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METHOD OF SOLVING BOUNDARY VALUE PROBLEMS
FOR DIFFERENCE EQUATIONS
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Summary. In the paper a modification of Samoilenko’s numerical analytic method is
adapted for solving of boundary value problems for difference equation. Similarly to the
case of differential equations it is shown that the considered modification of the method
requires essentially less restrictive condition—than the original method—for existence and
uniqueness of solution of auxiliary equations which play a crucial role in solving the bound-
ary value problems for difference equations.
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1.

In recent years the interest in various problems for difference equations has been
growing. It includes the boundary value problems for such equations. Because of the
close paralellisin between the theories of difference equations and ordinary differential
equations many results can be transfered from one theory to the other.

The purpose of the present paper is to consider a modification of Samoilenko’s
numerical-analytic method adapted for solving boundary value problems for differ-
ence equations. For the method applied to ordinary differential equations consult
the papers [17-19], [4], [9-10] and the books [20], [21]. For some results concern-
ing boundary value problems for difference equations consult the papers [1-3], [5-8],
[14-16]. The discrete version of Samoilenko’s method appeared in the papers [7-8],
[13] where the problem of a periodic solution for the scalar difference equation [13]
and the general linear two point boundary value problems [7], [8] were dealt with.
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Let X be a linear space equipped with an m-dimensional vector norm |- |, i.e. |-]|:
X — R}, Ry = [0,+00). It is clear that X becomes a Banach space if the norm in
X is defined by the equation || - || = ||| - |||g=, where || - ||g= denotes a fixed norm
in R™.

Let N € {1,2,...}, JN = {0,1,2,...,N}, and let us consider the space Zn =
Z(Jn, X) of all functions from Jy to X. Define the difference operator A: Zn —
ZnN-1 and the summation operator S: Zn_1; — £y by the equations

Az(n)=z(n+1)—z(n), né€ Jn_1,

n—1

Sz(n) = (Sz(-))(n) = Z z(i), n=12,...N, Sz(0)=0.
i=0
Let a mapping f: Fny — Fn-1 and operators C, D € L(X) (L(X) is the space of
all linear and bounded operators from X to X) be given. we consider the boundary
value problem

(1) Ax(n) = fz(n), n€ Jn_1,
(2) Cz(0)+ Dz(N)=d

for a given d € X. The problem (1)-(2) is a specific system of equations considered in
XN+ We will treat this system using its specific form. We start our discussion with
the simple case d = 0 and C = —D = I, where [ stands for the identity operator. It
is the case of the periodic boundary condition. First of all we observe that (1)-(2)
is equivalent to the system

(3) z(n) = 2(0) + (Sfz)(n), n€ Jn,
4) Cz(0)+ Dz(N) =d.

Now if we introduce a parameter xg = 2(0) then (3)-(4) can be viewed as a system
with an unknown pair (zo,z(-)) € X x Zxn. The standard shooting method of solving
the problem reads: find a solution ¢(-, 2g) of equation (3) (we call it an auxiliary
equation) and use equation (4) (we call it the determining equation) to determine
the parameter zg to get a solution ¢(-, 2§) of the problem. The determining equation
can be written as

(5) Czo+ D(zo+ (Sfe(:,20))(n)) = d.
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The main point of the discrete version of Samoilenko’s method is that in the
periodic case the auxiliary equation is replaced by

(6) z(n) = 2o+ Sfz(n) —n-N~'-Sfz(N), ne€ln,
and is considered together with the determining equation
(7) g Sfe(-,z0)(N) = 0.

The advantage of the approach is that any solution ¢(+, zo) of equation (6) satisfies
the periodic boundary condition. It becomes a solution of the problem when zg is
determined by equation (7). On the other hand, we have to observe that equation (6)
is more difficult to solve than equation (3) and rather restrictive condition 3"1K N <
1 is required to guarantee the existence of a solution to equation (6) (here K denotes
the Lipschitz constant for f, see [7], [13]).

We will show that the restrictive condition can be relaxed when the function n- N~}
in equation (6) is replaced by some functionw: Jy — [0, 1]}, w(0) = 0, w(N) = 1. The
same is possible for the general boundary value problem (1)-(2) which is equivalent
to the system

(8) z(n) = zo + Sfa(n) + w(n)(p(zo) — Sfz(N)), n€Jy,
(9) (o) — Sfz(N) = 0,

if D™ exists and p(x¢) = D~![d — (C + D)z,).

Observe that for any z¢ € X the solutions of the auxiliary equation (8) satisfy
boundary condition (2), and equation (9) serves for determing o such that z(-, zo)
satisfies equation (1).

3.

Equation (8) is a fixed point equation in the space Zxn with the parameter zg.
The space #y can be normed by making use of the weighted norm in the following
way. For z € £y and ¢ € F(Jn,R}) with positive coordinates define (here the
maximun of a vector means the vector of the maxima of its coordinates)

(10) ||, = max[|z(k)[,0 <k < n], n€Jn,
(11) llzll, = inf[|lz|, < so(n),n € Jn].

s>0
It is clear that (Zn,|| - ||o) is a Banach space. We will show that the operator F

defined by the right hand side of equation (8) is a contraction when the function p
is properly chosen and f satisfies the following condition:



there is a matrix function K € Z#(Jy_1,R}*™) such that

(12) |fz(n) = fy(n)] < K(n)|z —yla, n€Jn-a

for any z, y € &Zn.
Let us search for the proper weight function g. We have

|[Fa(k) — Fy(k)| = |Sfz(k) —w(k)Sfe(N) = Sfy(k) + w(k)Sfy(N)]
= |S(fz = fy)(k) —w(k)[S(fz = fy)(N)]|
< SK|z — y|(k) + w(k)SK|z — y|(N).

This in view of the inequality |z|; < ||z||, - e(?), 4 € Jn, implies the relations

(13)  |Fa(k) = Fy(k)| < llz = sllo[SKo(k) + w(k)SKo(N)], k€ Jn,
(14) |F2 = Fylu < [l = sll[SKe(n) + w(n)SK o(N)], n € Jn,

provided w is nondecreasing. From inequality (14) we conclude that the function p
will be a proper weight function if it is positive nondecreasing and there is A € (0, 1)
such that

(15) Ao(n) 2 SKo(n)+w(n)SKo(N), ne€Jy.
In this case we have
(16) ([Fe—Fylle <Al —ylle, z,y€ PN,

which means that F' is a contraction with the contraction coefficient A. To get a
positive solution of inequality (15) we consider the equation

(17) o(n) = SKip(n) +w(n)SKi10o(N)+e, né€Jn,

where K; = A~1K and e is the constant vector with each coordinate equal to one.
It is clear that each positive solution of equation (17) satisfies (15). Put v(n) =
SKipe(n) and multiply (17) by Ky(n) to get the equation

(18) Av(n) = Ki(n)v(n) + w(n)Ki(n)v(N) + Ki(n)e, n € Jn_1

with the condition v(0) = 0. Put

n—1

(19) Mn,i)= [[ (I+Ki(s)), M(n,n—-1)=1
s=i+1
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forn=1,2,..,N,i=0,1, ..., n—2. Using the elementary results of the theory
of difference equations (see [11], [12]) we find

(20) v(n) = [S(M(n, )wK1)(n)]v(N) + S(M(n,)Kie)(n), n€ Jn.

Now if we take in this equation n = N then it can be solved with respect to v(N) with
a nonnegative v(N) provided the spectral radius of the matrix S(M (N, )JwK;)(N)
is less than one. We write this condition explicitly as follows:

N-1 N-1
(21) T(Z II (I+K1(s))w(i)K1(i)) <1

1=0 s=i41

We see that this condition is sufficient to get a nonnegative solution of equation
(18) and a positive solution to equation (17) which has the form

(22) o(n) = v(n) +w(n)v(N)+e, nen.

Observe that because of the continuous dependence of the spectral radius of the
matrix on its entries, condition (21) holds of some A € (0, 1) if (21) is satisfied with
K replaced by K. Notice also that for given K and A € (0, 1) there always exists a
function w for which (21) holds.

Suminarizing above considerations we can formulate

Theorem 1. If the function w is nondecreasing and the conditions (12) and (21)
hold (with K replaced by K ), then for any o € X there is a unique solution z(*, zq)
of equation (8) and it can be obtained by the successive approximations method.

Now let us discuss an improvement of the result established in Section 3. First we
observe that the operator F' defined by the right hand side of equation (8) can be
rewritten as

(23) Fz(n) = p(n, o) + W fz(n)
with
(24) Wfz(n) = (1 - w(n))Sfz(n) = w(n)Sfz(n)
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and
Sfz(n) = Sfz(N) — Sfz(n),  p(n,zo) = o +w(n)p(zo).

It is clear that W fz(0) = W fz(N) = 0. Now we see that the auxiliary equation (8)
can be rewritten as

(25) z(n) = Wf(z +p)(n),

with z(n) = z(n) — p(n, zo) as a new unknown. This is a fixed point equation in the
subspace Zn,0 C Zn consisting of all z € £y such that z(0) = z(N) = 0.

In solving equation (25) the crucial role is played by a comparison operator Q:
Z(IN,R}) — F(JIn,RY) associated with the operator G, Gz(n) = W f(z + p)(n)
by the relation

(26) |G(z + w)(n) — Gz(n)| < Quw|(n),n € Jn.

Under the assumptions about f and w introduced in the previous sections we conclude
that

IG(z + w)(n) = Gz(n)] < (1 = w(n)) (SK(§)|wli) (n) + w(n) (SK (i) |w]:) (n)

(27) < (1 - w(n)) (Sl&'(i)[w|,-)(n) + w(n) (SI‘\'(i)Iw|i)(N)
< (SK(@)|wli)(n) + w(n)(SK (i)|w];) (N).

We see that there are three different comparison operators for G; we denote them by

Q3, Q; and Qo in the order as they appear in the above sequence (27) of inequalities.

In the previous section we have in fact worked with the operator Qq. It is clear

that the conditions of Theorem 1 are nothing else than sufficient conditions for the
operator g,

(28) Qou(n) = SKu(n) + w(n)SKu(N),

to have the spectral radius less than one. The last condition, according to the
comparison theory, is sufficient for the unique solvability of equation (25). On the
other hand, if we employ the operator Q,

(29) Qu(n) = (1 —w(n))SKu(n) + w(n)SKu(N),
instead of Qg then by the same reasoning as that used in the proof of Theorem 1 we

obtain that the condition

N-1 N-1

(30) r(z II (1+(1—w(n))K(s))w(i)K(i)) <1

=0 s=i+1
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is sufficient in order to get the assertion of Theorem 1. Notice that any positive
solution of the equation g(n) = ;¢(n) + e is nondecreasing, which can be seen by a

direct calculation of Ag(n). It is clear that condition (30) is less restrictive than the
condition of Theorem 1.

To make use of the fact that the operator G is an operator in the space Zy o we
have to assume a stronger condition for f of the form

(12) |[fz(n) — fy(n)| < K(n)|z(n) — y(n)|, n € JIn_1,

which means that fz(n) = f(n,z(n)), so that there is no hereditary dependence of
f on z. In this case instead of (27) we have

lg(z + w)(n) — Gz(n)]

31 -
ey < (1= w(n) (SK@)w(@)]) (n) + w(n) (SK (@)|w(@)]) (n).

Now we can imply the operator Qs,

(32) Qou(n) = (1 —w(n))SKu(n) + w(n)SKu(n)
= (1 - 2w(n))SKu(n) + w(n)SKu(N).
Observe that Qau(0) = Qau(N) = 0 for any v € Z(Jn,RT]).

Suppose that there are A € (0,1) and ¢ € F(JN,R}), o(n) > 0, n =1, 2, ..
N — 1, such that the inequality

(33) Ao(n) = Qq0(n), nen

holds. Using this function ¢ as weight function we define in F#y ¢ a norm by the
relation

(34) lelleo = infllz(n)| < se(n), n € Jn).

Now by a reasoning similar to that of Section 3 we conclude that the operator G is
a contraction in Fp . Finally, we have

Theorem 2. If condition (12') is satisfied and there is a function ¢ having the
properties mentioned in this section then the assertion of Theorem 1 holds.

139



Observe that for any h € #(Jy,RT), h(0) = h(N) = 0, and A € (0,1) the
equation

(35) Ao(n) = Qa0(n) + h(n), n € Jn,

can be explicitly solved in the same way as equation (17) was treated. Finally, one
can find that the condition: w(n), n =1,2,..., N — 1, small enough is sufficient for

the existence of g satisfying (35) and positive forn=1,2, .., N — 1.
However, we can reason in another way as follows. If the spectral radius of the
operator y is less than one then for some A € (0,1) there is a solution of (35)

positive for n = 1, 2, ..., N — 1. Observe that the operator Q5 is associated with
the matrix
w(1)K(1), w(1)K(2), w)K@B3), ..., w()K(N-=1)
(1 —-w(2))K(1), w(2)K (2), w(2)K(3), ey w(K(N=1)

(1 - w(3))K(1), (1 —w(3)) K(2), w(3)K(3), .o, wB)K(N-1)
(1- w(N.-.—. 1))KQ), (1 —w(N =1))K(2),(1 =w(N=1))K(3),...,w(N = 1)K(N = 1)

We denote it by A, . It is clear that r(Q2) = 7(A, ). From the form of the matrix A,
it follows that r(A,) < 1 if w(?) issmall for i = 1,2, ..., N — 1. Indeed, if w(i) = 0
fori=1,2,..., N —1 then 7(A,) = 0 and the assertion is a consequence of the
continuous dependence of the spectral radius on the entries of the matrix.

To get a more explicit result one can use the natural splitting of the matrix A,
into the sum of a lower triangular matrix L and an upper triangular U (L consists
of all entries that stand below the diagonal of A,). it is clear that »(L) = 0. Then
for a given € < 1 one can take a norm || - || such that ||L||. < e. There is a positive
constant ). such that

Ulle € Qe max[w(i),i=1,2,...,N —1].
Now we find the condition for w from the inequality

lAulle <L+ Ulle < LIl + Ul
<e+Q: -maxjw(i),i=1,2,...,N-1] < L.
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6.

There is a special case when a solution g of inequality (33) can be found explicitly.
It is the case when the function K is constant, K (n) = K and w(n) = N~1n. Observe
first that for the function £(n) = n(N — n) the inequality

(36) (N = 2n)S€(n) + nSE(N) = (N — n)SE(n) + nS€(n) < 37 N2%E(n)

holds (see [7]). Let b € R} be a positive eigenvalue of the matrix K satisfying the
relation Kb = r(K)b (the existence of such a vector is guaranteed by the well known
Perron theorem). Now multiplying (36) by the vector N~!Kb one finds

(37) NN —2n)SKEb(n) + N~'nSKED(N) < 37INr(K)E(n)b, n € Jn.

This means that the function g, g(n) = &(n)b, is a solution of (33) in the case
considered here with A = 371 Nr(K) < 1.
We can conclude the following

Corollary (see [7]). If condition (12') is satisfied with K(n) = K and 1Nr(K) < 1
then the assertion of Theorem 1 is true.

7.

Finally, let us consider a more general problem of the form

(38) Az‘(n) fz(n),
(39) E Ciz(i)=d
i=0

with C; € L(X).
It is easy to see that this problem is equivalent to the system

N
(40) z(n) = 2o + Sfz(n) + w(n)[e(zo) Z SFz(1)],
. i=0
(41) o(z0) — Zé,-sz(i) =0

with
N N
Q=Y wi)Ci, ¢)=Q ' [d=Y Ciw|, CTi=Q7'C:
i=0 i=0
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It is easy to check that for any o € X, a solution of equation (40) satisfies condition
(39). To prove the existence and uniqueness of the solution of equation (40) we
assume that for some A € (0, 1) there is a positive solution g of the inequality

N
(42) Ae(n) > SKo(n) +w(n) > |CilSK (i),

i=0

where |C;| are matrices satisfying the condition |C;z| < |C;||z| for all z € X. Then
the reasoning remains quite similar to that of Section 3. To get a solution of inequality
(42) we consider the equation

N
(43) o(n) = SKig(n) +w(n) Y |Ci|SK1e(i) +e.

i=0

Multiplying this equation by K;(n) and substituting v(n) = SK;e(n) we find

N
(44) Av(n) = Ki(n)v(n) +w(n)Ki(n) Z v(7) + K1(n)e,
1=0
n—1 n-1 N
(45) v(n) = Z H (I + Ki(s))w(i) K1 (i Z J)+ H(n)
1=0 s=i41 j=0

for some positive H. From (45) it follows that v(n) is positive if the condition
n—-1 n-—1
(46) (Zw 1[2 II (1 + K1) )1\1()])
n=0 1=0 s=i+1

is satisfied. Here as before K| can be replaced by K. From this considerations we
can conclude the following

Theorem 3. Assume that conditions (12) and (46) are satisfied and the matrix
Q! exists. Then for any zo € X there is a unique solution of equation (40), and it
can be obtained by the successive approximations method.

Observe that in a similar way one can discuss the quasilinear boundary value
problem provided condition (39) is replaced by

N
(47) > Ciz(i) = d(2)
1=0 .
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with a given function d: #§ — X. Now the problem (38), (47) is equivalent to the
system

(48) z(n)=zo+ Sfz(n) +w(n)Q! [d((xo +Sfa(-) = Y Cilzo+ Sfa;(z'))] :

1=

N
(49) ~d((zo+5£2())) - Y- Cilmo+ Sfa(i)) = 0.

1=0

However, we will not discuss details concerning this system.
Let us make another observation: if one has problem (37)-(38) with equation (37)
replaced by an equation of the form

(50) z(n+1) = A(n)z(n) + fa(n)

then one can reduce the problem to the original one by substituting z(n) = Y (n)y(n)
with a new unknown y. Here A: Jy_; — L(X) and Y is the fundamental solution
corresponding to the linear part of (50). In this case one has to assume that the
operators A~!(n) exist forn € Jy_;.
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