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THE GENERAL FORM OF LOCAL BILINEAR FUNCTIONS

MILAN PRAGER, Praha*

(Received June 12, 1992)

Summary. The scalar product of the FEM basis functions with non-intersecting supports
vanishes. This property is generalized and the concept of local bilinear functional in a
Hilbert space is introduced. The general form of such functionals in the spaces Ly(a,b) and
H'(a,b) is given.

K -ywords: bilinear functional, bilinear form, Sobolev spaces

AMS classification: 46E35, 65N30, 35A15

One of typical features that makes the finite element method useful for a still wider
area of problems is the fact that the originating matrix of the discrete problem is
sparse. The weak solution of a boundary-value problem is described by a bilinear
functional and by a subspace of a suitably chosen Sobolev space. For standard
boundary-value problems the bilinear functional has the property, we will call it the
local property, that it vanishes for a pair of arguments with non intersecting supports.
On the other hand, the functions of the chosen subspace may be approximated by
linear combinations of functions with small supports and this implies sparsity of the
stiffness matrix.

The purpose of this paper is to give a general form of a local bilinear functional
on the space H! in one dimension. It appears that we obtain exactly those bilinear
functions that correspond to standard boundary-value problems for second-order
elliptic differential operators. The general form of a local bilinear functional on the
space Ly in one dimension is also given. Obviously, this latter simple case may be

generalized to higher dimensions.

* This work was supported by the CSAV grant No. 11919.
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1. PRELIMINARIES

Definition 1. Let a bilinear functional B(u,v) in L3(0,1) or H!(0,1) have the
property that B(u,v) = 0 for every pair u, v € L(0,1) or H(0,1) such that
meas(supp uNsupp v) = 0. Such a bilinear functional will be called a local functional.

Let us denote by Dy, a uniform partition of the interval (0, 1) into 2¥ parts and let
I;-“ be the j-th (open) interval of this partition, j = 1, ..., 2F. Let us further denote
by z¥ = j/2¥, j =0, ..., 2 the j-th node of the partition Dy.

Lemma 1. Let b*(t) be a sequence of functions piecewise constant on (0, 1) such
that b*(t) = b* fort € If. The value of b at the points z; is arbitrary.

Let the equality
265 = b5, + b5

hold for all k and j. We define functions fi by
felt) = [ bt (s) ds
Then we have
(1) fn (ik) fk( ) forn > k.
Proof. First we have

1 1
b (t)dt = —bF = bE+! b’°+1
./l;‘ ( ) 2k J 2k+1( 2j-1 + )

=/ b’°+1(t)dt+/ bEFI(t) dt,
Ik. I:J-"’l

2j-1

which implies

#(50) = 5(5) = s (37) - s ()

and

fk+l('2j;) = /OI;f bEFI(t) dt = JZ/” bE+1(2) dt

Z (fr41(5/2%) = frra ((s = 1)/2%))
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since fi(0) = 0. From here (1) is easily seen. O

Corollary. Let k be arbitrary but fixed. Then the sequence of functions fn(t)
converges for n — oo at every point .'x:;-“, i=0,...2* towards fi(j/2%).

Lemma 2. Let M be a dense set in {(0,1). Let fi be a sequence of equicontinuous
functions on (0,1) that converges on M to a function ¢ defined on M. Then there
exists function f continuous on (0, 1) and such that f(t) = ¢(t) fort € M.

Proof. We will verify that the function ¢ is uniformly continuous on M. For
an arbitrary € > 0 let us choose a § > 0 such that |f(t) — fr(2)| < g/3 for |t —z| < 6
and for all k. Now we choose ¢t and z € M arbitrary but fixed so that |t — z| < &
and choose k such that |fr(t) — ()| < /3 and |fe(2) — ¢(2)| < €/3. Then we have
le(t) — ¢(2)] < . Consequently the assumption of Theorem 177 of [1] is satisfied
and applying this theorem we prove the existence of f. O

Lemma 3. Let b* be the sequence of functions from Lemma 1 satisfying, in
addition,

|b¥| < K for all k and j.

Then there exists a bounded function 5 such that

/ n(z)de = 2"’“1)}C for all k and j.
Ik

J

Proof. According to Lemma 1 the corresponding sequence fj, converges to
a function f at all nodes. The functions f; are equicontinuous because they fulfill
the Lipschitz condition with a constant K independent of k. Therefore according to
Lemma 2 there exists a continuous prolongation of the function f onto the whole
interval (0, 1). This function satisfies, as is easily seen, the Lipschitz condition with
the constant K and is therefore absolutely continuous. Let 7 be its derivative. By

virtue of Lemma 1 we have further

/1 (@) de = £5/2) - £(G - 1)/2")
= F(G/2) - fu((G - 1)/2)
:/ bE(t) dt = 27Fpk.
Ik

J
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We show that 7 is bounded. For all Lebesgue points of 7,

holds. On the other hand, we have |711—f;+h n(z)dt| = £1f(z + h) — f(z)| £ K and
therefore |n(z)| < K, and the lemma is proved. 0

Lemma 4. Let b* be the sequence of functions from Lemma 1 satisfying, in
addition,

2’:
”bk”%2 =27k E(bf)z <K? forallk.

j=1

Then there exists a function 1) € Ly such that

/ n(z)de = 27565 for all k and j.
Ik

7

Proof. According to Lemma 1 the corresponding sequence of functions f}
converges at all nodes. We denote its limit by f. The functions f are equicontinuous.
Indeed, choose an arbitrary € > 0. Put § = ¢2/K? and choose z and y so that
|z — y| < 6. Then we have

Yok Lk € 4
b (t)dt‘ <z — w3 (o)L, € K.

[fe(@) = felw)| = =

According to Lemma 2, there exists continuous prolongation of the function f onto
the whole interval (0,1). On the other hand, we have

1 1
el = / fydi+ / RORT

:/01 (/otb’“(s)ds>2dt+/01 [k ()] dt
g/ol {/Ot ds-/ot [bk(s)]st} di + [|b¥]2,

<2687, < 2K2

The set of the functions f;. is therefore bounded in H!. We can choose a subsequence
fx, that is weakly convergent. Denote its limit f. The imbedding operator from H'!

to C is compact and, consequently, the sequence fi, converges to f in C. Thus we
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have f = f, this function has the derivative f' =7 € Ly a.e. and in the same way as
above we show
/ n(z)de = 2""()}‘.
1*
J
The lemma is proved. a

Lemma 5. Let u € Ly and let u* be piecewise constant functions with
uf(z) = 2% /1" u(t)dt = uf forz € If.
;

Then u* converge to u in Lo.

Proof. First, let the function u be continuous in (0, 1). Then for z € If we
have

u(z) — uk k u(z)—u
ju(e) — i1 <2 [ Jute) - ulo)lat <

J

for an arbitrary € > 0 and sufficiently large k. Moreover,

2k
llu—u*|IZ, = [u(t) = (1)) dt < 2% - 27Fe2,
i=1’

It can be easily proved that u* is the orthogonal projection of u into the subspace
of piecewise constant functions. Applying the properties of the projector we obtain

the convergence for all functions u € L,. O

2. THE L,-CASE

Theorem 1. Let B(u,v) be a local, continuous, bilinear functional in L»(0,1).

Then there exists a bounded function 7 such that
1
B(u,v) :/ n(t)u(t)v(t) dt.
0

Proof. Approximate the functions u and v by sequences of piecewise constant
functions according to Lemma 5. We use the local property of B obtaining

B(u* v*) = Zukka xj,xf),
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where x}‘ is the characteristic function of I}‘.
Let us set 2'°B(x}°, Xf) = b}‘. We have X}‘ = X’;J'Hl +Xk+1 and after a substitution
b- — 2ch(Xk+l + Xk-l-l,Xlzc?-l] + X2+1)
k E+1 k41 k(o k+l Lk+1
=2 B(Xzf_lquf 1)+2 B(X F ,X2]+ )

k Ic
‘(b2]+ 5.

The quantities b}’ are uniformly bounded. This is the consequence of the continuity
of the functional. Therefore, according to Lemma 3, there exists a bounded function
n such that

n(t)dt = 27%b%  for all k and j.
It !

We thus have B(u*,v*) = fol n(t)u*(t)v*(t) dt and hence also

1
B(u,v) = /0 n(O)u(t)o(t) dt.
Indeed, we have
/0 n(®)[u(t)o(t) - u* (t)o* (0)] &t
1 1
SI(A |u(t)f|v(t)—vk(t)|dt+1"/O [ ()] |u(t) — u¥(t)] de

< I{(HUHIQ ! “U - Uk“Lz + ”vk”Lz : ”u - uklle)

and the right-hand side converges to zero for k — co. The theorem is proved. ]

3. H'-casE

Let us denote by s;? a continuous function linear in every interval of the partition
Dy, and such that sk(:l:k) = 6j¢ (a hat-function). The support of sf is the interval
(xk_l, ]+1> = I" U I]"’Jrl Let B(u,v) be a symmetric continuous bilinear functional
in H!. Let us write B(s]7 sk) = B’” Of course, these values are equal to zero for
e =31 > 2 Let us further put

T szz 1+Bk+B”+1, i20,1,...,2k.

The values of Bf,i with subscripts equal to —1 or 2 4 1 are set to zero. The values

of T¥ for the same subscripts are also zero.
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We find the relation between s , T¥ and B’c for two neighboring partitions. We
obviously have

1 1
k_ Lok k4 skt
8§ = 5 S2i- 182 5 S

with the corresponding exceptions for i = 0 or 2¥. Further, we have

(@) By = B(g ekt 4okt ;s;:a:l, 5 Skt + skl + s58)
= ';' §i+,zli+1 + = . Bzz+1 2i41 35 B;Ci.:-ll,%%—z
iTzkgill + Z(Bgi',giﬂ + Bg{:—lx,zin)
and
PRI k41 k+1 k+1 1
3) B, = 4321 L2ic F Bait it + By + Byl + B21+1 241

From (2) and (3) we have

_ k1 k+ k41
=Ty + (B2z 1,2i-1 1 Bait 2ip)-

TF = B

i—1,

+ szl + Bz 1+1 2 TZkitll + T2ki+1 2 T2ktill

Finally, we put Z¥ 1= Z k i=0,... 2*. We obtain

(4)

In particular,

()

koo _
ZJ+1 -

ll

II

Let us notice that

(6)

\LJ:(I Bk lTk+1)
— 2 2 2r+1

—Z( T+ T + 5 Z( T3+ T

2]+1
k41 k41 _ k41 k+1
*ZT +3 ZT Z2J+ + Z3i42)-
r=0
k+1
sz+1 Z2~+1+x

Tj" = B(s}‘,s}‘_l + S}C + s;'c+1) = B(sf, 1)
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because the support of the function 1 —s§_; — s¥ — s¥, lies in the complement of

the interior of the support of s}“. The symbol 1 here denotes the constant function
equal to unity in the whole (0,1). Therefore, we have

=

. (2, .
(1) ITH = 1BGsE, DI < Kl -l < K (5274 4 2441) 7 < K242,

2k
Lemma 6. Letu € H! andset u* = Y u(:z:;“)s;c Then the sequence u* converges
j=0
towin H'.

Proof. First, we notice that the derivatives (u*)’ approximate u’ in the sense
of Lemma 5. Indeed, for z € I}‘ we have

[uk(:r:)]’ = 2F [u(:vf) - u(:cf_l)] = Qk/ u'(t) dt.

Ik

Thus, klim [|(w¥)" — w'||L, = 0. In view of u(0) = u*(0) we have further
—00

et = ull?, = / ) — () dt = / 1 dt( / t () = w(9)] 1)
< / 1 dt( / s / ) —u'(s)]zds) <Ny =3,

and the assertion follows. O

2

The function u will be approximated also by functions @* and iy, piecewise constant
and such that @*(t) = u(x;“) fort € I}”’ and @*(t) = u(lf) for t € I]’-CH. Obviously,
we have lim ||@* — u||L, = lim ||@* — ul|L, = 0.

k—o0 k—o0

In what follows, we denote the derivative of u* by Du* and its value in I]’-C by Du}C

(Du* is a piecewise constant function). Now, we give the general form of the local

bilinear symmetric functional in H!.

Theorem 2. Let B(u,v) be a local continuous bilinear symmetric functional in

HI(O, 1). Then there exist functions 11 € Loy, no € Lo and a number « such that

B(u,v) = /0 [mu'v' + no(uv)’] dt + au(1).
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Proof. We approximate the functions u and v by sequences of piecewise linear
functions u* and v* according to Lemma 6. We have

2k 2k

B(uk,vk):B<Zu(:c IR k)s;>

i=0 j=0
2k—1

= Z“(“’k)” ) Bj; + Z 25 (2] 41) By j 4

Bk
+Z J+1 v(e5)Bj 41

We have utilized the local property and the symmetry of the functional. A simple
manipulation leads to

Zk

(8) B(u¥,v*) = " u(ab)v(af)(Bf_, ; + Bfj + B j41)

j=0
251

= 2 [uefy) = w@)] [o(h 1) = o)) B 41
j=0

To the first sum on the right-hand side we apply the partial summation

ok ok

Y uEE T = w125y, = Y [u(eh)u(ef) —u(f_)o(f_)] 2

J
j=0 Jj=1

W) (1) ZEe Z{“ )o(ah) = vlaf)]
+ U(l-j'_l)[u(zj) - u(:rj_1) }ZJ’C

-2k
uF (1) (1) 25,y — D (@8 Dvf + 58 Dub)zF2-*,
j=1

We show that the numbers Z‘;C satisfy the assumptions of Lemma 4. They satisfy (4)
and because of T* = B(s¥, 1), cf. (6), we have

J Jj
Z =) Th= B(Zs’:,l).
r=0

r=0

We put w;? =Y sk

<
o
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The bilinear functional may be represented by the scalar product
B(u,v) = (u, Lv)m
were % is a linear operator from H! into H'. Therefore,

‘.l‘k

J.Sf’ldt+/

it

B(w},1) = (v}, £1)m = -/k 2k (1) dt+/

IJ+1 0

2 (2, — )21 dt

and

O lwf 2nmP<sl2t [ 20Tz,

J+1
+/
1

Oy, - 1) /
I+1

Iy
<3-2’C[/
I

k
J+1

(£1)? dt] |

(L2 dt+ 275|213, + K/ (Z1)2dt,

k
[J+‘

and finally

2k 1 2k 1
Z (ij+1)2 = E(w}“,_?l)f,,,
j=0 Jj=0
1 1 )
<3-2k[/ (21)’2dt+||21|li2+1&’/ (212 di)
0 0
< K2°|12115

or
2k 1

278 37 (25,0 < KN
j=0

Thus, the assumptions of Lemma 4 are verified and there exists a function 1o €
k _ 9k k 3
Lo such that Zj+1 = -2 fl',:“ nodt. We denote by a the value Z2,‘.+1 that 1s

independent of k, cf. (5). Analogously as in the proof of Theorem 1 we prove that
the first sum in (8) converges to

1
/ no(uv) dt + au(l)v(1).
0
The second sum in (8) will be transformed to
2k -1

k k k -2k
Y Dufy i Doy BY ;27
i=0

154



We use (2) obtaining

o—k pk —(k+2 k41 k+2 k+ k+1
2788y = 27T 4 2B+ Bt )

We write b5, ) = 27%Bf., and ek, =2~ “‘*‘”T"’Jrl Consequently

(10) ) b;+1 = 5J+1 +3 5 (b§]+1 + blzc]+2)

and the estimates

(11) [bﬂ <K '2—k||5ﬂ'H‘”3}C+1HH‘, i€]+1l K27k

hold, cf. (7).
Let b* and d* be piecewise constant functions with b*(t) = b}‘, d*(t) = e}“ for
telf.

()
Further we put ¢* = b¥ — 3~ d*. The sum is convergent in view of (11) and
s=k

(e e}

Zd’(t)l < K27k,

s=k

With the notation cf = 2* [, c®(t) dt we have
7

ok = o /1 [b"(f,) —id“(t)] A= bF — ek - / Z 4 (1) dt
s=k

J s=k+1
| 00 00
k+ k ok s s
= (b,1_1+[ +) - zm[/lw S @ ‘“+/,k+l > od (t)dt]
25-1 s=k+1 25 s=k+1
N :%(A;;—_l]’*l‘('l\+l)~

Further,
e} < 1Y)+ K27%/2 < K,

and therefore according to Lemma 3 there exists a bounded function —; such that

= — [, m(t) dt. Thus, we have
J

2% 1 2k—1

kE pk o—k o=k k -
E Du}“+11)vj+1bj+12 = E Du}cﬁ,,Dv]’F+l (2 i1 + 27k / E d*( i)dt)
j=0 7=0 ]+l s=k

_/1 Du"(t)ka(t)m(t)dt+/1 Duk(l)ka(t)ids(t)dt
0 0 s=k
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However, this expression converges for & — oo to —fol uw'v'n(¢)dt. The second

integral is bounded by
1
1<2-’“/?/ | Duk () Dv¥ (¢)| dt
0

and the integrals here form a convergent and, consequently, bounded sequence. The

theorem is proved. a

Next we give the general form of a local antisymmetric bilinear functional.

Theorem 3. Let B(u,v) be a local continuous antisymmetric bilinear functional
in H'(0,1). Then there exists a function ny € Ly such that

1
B(u,v) = / m(uwv' —u'v)dt.
0

Proof. We approximate again the functions u and v by sequences u* and v*

according to Lemma 6. Then we have

2k 2k
B(uk, v*) =B ( Z u(xf)s;‘, E v(:r}‘)sf)

j=0 j=0
2k_1

= Z [“(zf)”(zfﬂ)—“(zfﬂ) (z )]BkHl

=0
2% -1

= Z {“(‘”;c)[ (5 41) z})] = o () [u(z]41) - u(z } .d+1

j=0
2% -1
k k k k k -k
= Y [wh)Dvfyy — v(ef) Duf ] Bf j4,27%.
j=0
Now, in the antisymmetric case we have, instead of (2),
k _ k+2
(12) Bijn= B (32, 2+1 1 Baji1 0j41)-

Moreover,

Bf ;41 = B(s¥,sf,1) = B(wf,1—wf) = Bwf, 1) = (wf, L)

J
We have used the antisymmetry, writing again w}“ = Zosf. According to (9) we
r=
have
2k -1
> (wf, 21 <K 24|21}
j=0 .
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The numbers b}c = Bjk’j+1 satisfy the assumptions of Lemma 4. There exists a
function 72 € Ls such that

S|
B(uk, o) = /o ma(t) [@ () Do (t) — Duk (1)5* (1)) dt,
and passing to the limit we finally obtain
1
B(u,v) = /0 n2() [u(t)v'(t) — W' (t)v(t)] dt,

qed. . a
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