Applications of Mathematics

Jaroslav Kautsky
An algebraic construction of discrete wavelet transforms

Applications of Mathematics, Vol. 38 (1993), No. 3, 169-193

Persistent URL: http://dml.cz/dmlcz/104545

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104545
http://dml.cz

38 (1993) APPLICATIONS OF MATHEMATICS No. 3, 169-193

AN ALGEBRAIC CONSTRUCTION
OF DISCRETE WAVELET TRANFORMS

JAROSLAV KAUTsKY, Adelaide

(Received April 14, 1992)

Summary. Discrete wavelets are viewed as linear algebraic transforms given by banded
orthogonal matrices which can be built up from small matrix blocks satisfying certain
conditions. A generalization of the finite support Daubechies wavelets is discussed and
some special cases promising more rapid signal reduction are derived.
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1. INTRODUCTION

Wavelets are discussed explicitly, or in various disguises, in a wide range of litera-
ture on signal and image processing. Their mathematical foundation has been firmed
in the language of functional analysis through the works of Meyer [3], Daubechies [1]
and Mallat [2], to name just a few. Strang gives an excellent overview in [4].

Our aim in this paper is to give an algebraic exposition of discrete wavelet trans-
forms. After all, in any practical application (including those of signal and image
processing) we finish up working with finite sequences of values, often restricted to a
fairly limited range. We attempt to motivate the properties required of the transfor-
mation of data and show that these algebraic conditions fully determine the linear
transformations equivalent to those emerging as the discrete implementation of the
analytically derived wavelets. Furthermore, we propose a generalization which, al-
though mentioned in [1], does not appear to be treated in an analytical context, and
show the existence of such generalized wavelet transforms derived by simple algebraic
means.

The paper is organized as follows. In the two parts of §2 we motivate the algebraic
approach both by recalling the discretization of Mallat’s multiresolution analysis as
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well as by presenting a self-contained argument for the need for linear transforms
with certain properties. In §3 we give a formal definition of the discrete transform
by introducing a banded matrix X based on a small £ x n kernel matrix W and
formulate the basic requirements of orthogonality and regularity. In expressing the
requirements on X in terins of W we allow for the ratio between the lengths of the
original and reduced signals to be & > 1—that means that faster reduction rates
may be possible with wavelets with number of rows k larger than 2. In §4 we dis-
cuss the case k = 2 and we reconstruct the Daubechies finite support wavelets. In
the following §5 we derive some basic properties important particularly for the case
k > 2 and in §6 we use them to find explicitly the 3 x 5 and 3 x 6 wavelets. In
§7 we discuss, for general k, the k x 2k wavelets for which we indicate the maxiinal
achievable regularity and derive, after numerical exploration, explicit formulae for
wavelets of fixed regularity. In §9 we show that wavelets with larger k are poten-
tially superior to those with k = 2, by both theoretical considerations as well as by
presenting numerical results demonstrating their performance. The last §10 contains
conclusions.

Although we refer to the analytical exposition of the wavelet transforms the paper
is essentially self-contained; it is hoped it demonstrates that wavelets can be treated

by simple algebraic means.

2. MOTIVATION OF THE ALGEBRAIC APPROACH

2.1. Matrix representation of the multiresolution analysis.

In multiresolution analysis (see, e.g. [2]), a continuous signal is represented by a
doubly infinite sequence of coefficients fj; which arise from projecting the signal into
a sequence of imbedded subspaces ¥%; C ¥j 4, with suitable bases. The discretization
is immediate—for fixed j, the coefficients can be viewed as the signal values sampled
at a certain rate. For every resolution level j, the sampling rate is different, usually
double of that of level j — 1. The continuous signal can be approximated by forming
the series using the coefficients and the corresponding basis functions; this, however,
is not relevant to our considerations here. Some information about the signal is lost
when moving from fj41r to fik, that is from the finer discretization level j + 1
to the coarser level j. This lost information is represented by the complementary
sequence of delail coefficients dj; which are in fact coefficients of the signal expansion
in the orthogonal complement of ¥; in ¥j4;. The basis functions in this orthogonal
complement last subspaces are actually called wavelets.

Multiresolution analysis, that is the subspaces, their bases, etc., can be charac-
terized in several ways. The one which is directly relevant to the discretization is
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through two discrete filter sequences H = {h;} and G = {g;} about which it is
shown ([2]) that

(2.1) fir = hoeoifjpni

(2.2) djx = Eg2k—ifj+1,i-

The filters H and G are also called quadrature mirror fillers or low-pass and high-
pass filters in different contexts. They are closely related (in fact one determines the

other) and satisfy certain properties of which the following are of interest here.

o Complete recovery, i.e. invertibility of (2.1) and (2.2). In other words, the sequence
fi+1,% can be obtained from the two sequences fj; and dj;.

e Orthogonality, which means that the recovery is achieved essentially by the same
filters H and G.

e Regularity (of order p) which means that dj; vanishes whenever fj4; is a poly-
nomial (of degree less than p) in k.

This last property applies locally (in k) if the filters have finite support (i.e. only
finite number of nonzero coefficients), or at least approximately locally, if the filters
decay sufficiently fast and are truncated to finite support.

For practical impleinentation, only finite discrete signal sequences are available,
which may be considered as a discretization at some resolution level J: fJ =
(fa1 fo2 ... f_,N)T and the processing involves the calculation of fj; for several
lower resolution levels j = J — 1,J — 2,... . To preserve, for the finite case, the
above properties which hold for infinite sequences of coefficients, it suflices to extend
the signal periodically (with or without symmetry depending on the symmetry of
the filters). Nevertheless, from N (even) values fj1 1 we obtain only :i,-N values of
both f;i and dj; due to the double shift in centering the filter convolution (called
also undersampling).

With this periodicity and undersampling taken into account, the equations (2.1)
and (2.2) describe a finite dimensional linear algebraic transforn F7 = X fi+1 where
FJ contains both the signal and detail at the j-th level and X is a sparse square
matrix the detailed description of which is given in §3 in terms of a kernel matrix
formed by the coefficients h; and g; of the filters H and G.

2.2. Algebraic motivation of the wavelet transform.
A discretized signal, that is a vector f of a potentially large size N, may contain
redundancies which could be represented in a more efficient way than through a large

number of data values. The simplest redundancies are blocks of repeated values or,
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more generally, blocks of values representable as polynomials of low degrees. To

identify such redundancies automatically, and thus, if required, pre-process the signal

for compression, we seek a linear transform g = X f with the following properties.
The nonsingular matrix .X is blocked into two parts producing

(N _ (X v
g—<fd)_(Xd)f—l\f

and is chosen in such a way that the detail f; is small or vanishes on the redundacies,
e.g. polynomials. The significant information contained in the original signal f is
then concentrated in the reduced signal f,.

The original signal can be reconstructed by the inverse transformation f = X~!g.

This reconstruction may be only approximate for several reasons:

e round-off errors,
e using an approximate inverse and
¢ replacing g, particularly the detail part fq, by its approximation (e.g. as a result

of data compression or transmission errors).

The transformation may be repeated, with smaller matrices X and in a tree-like
(pyramidal) fashion, on both parts of g, i.e. on both the reduced signal f, and the
detail f4. The reconstruction then follows the appropriate reversed path.

The requirements on matrix X are as follows:

e The multiplication X f should not be expensive - X should be sparse, banded or
block banded (possibly after permutation).

e The inverse should be simple to obtain and numerically stable - X could have
orthogonal rows, XX7 = D%, a diagonal matrix. We can then either use the
orthogonal matrix D}ll\' or, simply, X~ = XTD}z.

e The detail part of X should satisfy X4C = 0 for some given constant matrix C of
a set of simple signals, e.g. polynomials.

As an example, consider, for N = 2m even, the transformation

4\,=Pdiag(W2,VV2,...,W2 s "VQ: % (1 —11)
mx
where P is a permutation matrix comprising the odd numbered rows of an identity
followed by the even numbered rows. Clearly, X is a multiple of an orthogonal matrix
(the scaling chosen preserves the magnitude of the signal values) so that the inverse
operation (recovery) is performed by 2X7T. The multiplication X f requires O(N)
operations due to the very sparse structure of X and the detail vanishes whenever

two adjacent values in f are equal. In what comes later, we call this W5 a 2 x 2
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orthogonal order 1 kernel wavelel matriz (or just orthogonal wavelel, for brevity). In
this case, Wy being square, there is no need for periodic extension of the signal.

3. MATRIX FORMULATION OF THE WAVELET TRANSFORM

In this section we show how to construct the transformation matrix X, introduced
intuitively in the previous section, starting from a small building block, a kernel
wavelet k x n matrix W which, for brevity, we may also call a wavelet. We formulate
the requirements of regularity (polynomial order) and orthogonality of X in terms of
this kernel wavelet matrix. We are going to consider general k 2> 2 which corresponds
to undersampling (see section 2.1) by a factor k, or, in other words, while the first
row of W is the low-pass filter H, all other k — 1 rows of W play the role of the
high-pass filters (.

In what follows, I and O will denote the identity and zero matrices, respectively,
of appropriate sizes. We also use o for zero vector, e; for the j-th column of the
identity matrix and 1 to denote a vector of 1’s of a suitable length. Euclidean norm
of vectors will be denoted by || -||.

We partition the k& x n matrix W into
(3.1 (W 0)=(A41 Ay ... Ay)

where 0 < kq — n < k and all Aj are square k x k matrices (A, may have some zero
columns when k does not divide n). When we express the convolution of W with
the finite discrete signal f (that is the repeated inner products) in matrix notation,
the wavelet matrix W must be shifted k positions to the right after each application
(the undersampling). Furthermore, to take in account the periodical extension of f,

observe that we have for, say, n = 2k and N = 3k (length of f)

Ay A2 O O O O f Ay A O
O A A, O O O ( ) =0 A Az f.
O O A 4 O O Ay O A

Not surprisingly, a nonsquare matrix of shifted wavelets is converted, due to the
assumed periodicity of the signal, to a circulant matrix. This leads us to the following
definition.
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Definition 3.1.  Given N divisible by k and W partitioned as in (3.1) we denote
by Xcir(W, N) the circulant N x N matrix

A Ay ... A, O ... O O

O A ... Agy Ay ... O O
(3.2) Xeie(W,N) = et ..

Az Ay ... O O ... A A

Ay Az ... O o ... 0O A

All that remains now is to separate the reduced signal from the detail. As we shall
see later, it is useful to separate the detail generated by different rows of W as well.

This is expressed as follows.

Definition 3.2.  Given again N = mk, let Py be the N x N permutation
matrix selecting first the 1 mod k& rows, then the 2 mod k rows, etc. Given, also,
a k x n wavelet matrix W we define the N x N wavelet transform matrix by

X(W,N) = Py Xcie(W, N)
where the circulant matrix X (W, N) is defined as in (3.2).

The purpose of the permutation matrix P,k is, as indicated above, to split the
reduced signal and the detail, as produced by the rows of the kernel wavelet W. The

~ _ T .fr)
g_Pm,k(fd

merges the separated reduced signal and details into an N-vector ordered for multi-

inverse operation

plication by the inverse of the circulant matrix above. We repeat that this splitting
and merging corresponds to what is also called undersamnpling and oversampling.

We now wish to express the conditions imposed on the transform matrix X in §2.2
in terms of the generating matrix W.

Firstly, the sparseness is assured by definition and the multiplication X (W, N)f is
of O(Nn) complexity; even lower complexity may be achievable by exploiting special
properties of the elements of W.

Secondly, the orthogonality depends on W having rows and also partial rows
orthogonal to each other. This can be formulated as follows.

Theorem 3.1. Let W be a k x n matrix partitioned as in (3.1). The transform
matrix X(W, N) has orthogonal rows if and only if the following conditions hold:

(3.3) WWT = D}, = diag(w?, wl,...,w}), w;=|WTe|, j=1,...,k

J
(34) Y AAl, =0, j=12,...,9-1L

i=1
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Furthermore, X (W, N) will be orthogonal if also w; = ... = w; = 1, i.e. if W has
normalized rows.

Finally,‘ the concept of polynomial order, or regularity, is of critical importance to
the concept of wavelets. We introduce the following definition to make it specific.

Definition 3.3. The N x N transform X = (X;r,\';r )T is said to have polyno-
mial order p if XqCp v = 0 where the N x p matrix Cp v = (¢j ) has elements

Cjkzjk_‘, j=1,...,N, k=1,...,p.

We note that, as X is banded, the elements of f4 vanish even if only a part of the
signal f (of length equal to the bandwidth) has polynomial character.

It is now obvious that the polynomial order requirement translates directly into a
constraint on the wavelet matrix.

Theorem 3.2. The transform matrix X(W, N) has polynomial order p if the
k x n kernel wavelet matrix W satisfies, for some vector x,

f ) al a:T
(3.5) WCpn = ( 5 )

where C), ;, is defined as in Definition 3.3.

We will refer to (3.3) as the main orthogonality conditions, to (3.4) as the shifted
orthogonality conditions and to (3.5) as the regularity or order conditions. A matrix
W satisfying the three sets of conditions above will be referred to as an orthogo-
nal wavelel of order p or a p-order orthogonal wavelet (normalized, if it also has
normalized rows).

Our aim is to investigate the existence of orthogonal wavelets of various sizes and

of a given order. We have an immediate simple result.

Theorem 3.3. Ifn = k(q— 1)+ 1 then an orthogonal wavelet W of size k x n

has, in fact, size k x n — 1.

Proof. For n = 1 mod k the matrix A, in (3.1) vanishes but for the first
column, ie. Ay = aeT where a = Aje; = We,, is the last column of the wavelet.
The shifted orthogonality condition (3.4) for j = | is now A;AI = Aje1a” = 0so
that either the first or last column of W must vanish. That makes it a k x n — 1
wavelet. a
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More generally, we may compare the number of free parameters with the number
of algebraic conditions required to hold for an orthogonal wavelet of order p. There
are

. %k(k — 1) main orthogonality conditions,
o (¢ — 1)k? shifted orthogonality conditions and
e p(k — 1) order conditions

making a total of -;-k(‘l(kq +p) — k—1) — p conditions.

Considering that the rows have yet to be normalized, there are (n — 1)k free
parameters to choose in a k x n wavelet . In §5 we will show that, for £ > 2, there
are in fact %(k—‘l)(k—l) fewer free paramneters. Subtracting the number of conditions
we find that there are (k — 1)(1 — p) — k(kq — n) more parameters to choose than
conditions specifying a p-order orthogonal wavelet. This appears to imply that, even
for n = kq, the maximal possible order of orthogonal wavelets is p = 1. Wavelets of
higher order exist, indicating that the orthogonality conditions are not independent.
In the following sections we use an algebraic technique to unravel this dependency
and to find some higher order wavelets.

4. k = 2: DAUBECHIES WAVELETS

In this section we discuss 2 x n orthogonal wavelets. By Theorem 3.3 there is no
need to consider odd n so we assume that n = 2q is even. The W o, wavelets are
related to Daubechies orthogonal wavelets D, with compact support.

With arbitrary normalization we have 4¢ — 2 free parameters and 4¢ + p — 3
conditions for a p-order orthogonal 2 x 2¢q wavelet

29
VVz,gq = {wij}izzl j=1°

This appears to imply that only order p = 1 is achievable for any ¢ (trivial for ¢ = 1

with Wy 9 = ( ). However, Daubechies [1] shows that p = ¢ is possible.

1 -1

-1
We denote W = (A; Ay ... Aj)and Z = (? 0 ) The shifted orthogo-
nality condition (3.4) states that
j
(41) ZA;A;F.H_J:O» ]21,,([—1
i=1

The Djy wavelets are determined [1] by the signal (low-pass filter) coefficients w;.
The detail (high-pass filter) coeflicients satisfy, possibly up to a factor, wy; =

176



(—l)jwl,n~j+1 which we may write as
(42) eg‘Aj :eTAq_j+1Z, j: 1,...,q

This special relation cuts the number of free parameters in Wa 24 by half, i.e. to 2¢—1
but has the most dramatic effect on the 4¢ — 3 nonlinear orthogonality relations—
it satisfies 2¢ — 1 of them explicitly while making the remaining 2q — 2 pair-wise
identical. Thus only ¢ — 1 nonlinear equations

J
(4.3) ZeTAiA;r+i_je,:0, ji=1...,q—1, s=1lor2

i=1

remain. It is therefore obvious that we can subject the 2¢ — 1 free parameters to
p = ¢ linear equations (3.5) (with & = 2) and to obtain the order ¢ wavelet W 54 by
solving the ¢ — 1 nonlinear equations (4.3). For ¢ = 2 this can be done explicitly to
obtain the Daubechies D4 wavelet. For larger ¢ we used a simple MATLAB program
to find, without great difficulty, orthogonal wavelets up to size ¢ = 8, not necessarily
the same as in [1], depending on the initial value supplied to the solver.

The choice (4.2) is ingenious and its motivation can be found in the analytical
exposition of wavelets (e.g. [1], [2]). We observe that it is not clear that the orthogo-
nality conditions imply this relation between the first and second rows of W 2,. We
may formulate this explicitly.

Proposition 4.1. If a wavelet Wy 24 = (wij)iz=l]?(_'-.l satisfies the main and shifted
othogonality conditions then it also satisfies wy; = y(—1) wy 20-j41 for some con-
stant .

It is possible to prove this proposition by considering certain polynomials associ-
ated with the coefficients w;j. Here we will show it true for ¢ < 3 by a more algebraic
argument. It remains, however, an open question whether such a proof can be easily
extended to wavelets of order ¢ > 3. The relation (4.2) between the free parameters
gives little insight about what to do in case k > 2. The alternative approach to
proving Proposition 4.1 gives us such an insight.

We start with (4.1) for j = 1, that is A;AT = 0. If either of the matrices is
nonsingular, the other must vanish; for nontrivial solution both must therefore have
rank 1. With the normalization Aje; =1 = (1 1)T and noting that 27 Zz = 0
for any 2- vector & we conclude that

(4.4) Ay =1wT, Ay =Tz
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for some vectors w = (1 a )T, v = (a2 a3 )T. So we have lost 3 out of 6
parameters in matrices Ay, Ay but satisfied 4 equations. Moreover, we have structural
information about these matrices.

For ¢ = 2 the main orthogonality condition (3.3) implies 1 + a3 = 0 from which,
and from (4.4}, the Proposition 4.1 follows. A simple calculation shows that we get
the same result as D, by solving the two regularity equations for the wavelet of order
2.

For ¢ = 3, a similar rank argument using (4.1) for j = 2 leads to Az = a4(A; +
Ag)Z and again, | + aza3 = 0 from (3.3), and the Proposition 4.1 follows. The three
order conditions can again be solved.

For ¢ > 3 the matrix argument using the shifted orthogonality condition to obtain
structural information on matrices Aj, j = 2, ..., ¢ — 1 becomes complicated. We
observe that, contrary to the choice (4.2) which resolves the main orthogonality
conditions and some shifted orthogonality conditions, we are starting here with all
the shifted orthogonality conditions. The advantage of the rank argument is that it
extends easily to the k£ > 2 wavelets.

There is one more property of Daubechies wavelets left to mention. If the order
of a 2 x n orthogonal wavelet W is at least 1 then the sum of the signal coeflicients
o = el W1 is related to its norinalization w;, = ||eT W|| = ¢/v/2. This is important
in signal processing as the reduced signal of values, say, in interval [0, 1] will have
values in [0,0]. We prove this relation, by algebraic means, for the general (k > 2)
orthogonal wavelets in the next section.

5. SOME PROPERTIES OF GENERALIZED WAVELETS

In this section we discuss properties of k x n wavelets with & > 2. We first
derive the relation between the sum o = €7 W1 and the normalization of the wavelet
mentioned in the previous section.

Theorem 5.1. If W is a k x n orthogonal wavelet of order at least 1 then

(5.1) o=elW1=Vk|eTW||.

Proof. We apply Theorem 3.1 with N = k¢, 0 < kg — n < k and note that the
circulant matrix

A Ay As . Ay A,

A .. A A
Xcir = Xcir(Wy kq) = 2 A3 A4 ! !

Aq A Ay ... Aq_l Aq—-l
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has orthogonal rows. Denoting, as before, WW7 = DZ,, Dy the diagonal matrix of
T
cir
repeated ¢ times. As W1 = oe; by the order assumption, we have

norms of rows of W, we have X X% = D? D a diagonal matrix consisting of Dy
i) cir L]

kg =171 =1TXT D72X:1 = (1T WT D *W1 = qo%e]l D} e,

cir
from which the result follows. ]

We now present two more properties typical for k > 2. It is useful to partition W
into the reduced signal w, and detail Wy parts (i.e. W = (w, W7 )T) First we
observe the following:

Lemma 5.2, If W is a k x n normalized orthogonal wavelet of order p and if ) is
an orthogonal k x k matrix such that Qe, = e, then QW is also a k x n normalized
orthogonal wavelet of order p.

The proof is obvious but it is worth noting that the normalization is essential
here. We have therefore a range of equivalent orthogonal wavelets of the same order,
nontrivial for k > 2 (for k = 2 the only possible @ is the identity). The equivalence
of these wavelets means that they all produce the same reduced signal and that the
homogenecous properties of Wy (like order p) are preserved.

Theorem 5.3. For any normalized orthogonal wavelet W of order p there exists
an orthogonal k x k matrix Q such that Qe;, = e;, and the equivalent wavelet
Wy = QW is upper Hessenberg, i.c. el Wy ¢j =0 whenever i > j + 1.

Proof. Use the QR decomposition of Wy (i.e. W without the first row) and
Lemma 5.2. O

This theorem implies that to investigate the existence of orthogonal wavelets of
certain size k x n and order p it is sufficient to consider those with %(L —-2)(k-1)
zeros in the bottom left triangular part of W. This, in turn, considering that the
rows are yet to be normalized, means that we have nk—1— %k(k‘ —1) free parameters
to choose in a k x n wavelet W as envisaged in Section 4.

We introduce a more detailed concept of polynomial regularity or order—for k > 2

some rows of W may be more regular than others:

Definition 5.1. Let p = (p2,ps,---,pk) be a vector of integers. We shall say
that W is of order p (or a p-order wavelet) if

(5.2) e WCp,n=0" j=23,.. k
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As the order of all rows in W except the first is not significant, we may assume
that the elements of p are ordered. We now have a result concerning the maximal p

for a p-order generalized wavelets, i.e. for those with k£ > 2.

Theorem 5.4. For any normalized orthogonal wavelet W of order p there exists
an orthogonal k x k matrix Q such that Qe; = e, and the equivalent wavelet Wiax =
QW is a p-order wavelet where p = (p,p+1,....,p+ &k —2).

Proof. Wechoose the nontrivial part of @ from the QR decomposition of the last
k — 2 columns of WgCpik—-2,n (the first p columns vanish by the order assumption).

(]

This theorem asserts that we can modify any p-order orthogonal wavelet to increase
the polynomial order of some parts of the detail.

As the first step in the discussion of the existence of orthogonal wavelets of various
sizes we conclude this section with the special case n = k. Here X¢ir(Wi i, N) is block
diagonal (no overlap in (3.2)).

Theorem 5.5. For any k > 1 there exists an orthogonal k x k p-order wavelet
Wmax, where p = (1,2,..., k= 1).
There are no p-order orthogonal k x k wavelets for p > 1.

Proof. As ¢ = 1 in (3.1) there are no shift orthogonality conditions on Wy .
Using the upper Hessenberg form of Theorem 5.3 we obtain the k& x k orthogonal
wavelet,

1 1 1 1 1

11—k 1 1 1 1

Wy = 0 2—-k 1 1 1
0 0 .. 0 —-11

which obviously has order 1, and this order can not be improved. We obtain Winax
from the normalized Wy by Theorem 5.4. a

Matrix Wnax can be also constructed directly. It appears that in non-normalized
form it can have integer elements. For example, the last row contains binomial

coefficients with alternating signs.
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6. SPECIAL CASES OF k > 2 WAVELETS

In this section we discuss two particular cases of generalized wavelets. For k = 3
the smallest interesting case has n = 5.

6.1. The W35 wavelet.
We will partition the wavelet as

W35=(A [ B)

where A and B are 3 x 2 matrices and we may choose, for normalization (taking into
account Theorem 5.3 with some modification), e = (1 1 O)T.

The shifted orthogonality condition ABT = O implies that any nontrivial A and
B must both have rank one and the form

A=az", B=0bz"2Z, Zz((l) -Ol)

where, to avoid duplicating free paramneters, we denote @ = (1 o B)T, b =
(v 6 1 )T andz = (A pu )T. The wavelet thus has the form

Aoop 1oy —yA
Wags = aX ap 1 ép —6A
BAX B 0 o =X

which satisfies the shifted orthogonality conditions explicitly. We have six free pa-
rameters and three main othogonality conditions so that order 2 regularity, which
requires 4 additional conditions, is not likely to be possible.

We will further describe only the results of the calculations which were performed
using the symbolic calculation package MAPLE.

We use the two order 1 linear relations to eliminate A and p. The two main
orthogonality conditions involving the third row of W35 have simpler form than the
third one and give immediately 3 = —y and 6 = a7y. Substituting all this into the
third main orthogonality condition we obtain a = —-;-. All these conclusions are
necessary for nontrivial solutions. We thus obtain a one parameter family of 3 x 5
order 1 wavelets in the form

-y I4+y 1492 (49 (-9
61)  Wis=[ v=1 —y=1 2047%) -(1+7)7 (-7
(I=7)y (I+9)y 0 -1-9 11—~y
Applying Theorem 5.4 we can now construct a family of 3 x 5 wavelets of order

(1 2). The expressions for the second and third rows of these wavelets involve
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polynomials in 4 of degree up to 5 with integer coefficients. As the third row is
already of order 2 we may now try to choose ¥ to satisfy the order 2 condition
for the second row - that would lead to an order 2 wavelet W35. However, further
MAPLE calculation shows that this condition simplifies to

139 — 4892 + 13492 — 48y + 13 =0
which has only complex roots. We have therefore established the following result.

Theorem 6.1. There exist a family of 3 x 5 wavelets of order 1 the Hessenberg
form of which is given in (6.1) but no real 3 x 5 wavelet of order 2.

We note that for v = 1 the Wss reduces, but for a multiplicative factor, to the
3 x 3 wavelet of Theorem 5.5 with k£ = 3.

6.2. The W3 wavelet.

Our first attempt to find a 3 x 6 wavelet of order 2, without the benefits of Theo-
rems 5.3 and 5.4 and without using the rank argument, was to find the 18 unknowns
from the 4 linear order equations and 15 nonlinear orthonormalizing equations by
least square minimization. This approach failed, as did the first attempts using sym-
bolic calculation on the non-Hessenberg forin of the wavelet. However, the following
approach leads to the solution.

We will partition the wavelet as

Was=(A B)

where A and B are 3 x 3 matrices.

The shifted orthogonality condition ABT = O implies that nontrivial A and B
must have rank at most two and one, respectively. We choose A to be in the Hes-
senberg form (Theorem 5.3) and therefore B to have rank one. Choosing the nor-
malization to simplify the wavelet we obtain the form

1l a=-pB v—6 o)X —0b6 op
Wiss=11 a ¥ TA —-16 10
0 B 6 ex —pb of

which satisfies the shifted orthogonality conditions explicitly for A = aé — By. We
have seven free parameters and three main othogonality conditions so that order 2
regularity, which requires four additional conditions, is likely to be possible.
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Again, ‘we only describe the results of the MAPLE calculations leading to the
solution. We use the two order 2 linear relations to eliminate 7 and g obtaining

_ 3420+ _28+46
TTo3-s5 > T —s
A nontrivial combination of the two order 1 linear relations, which eliminates A,
yields
= a+ 26.
-1

The two main orthogonality conditions involving the first row of Wae give, after a

not so short calculation,

542a -7

_ _ (1 =2a+9)(1-9)
T B4+ 2a+7)(1-2a+7) '

542 — 7

[

We still have one main orthogonality condition and either of the identical order 1
conditions, both rational in « and 7, with numerators of degree 4 and 2, respectively.
To our surprise and delight, MAPLE produced an explicit solution of the form

(!_293—1357—13072
- 200y — 214’

95072 — 475y — 571 =0

which yields two real solutions v;,2 = 1/4 & 41\/ﬁ/380.

The Hessenberg form of the 3 x 6 wavelet can thus be obtained by back substi-
tution in the above formulae. We have used MAPLE to evaluate it to 17 digits
and MATLAB to produce the normalized, maximal order (2 3) form, presented in
the tables below (the above formulae can, of course, be implemented in MATLAB
independently of MAPLE). We observe that the first rows of the two wavelets differ
only in orientation while the others appear significantly different. The orthogonality
and order conditions have been numerically verified.

WJs wavelet of order (2 3), version with v,

first row

second row (order 2)

third row (order 3)

0.33838609728386

—0.18891776559956

0.37551320045549

0.53083618701374

0.02941808858961

—0.83095884420054

0.72328627674361

—0.29996861472639

0.35003638840610

0.23896417190576

0.78683311028654

0.18051189543004

0.04651408217589

0.15315609724545

0.03513641844631

—0.14593600755399

—0.48052091579565

—0.11023905853741
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Wi wavelet of order (2 3), version with 7;

first row

second row (order 2)

third row (order 3)

—0.14593600755399

0.57180800871317

—0.28767215433970

0.04651408217589

—0.33573028308050

0.76068600730791

0.23896417190576

—0.69554601736901

—0.57842310830715

0.72328627674361

0.20868152180886

0.04787482447101

0.53083618701374

0.15315609724545

0.03513641844632

0.33838609728386 0.09763067268203 0.02239801242162

7. Wi ok WAVELETS: DISCOVERY BY COMPUTATION

In this section we discuss the k x 2k wavelets. We first investigate what polynomial
order we may expect to achieve by comparing the number of conditions with the
number of free parameters. Next we choose one form of the Wy or wavelet and show
how to obtain a k — 1-parametric range of such wavelets of order 1. We then seek to
choose these parameters to achieve polynomial order 2 and derive explicit formulae
for such wavelets. The way towards these formulae was, however, through extensive
computations, both numerical and symbolic, and we consider it of interest to indicate
how the results have been achieved.

7.1. Maximal order considerations.

There are 2k? elements in a k x 2k matrix but we know that such a parameter
count is misleading. We have to consider the implications of the shifted orthogonality
conditions and the multitude of orthogonal wavelets of given order expressed in
Lemma 5.2.

We partition the wavelet

W=(A B)

where A and B are k x k matrices. The shifted orthogonality condition ABT = O
implies that rank(A) + rank(B) < k and we may choose equality for the maximal
number of free parameters. Let j be the number of linearly independent rows of A
and assume that they are rows 2,3,...,j+ 1. We further assume that it is the other
rows (i.e. first row and last £ — j — 1 rows) of B which are linearly independent.
Taking into account Theorem 5.3 we can assume A to be in Hessenberg form; this
implies that the last £ — j — 1 rows of A vanish. This means that the last £ — j + 1
rows of B.may be assumed to be in upper triangular form by application of Lemma
5.2. Finally, we normalize all rows chosen as linearly independent in both A and
B by choosing the first (generically nonzero) element to be one. As an illustrative
example, for k = 6, j = 2 the wavelet matrix has the form
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d d d d d 1 r xr zrr xr x
Il 2z 2z 2 2z 2z d d d d d d
01l 2z z 2z z d d d d d d
B) =
(A ) 0 00 00 0 1l =2 2 zz = =z
00 0 0 0 O0O0 1l 2z 2 2 =z
00 0 0 0 00 01l 2 z =z

where d denotes elements of the dependent rows and z of the independent ones.

As each dependent row of B is determined by k — j coeflicients, and the only
dependent row of A by j coefficients, it is easy to count the number of free parameters
to be

1 . .
Nrp = (k= 1)(k +2) +2j(k - ).

The number of main orthogonality and polynomial order conditions is as discussed in
§3; for the shifted orthogonality conditions to be satisfied we only need the linearly
independent rows of A and B to be pair-wise orthogonal. This gives

Neona = (k= 1)+ 54) + (& = j)

for polynomial order q. Subtracting we obtain that maximal achievable order should
satisfy

(7.1) a(k = 1) <k = §) + & — 1.

This bound is obviously maximal if j is %k (possibly rounded to an integer value).
The following table indicates what maximal order, and number of free parameters,
may be possible for the k& x 2k wavelet matrix.

k13[4]5(6]7[8]9(10|11]12]13
ql212(212({3|3|3] 3| 4| 4| 4
free param. |0 1{2|4|0|2]{4] 7| O 3| 6

We leave as an open question the existence of higher order wavelets and concen-
trate, in the rest of this section, on the choice j = k — 1 where A is rank £ — 1 upper
unit Hessenberg and B is of rank one. We note that in this case (7.1) simplifies to
¢ < 2 so that the best expected order, for all values of k is 2, with no further free
parareters.

7.2. Wi 21 wavelet of polynomial order 1.
We now discuss the wavelet

W=(A B)



where A is a unit Hessenberg matrix of rank k£ — 1 (the first row is a combination of
the others) and B = baT is of rank 1. For normalization we choose the first eleinent
of b and the last element of a to equal 1—this is not significantly different fror the
previous section. For later convenience we index the elements of A, @ and b in reverse
order, i.e. e;rAej = Phoittk—j+1, @ = (ag ... a2 a)T and b= (b ... by b)T.

As each extra order requires k — 1 constraints, we expect, from the maximal order
considerations, to be able to choose k — 1 parameters and yet obtain an order 1
orthogonal wavelet. Either vector a or b is thus a good candidate. We observe that
the row k£ — j + 1 of W is subjected to one polynomial order condition, one shifted
orthogonality condition (which here reduces to Aa = 0) and, assuming the last rows
are already known, a further j — 1 main orthogonality conditions. Moreover, these
conditions are linear equations in the j+ 1 unknown elements b; and rj;, i =1,...,7,
assuming the vector a is given. This applies to all rows but the first one (j = k),
where there is no polynomial order condition, but we have b, = 1. The following
result is therefore indicated.

Proposition 7.1. Given the normalized vector a there exists a unique k x 2k
orthogonal wavelet W of order 1, in unit Hessenberg form. This wavelet can be
constructed explicitly.

We have implemented the above construction and used it extensively in computa-
tions described in §7.3. We did not encounter a situation where any of the & linear
systems were singular but we are curious to know the precise conditions for their
nonsingulsrity. Denoting the sum of elements in @ by ¢ = 1Ta, the solution of the
first 2 x 2 system is (for general a;)

(7.2) ry = a,_, b= ——

as long as o and a; do not vanish (this justifies our normalization a; = 1).

At first sight, as the elements of a larger linear system depend on the solutions of
the previous smaller systems, we could not see how to make a general statement about
the nousingularity of all these systems. However, a few hours of using a symbolic
computer program (such as MAPLE) reveals a simple pattern for the solution and
o # 0 is indeed sufficient for its existence.

Theorem 7.2. For every vector a such that el a = I and 1Ta # 0 there exists
a unique k x 2k orthogonal wavelet W = (A ba") of order 1, with vector b and a
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unit Hessenberg A given by

bj = oxlajr05 — 0j)/(erd), j=1,2,...,k=1, b =1,
rji = (05(ai + aj1) = ¢ — (G + of/er)aiazn)/dj, i=1,2,...5, §=1,2,.. k-1,

rei=ocfor—a;, i=1,2,....k
where

dJ (J+GE/QK)Q]—U_;Z1 ]:1727'1k_11
oci=a)+a+...qaj,

af+(1§+...af-, j=12,... k.

1l

]

Proof. The proof of this Theorem (which also proves the previous Proposition)
is by direct substitution. The d;’s, which are proportional to the determinants of

the linear systems mentioned above, are positive because

jej — o} = Z (as — a;)® > 0.
1<s<t<i

7.3. Wy 21 wavelet of polynomial order 2.

We have shown, for every k > I, the existence of a (k — 1)-parametric range of
“order 1 orthogonal k x 2k wavelets. The free parameters can be chosen to achieve
further properties of the wavelet.

In particular, we may require the last & — 1 rows of the wavelet to satisfy the
order 2 conditions. We thus have k& — 1 nonlinear equations for the £ — 1 unknowns
in the vector a, the last element of which is 1. We used the standard MATLAB
solver fsolve to find such order 2 wavelets for values & < 9. In fact, we performed
an extensive search using randoin starting values to obtain some empirical evidence
on the number of distinct solutions to this set of equations for £ > 3; we know, from
§3 and §06, that for & = 2,3 we have exactly two distinct solutions. However, for all
k > 3 we also obtained exactly two distinct solutions but the larger was k, the fewer
starting values lead to convergence. Morever, the final values of a form, for different

k, a triangle of interleaving numbers (for each branch of solutions) as listed in the
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following table.

Vectors @ determining k& x 2k wavelets of order 2

First solutions, sizes k = 2,3,4,5,6,7

1.7320508

2.1374586

2.3899749

2.5615528

2.6855212

2.7792110

1] 1.5687293( 1.9266499| 2.1711646 2.3484170| 2.4826758
1] 1.4633250| 1.7807764 20113127 2.1861407

1] 1.3903882 1.6742085| 1.8896055

1 1.3371042} 1.5930703

—

1.2965352

1

Second solutions, sizes k = 2,3,4,5,6,7

—1.7320508

—1.6374586

—1.5899749

—1.561H528

—1.5426641

—1.5292110

—

—0.3187293

—0.7266499

—0.9211646

—1.0341313

—1.1076758

—

0.1366750

—0.2807764

—0.52559845H

—-0.6861407

1

0.3596118

—0.0170656

—0.2646055

1

0.4914672

0.1569297

[

0.5784648
1

One can extrapolate from these tables to find the starting values for the nonlinear
solver when seeking the solution for the next value of k. For example, fitting a two-
dimensional, second degree polynomial to the first 5 columns of the “First solutions”
above gave the last column within about 0.05 which was a sufficiently good starting
value. By weighting the known 1 in the next column we brought the prediction of
the solution to such efliciency that only about 20 function evaluations were needed
to calculate the next larger size wavelet to full accuracy of the order 2 requirement.

This looked like the end of the story until we accidentally calculated the case
k= 11. The result was a = (3 2.8 2.6 ...

entries in each column in the above tables form an arithmetic progression? With this

1.2 )71 Has the reader noticed that the

hindsight, and accepting the hypothesis, one can easily derive the following result
by requiring the polynomial order 2 for just the last row of W and employing the
formulae (7.2).

Theorem 7.3. The elements of vector a determining the orthogonal wavelet W =
(A ba") of order 2 are given by

aj=14+G-Dz, j=12,...,k
where z is a root of the quadratic equation

(k2= 1)2*4+6x—-6=0
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This gives, for any k, an explicit construction of two orthogonal wavelets of size
k x 2k, the k£ — 1 detail rows of which have polynomial orders 2, 3,..., k. Whether
one can do better, as indicated in §7.1 to be possible for £ > 6, remains an open

question. ’

8. AN EXAMPLE OF AN APPLICATION

When using discrete wavelet transforms, e.g. in pre-processing for data compres-
sion, we apply them repeatedly in a pyramidal fashion. Thus, say for k = 3, after
first application to a signal f of length N, we obtain three vectors f,., fa, fa, each
of length %N In the second stage, assumming N is divisible by 9, we apply the
transform to each of these vectors and obtain nine vectors fr, fra, fra, Far, fad,
fad, far, fda, faa where the subscripts indicate the reduced and detail parts of the
signals.

In Figure 1 we demonstrate the two stages of applying the maximal order Wy g to
the discrete signal (top graph marked 8) which happens to be a cubic spline. Each
graph, which only appears to be a continuous line, represents 224 (as indicated)
discrete values, equidistantly spaced. The first quarter (indexed 0-55) of the next
graph (marked 6) is the reduced signal after the first application of W, g (same shape
as the original signal but undersampled by factor 4), the rest of that graph are the
three details which, however, are too small to show in the saine scale as the reduced
signal. The next graph (marked 4) shows therefore the same information as the
second graph, with the reduced signal zeroed and the three details (indexed 56-111,
112-167 and 168--223) magnified. We note both the different degree and magnitude
reductions by the three high-pass filters of the maximal order 4 x 8 wavelet. The
details are piece-wise linear, piece-wise constant and piece-wise zero, respectively.
The last two graphs display the result of the second application of the wavelet (we
use the full pyramnid, i.e. we apply the transform to the details as well as to the
reduced signal). After two applications we have one reduced signal and 15 details,
all of length 14.

9. COMPARISONS OF WAVELETS OF DIFFERENT SIZES

In comparing the effectiveness of different wavelets we take into account three
things:

(a) The cost of applying the transform to a given signal.
(b) The size of the reduced signal.

(c) The polynomial order of the wavelet.
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4 by 8 maximal order wavelet
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20 50 100 150 200 250

Figure 1. Stages | and 2 of decomposition.

For a kxn wavelet the cost of j stages applied to asignal of length N is proportional
to Nnj and the reduced signal has length Nk=7. Thus j stages with a k x n wavelet
will cost the same and produce a reduced signal of the same length as j’ stages with
an sk x tn wavelet if

(9.1 i=g't, s=k"L

To assess the overall effectiveness of applying wavelets of certain order is slightly
more complicated. In the & = 3 example above, had the wavelet been of order p,
the detail fqq would have had polynomials of order less than 2p annihilated. If,
however, the p-order wavelet was the maximal order wavelet constructed according
to Theorem 5.4 then different “d”’s would represent a reduction of polynomial order
by either p or p+ 1.

We use, as a measure of effectiveness, the average cumulative order applied to
the detail of the signal after several stages. For example, two stages with a k = 2
wavelet of order p have an average effect of 4p/3 (two quarters with p and one with

2p). Generally, j stages with an order p wavelet (maximized for & > 2 as indicated
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above) have an average order effect

. . 1 ki=t
v(k,j,p) = j(p+ gk =Dk~ l)ij—:——l-.

We now want to compare the performance of k& x 2k wavelets and Daubechies
wavelets Wy 9,. For a fair comnparison, we must consider such sizes k and p and such
numbers of stages of decomposition (say j and j', respectively), so that the same
total work leads to the same size of the reduced signals by both wavelets.

Using (9.1) we find that we should compare j stages of decomposition by a k x 2k
wavelet with j' = jlog, k& applications of Wy 2, with p = k/log, k. This is possible
practically (to get integral j/ and p) only for very few k = 2% = 4, 16, 256, ... when
J' =205 = 2j, 44, 84, ... and p = 22°7¢ = 2,4, 32, .... However, comparing the
polynomial average orders gives

v(k,j,2)  (k+2)(k=1) _ l+-l-—-3
v(2,§,p) k2 Tk k2

which reaches a maximuin value of 9/8 = 1.125 for £ = 4. We conclude, that from

the point of view of applying the highest polynomial order high-pass filter to the
data for the same cost and signal reduction, j applications of W, g are 12.5% better
than 2j applications of the standard Wy 4.

To demonstrate this we show in Figure 2 the results of applying W 4 four times
to the same data as in Figure 1. For easy comparison only the results of the second
and fourth stages are shown. As explained above, two stages of the pyramid using
W3 4 require the same work and produce the same reduction as one stage with Wy g.
The reduced signals (graphs marked 6 and 2 in Figures 1 and 2) look practically
identical. The most noticeable difference is in the third quarter of the graph marked
4. In Figure 2, two applications of W5 4 produced only a piece-wise linear detail (type
far above) while, in Figure 1, the order 3 second high-pass filter of Wy g produced a
piece-wise constant detail.

From the observations above, it does not appear profitable to use the Wi o
wavelets of order 2 for k > 4 as their advantage against the corresponding Wa o,
would diminish with increasing k. The picture changes, however, should we be able
to find higher order Wi ax as indicated in §7.1. Thus, for example, a Wis 32 of order

5 would be (16.5.5) 195
———= L = = |52
v(2,45,4) 128
times better than Wy g!
A further advantage of the £ > 2 wavelets may be that they allow a greater
flexibility in accomodating signals of length N divisible by factors other than powers

of two.
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Figure 2. Stages 2 and 4 of decomposition.

10. CONCLUDING REMARKS

We have presented an algebraic exposition of wavelets or, to be ore precise,
of linear transformations by banded matrices built up from small matrices with
special properties, here also called wavelets. These transformations have applications
in signal and image processing, for example for compression and reconstruction of
digitized signals.

We have shown that by this algebraic approach we can derive the same wavelets as
those known as “Daubechies finite support orthogonal wavelets” directly from their
algebraic properties (orthogonality and polynomial order) and derived examples of
similar, but more general, wavelets allowing undersampling (i.e. number of rows in
our terminology) by factors larger than 2. We have suggested a way to compare the
efficiency of transforms using wavelets of different sizes and shown that some of the
generalized wavelets may perform better than those with & = 2. How much better
will also depend on the application. What we find appealing in the algebraic approach
is the explicit nature of the representation of wavelets and their properties—this also
allows us to consider ranges of wavelets customized to particular purposes.
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We have concentrated the attention here on the Daubechies-like asymmetric
wavelets with smallest possible support. Ilowever, we believe that Mallat’s (2]
symmetric wavelets, though infinite, can be treated similarly through truncation.

I wish to comment on my experience with symbolic calculations which played a sig-
nificant role in deriving explicit formulae for the k& x 2k wavelets. I found it necessary
to work much more interactively than in numerical calculations. 1 could not rely on
proven programining modules to work with even slightly changed data—so frequent
checks on the progress of the calculations, the form and size of current results and the
adjustments of procedures were important. Very often a small manual improvement
meant the difference between success and failure, i.e. between obtaining a simple,
informative solution and being flooded by pages of cumbersome expressions—or the
program running out of memory. Successful use of MAPLE was a novel experience
for a numerical analyst.
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