1,...,n
0 otherwise

[b](.k+‘) .

1]

[B)* i=1,...,k
B - “}u, BE =kl

@l = (00 = 3 W), = n-1),

=i+l
L . . .
where Y ...:=0. Note that [2]¢ is defined without permuting rows or columns.
j=n41

The construction of [£]¢ is called the interval Gaussian algorithm. It is feasible for
any [b] € IR" if and only if 0 ¢ [a]&), k=1,..,n
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This can be guaranteed for the following two classes of matrices.

Theorem 3.1. Let [6] € IR" and let [A] € IR"*"™ be an H-matrix. Then [z]¢
exists.

Proof. See [1]. O

Corollary 3.2. Let [b] € IR", [A] € IR"™". If ([A]) is irreducibly diagonally
dominant then [A] is an H-matrix, hence [2]¢ exists.

Proof. See [5] or [7]. 0

If {[A]) is weakened to an irreducible and diagonally dominant matrix, Corollary
3.2 needs no longer be true as was pointed out in Section 1 by a singular point matrix.
But even if [A] is a nonsingular interval matrix satisfying ([A])e = 0, the feasibility
of the interval Gaussian algorithm may fail as the example

2 1 -1
(M=~ 2 -1
-1,1] -1 2

shows; see [5] for details. In the same paper the following sufficient criterion was
proved.

Theorem 3.3. Let [A] € IR"™", n > 2, and let [b] € IR". Assume that ([A]) is
irreducible and diagonally dominant. If

sign(dgr), ifi#j

(13) sign(a;;) - sign(aix) - sign(ax;) = { ~ ifi=i
—sign(arr), ifi =j

for at least one triple (i, j, k) satislying k < i, j, then [z]€ exists.

Unfortunately, criterion (13) is not a necessary one as the example

2.2 0
(14) [A=lo 2 2
2 0 [2,4]

shows. Difliculties arise if d;; = 0. These zeros may vanish in a later stage of the
algorithm. Therefore we will associate with [A] an extended sign matrix §' which
takes this change into account.
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Definition 3.4. Let [A] € IR™™” and assume that the matrices [A]®) k=1

n, of the interval Gaussian algorithm exist. Define the sign matrices S, S(k) ¢ Rnxn
by

sij := sign(aij)
5

55 sign(n‘lid([a]g))).

i

Then the extended sign matrix S is defined by the process

’

S =85

fork:=1ton—1do
fori:=k+1tondo
forj:—k+lt.ondo

’ ’ '

ifs = 0 then s,_, = =8k SkkSkj -

S’ has been defined in view of (6) and (10) in Lemma 2.1. How it is related to
S*) in special cases will be explained later on. With its definition we are able to
formulate-the following necessary and sufficient criterion for the existence of [x]¢.

Theorem 3.5. Let [A] € IR"*" and let {[A]) be irreducible satisfying ([A])e =
Then [z]€ exists for any vector [b] € IR" if and only if

o ' l, ifi j
(15) 5155 .={ #

l]slkskksk] 1 ifi J
-1, 1=

holds for at least one triple (i, j, k) with k < i,j and with S' as in Definition 3.4.

To prove Theorem 3.5 we need some auxiliary results.

Definition 3.6. Let [A] € IR*™" and let [A](*) exist. Then the matrix m([A]) €
R(r—k+1)x(n=k+1) i defined by

k g
(i Lol
me([4]) := ..
@ @
Lemma 3.7. Let [A] € IR"*", n > 2, 0 € [a]1;. Then the following assertions
hold:
() (mallAD) 2 ma(([AD),
(b) ([A1®) > ([A)®,
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2 2
(c) {[A]))e { > } 0 implies ([A]'?)e > ([A])Pe { > } 0.
¢ 0

(&) I ([A)e i

> 0.

and if (([A])e); > 0 for some index i € {1,...,n} then ({[A]®)e)

Proof. (a)-(c) are proved in [5].

(d) follows by considering the i-th component of the inequality

(16) (AID)e > ([A)Pe = Ligap ([ADe) 2 1 - ([A])e.

This inequality holds with

|
iom Bl 0
L([A]) ‘= : e lRYl xn
(la ’:: 0 1
using (b) and ([A])® = Ly - ([A]). o

Applying Lemina 3.7 to the matrices m([A]), ! = 1, ..., k—1, one can immediately
prove the following lemma.

Lemma 3.8. Let [A] € IR™" and let [A]*) exist. Then the following assertions
hold.

(@) (A1) >
> 2
(b) ([A))e { > 3 0 implies ([A]%)e > ([A])*e { > } 0.

(ap®,

(c) If ([A))e = 0 and if ({{A)P)e); > 0 for some integer | < k and for some index
i€ {l,...,n} then (([A](k))e),. > 0.

Lemma 3.9. Let [A] € IR"™" and let ([A]) be irreducible with ([A])e > 0. Then
we gel

(a) ([a)ii) >0, i=1,...,n
(b) m2({[A])) is irreducible provided [A] has at least 3 rows.

Proof. See [5].
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Lemma 3.10. Let [A] € IR"*" and let ([A]) be irreducible with ([A])e = 0. Then

(a) ([ANX®), k =1, ..., n, exists, ([A])Fle = 0, m(([A]), k=1, ..., n—1,is
irreducible,

(b) [A]®), k =1,...,n, exists,

(c)0€e [a]f,':.) (i-e., [£]¢ does not exist for any vector [b] € IR") if and only if

(17) (A% = (AN, k=1,...,n.

Proof. The assertions are trivial if n = 1. Therefore we assume n > 2.

(a) We prove (a) by induction. By assumption, the assertions are true for k = 1.
Assuine now that they hold for some positive integer k < n. Then ([A])(F) exists and
7 ({[A])(¥)) is irreducible satisfying

(mel@a®)e) . = (ANGe)i =0, i=k.om,

where e = (1,...,1)T is chosen from R"~*+! on the left hand side. Replacing
[A] in Lemma 3.9 by m({[A])®)) yields ({[A])*))ix > 0, hence ([A])(*+1) exists.
Since m41({[A])) = ma(m({[A])*))) holds, part (b) of the same lemina shows that
mre41(([A])) is irreducible provided m({[A])*)) has at least 3 rows, i.e. k + 1 < n.
Lemma 3.8 (b) (case ‘=") completes the proof.

(b) Let & < n and let [A]*¥) exist. (This is certainly true for k = 1.) Since
([A])*+D) exists by (a) we get (([A])*+D)ix > 0, and Lemma 3.8(a) implies

(A5 = (([ADF)er > 0.

Hence [A]*+1) exists, and the proof is completed by induction.
(c) ‘=’ Let 0 € (a]s,':,) and assume that (17) is false. Then by Lemma 3.8(a)
there is an integer k£ > 1 and there are indices ig, jo € {k,k+ 1,...,n} such that

(18) (A1) = (A, 1=1,... k=1
and
(19) (A1 i0j0 > AN FYioj0

hold. If n = 2, (18) yields k = 2 = iy = jo, hence 0 ¢ [a]S,':,) which contradicts
our assumption. Therefore let n > 3. We slightly blow up the degenerate non-zero

entries of [A] such that the resulting matrix [B] possesses the following properties

(20) [B] 2 (4],
(21) ((B]) = ([4]),
(22) [b):;; # 0 = d([b];;) > 0.

214



Property (21.) and (b) guarantee the existence of [B](V, 1 = 1,...,n; (20) implies
(BIO D [A]D, 1= 1,...,n, hence ([B]D) < ([A]W),1=1,...,n. Property (21), once
wore, yields ([B])) = ([A])), 1 =1, ..., n. Together with Lemma 3.8(a) we thus
get

(23) (AN = (BN < ((BI”) < ([AIV), t=1,...,n,
therefore (18) yields
(24) (AN = (BN = ((BV) = (A1), 1= 1,... k=L

By continuity of the interval arithmetic operations we can choose [B] such that, in
addition to (20)-(22), the condition

(25) ([B1*Yiajo > (UIBNioso = (AN ®)inso
holds with ip, jo from (19). From (a), (23) and (25) we get

(26) 0 = ([A])®e = ([B])Fe < ([BI*)e

with strict inequality for the ig-th component.

We will show now that (7([B])) is irreducibly diagonally dominant. To this end
we remark that (([B])(®);; # 0 implies ({{B))(V)i; # 0) or (({[B])")i1 # 0 and
({[B])V)1; # 0), hence ([b);; # 0) or ([b)i1 # 0 and [b];; # 0). Taking

(27) ra(l([b]g?')) = rad([b];;) + rad ([b][z[:][ll"]u>

into account which is true by (2), we see that (([B])®));; # 0 implies [b]ff) £ 0.
Thus, since m2({[B])) is irreducible by (a), (w2([B])) is irreducible, as well. Moreover,
by (27), property (22) holds also for [B]®) instead of [B]. An inductive argument
shows that (w([B])) is irreducible, thus, by (26), mx([B]) is irreducibly diagonally

dominant. Therefore, Corollary 3.2 yields 0 # [b]'%) 2 [a)\% in contrast to our

assumption. This proves the assertion.

‘=’ By choosing k¥ = n in (a) and (17), we get (["]gt'rll)) = ([AD™)n =
(([«‘1])(")“—‘):; = 0, hence 0 € [G}S:.)- O

With the matrices S®*), S" from Definition 3.4 we can state our final lemma.

Lemma 3.11. Let [A] € IR"*" and let {[A]) be irreducible with ([A])e = 0. If
(A1 = ([A])D, 1 = 1, ..., k, then the following assertions are true.
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(a) s(” f,” HSU=1,..,k,i=1,... n, with the exceptionofk =n =1 =1,
where sn,, = s(m,) = s,m or ssm = 0 are possible.

(b) For any indices i,j with j > min{l,i},j # i, we have
(28) s =0,1=1,...,k

or there is an integer lg = ly(i, j) < k such that

O {0, I=1,..,0h-1

A IS l=lo,lo+1,....k

iy

Ifi<lorifj<lin(28), then

(30) st =5 = 0.

2

Proof. (a) The assumption, Lemma 3.10(a) and Lemnma 3.9(a) applied to
mi1(([A])) guarantee

(31) (@) = ([AND)ii >0, L=1,...,k=1,i=1,...,n.

Inequality (31) remains true forl = kifk < norif (k = nandi < n). Hence [a]g) #0
in these cases, and (10) proves the assertion. In the case k = n = { = i, Lemma
3.10(c) implies 0 € [a]g,':.) If [a]("','.) = 0 then ss,’:, = 0; otherwise (10) completes the
proof.

(b) The assertion follows by (6) and by the definition of 5. O

Proof of Theorem 3.5. ‘==’ Let [2] exist for any vector [b] € IR".
Then 0 ¢ [a]s,':.), hence by Lemma 3.10(c) and Lemma 3.8(a), there is an integer
k < n such that (([AJ*¥+));;, > ([A])(-kf” for some indices ig, jo. Let k be as

toJo

small as possible, i.e., ([A)V) = ([A)",{ = 1,...,k. Then ig, jo > k, and Lemma
2.1 implies
(k) () (B) (k) _ {l, if i0 # jo

S: 18,8 =
i0jo iok kk “kjo I .« T
=1, ifig =jo

In particular, none of these four elements of S&*) can be zero. By Lemma 3.11(b)
they must therefore be equal to the corresponding elements of S" which proves the
assertion with the triple (4, j, k) = (do, jo, k)-

‘<="Let (15) be true and assume that [2]% does not exist for any vector [0] € IR".
By Lemma 3.10(c) we get

(32) ((A1Dy = (AN 1 =1,...,n
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We first show
( )

k) _ (k X
Sik = Szkv Sk = Suv Skj) = Skj
for 4, j, k from (15). To this end, we remark that none of the four factors in (15) can
be zero. Since i,j > k there, we have k < n. Hence by Lemma 3.11(a), "L];c) = Spp-
If (29) hO](lb for s( ) then trivially slk) = G,L Otherwise, (30) with j =1 =k implies

s(,’;) =s, =0 Whl(‘ll contradlcls (15). Analogously one gets si’;) = sk]
We now show sfj) = ,-]- . This is obviously true by Lemma 3.11(a) for i = j, and

by Lemtna 3.11(b) for i # j provided (29) holds. In both these cases, (15) is fulfilled
with s replaced by s¢*). Hence by Lemma 2.1 we obtain ([AJEHDY; > (([ADYE+D),
contradicting (32). Therefore we must have i # j with (29) being false. By (28), we
get 9(“ = 0. Since

k) (k) (k) _
(33) S5k Stk Sk = 5i LSLLSLJ #£0
the definition of S yields s“"'l) (f)s(&’sﬁﬁ) = 9 . which results in s,] ik skks'kj =

—1 by virtue of (33). Thls contradicts (15). "lhcrcfore [z]¢ exists for any vector

[b] € IR". o

We illustrate Theorem 3.5 with the matrix [A] of (14). Here we have

1 1 0
s=1lo 1 1},
1 -1 1

therefore (15) holds for (i, 7, k) = (3,3,2), and [2]“ exists.
Replacing [a]ss = [2,4] by [a]sz = [—4, —2] results in

1 1 0
sS=10 1 1
1 -1 -1

and (15) does not liold as one easily checks. Therefore, [x]¢ does not exist.
Combining Corollary 3.2 with Theorem 3.5 we immediately get the main result of

our paper.

Theorem 3.12. Let [b] € IR", [A] € IR"*". Let ([A]) be irreducible and di-
agonally dominant. Then [z]¢ exists if and only if ([A]) is irreducibly diagonally

Co L, ifi#j
1] tkSLL‘SL] - S .

dominant or if
-1, ifi=y
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holds for at least one triple (i, j, k) with k < i,j and with S as in Definition 3.4.

We cannot dispense in Theoremn 3.12 with the passage ’if ([4]) is irreducibly diag-

€

19 illustrates. Here, (15} is apparently
not fulfilled although []¢ exists. Note also that no nonsingularity of [A] is assumed
in Theorem 3.12 .

onally dominant’, as the example [4] = (

If in this theorem [A] is not an H-watrix then

(34) (lail) =Y llagll =0, i=1,...,n.

J#E

Let in this case condition (15) be fulfilled. Then the feasibility of the interval Gaus-
sian algorithin is guaranteed for all interval matrices in some neighbourhood? of [A)
by the continuity of the interval arithmetic. This is, in particular, true for all non-
H-matrices which are sufliciently close to [A], a remark which is important in view
of rounding errors on a computer.

The equation (34) can easily be checked in practice (without rounding errors!)
when using programming languagues like PASCAL-XSC (cf. [6]) with its exact scalar
product facility—provided that [A] is representable by machine numbers, of course.

We will show now that Theorem 3.3 follows at once from Theorem 3.12.

Since in Theorem 3.3 the matrix ([A]) is assumed to be irreducible, none of its rows
can contain only zeros. Therefore, ([A])e > 0 unplies ([a]ke) > 0, hence sign(ar) # 0.
This shows that no factor in (13) can be zero. Thus it coincides with the correspond-
ing element of S' so that (13) implies (15) with the same triple (7, j, k). The assertion
of Theorem 3.3 now follows from Theorem 3.12.

If no element of A is zero, ([A]) is irreducible and S(V) = S, This is the base of
the following corollary.

Corollary 3.13. Let [A] € IR™*" with a;; # 0 for any i,j € {1,...,n} and let
([A]) be diagonally dominant. Then [z]% exists for any vector [b] € IR, if and only
if ([A]} is irreducibly diagonally dominant or if

1, ifi#j

sign(a; ) sign(dik ) sign(a, ) sign(ag;) = { L i
- =7y

holds for at least one triple (i, j, k) with k < ij.

2 We use the standard topology in IRnxn —f. e.g. [2)

218



We conclude our paper with a numerical example which illustrates the theory. Let
[A] € IR**® be defined by its bounds

1 1 1
451516\

‘\
(S0

[ L (N B
6 2 g8 16
A= L 1 1 1 1 and @ =
: 16 16 2 8 =] 1= . oo .0
3aij i
r i 1 1 1
g8 16 16 2 1
\: 1 1)
i 8 16 16 2

and choose [b] := ¢ € IR>. Then

[-0.6135, 2.5378]
[~0.5399, 2.5213)

(35) [x]9 € | [-0.5403, 2.5510]
[-0.7533, 2.4633)

[—0.3091, 3.2574]

where the numbers result from the interval Gaussian algorithin executed in PASCAL-
XSC on an HP Apollo 720 Workstation, taking rounding errors into account. We
expect that our numerical results overestimate [z]“ at most by one unit of the last
place being shown, since the dimension of the problem is not very high and since we
applied the exact scalar product of PASCAL-XSC as often as it was possible.

Note that in the example above the matrix [A] contains only nonnegative matrices
with row suims and column sums at most one. Such matrices belong to the class of
double substochastic matrices as defined in [4], p. 104. The upper bound A has row
sums and column sums equal to one and is thus a double stochastic matrix (see again
{4]). 1t is obvious that such matrices belong to the class mentioned in Theorem 3.12,
provided A is irreducible with diagonal entries being not less than one half.

The matrix [A] is not an H-matrix since {[A])e = 0. Corollary 3.13 applies with
(7,4, k) = (2,3, 1), e.g. Thus the interval Gaussian algorithm is here feasible in theory.
That it is also in practice, is shown by (35).
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