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ON PARAMETER-EFFECTS ARRAYS IN NON-LINEAR
REGRESSION MODELS
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Summary. Formulas for a new three- and four-dimensional parameter-effects arrays
corresponding to transformations of parameters in non-linear regression models are given.
These formulae make the construction of the confidence regions for parameters easier. An
exatuple is presented which shows that some care is necessary when a new array is computed.
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1. INTRODUCTION

A non-linear regression model can be written as

(1) ’ yllzf(xaya)+ea azly"'yn

where y = (y1, ..., yn)' is a vector of observations, x, = (zq1, ..., @qx) are known
constants, @ = (0, ..., ©,)" is a vector of unknown parameters and ¢, are indepen-
dent, normally distributed random variables, e = (e1, ..., €n)" ~ Np(0,021). The

function f is supposed to be of a known form, nonlinear in @. In vector notation we
have

(2) y=n(0)+e
where (@) = (m1(9), ..., nn(@))/ with 1,(@) = f(x4,0),a=1, ..., n

For such a model the least squares estimates @ are the values of the parameters
which minimize the sum of squares

50) =3 (va — f(%,0))’,
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or in vector notation
5(@) = |ly —n(0)|*.

It is well known that the nonlinearity of the above model can be characterized by
means of the intrinsic and parameter-effects curvatures introduced by Bates and
Watts in [1]. Experience has shown that while the intrinsic curvature is negligible
in almost all practical cases the parameter-effects curvature may be relatively large
(see [1], [2], [3], [4]). This curvature, however, can be substantially reduced by a
reparametrization. It would be tedious to compute the parameter-effects array for
each new transformation of parameters. Fortunately this work can be avoided and
the new array may be computed directly form the original one. On the other hand,
our example shows that some care is needed to avoid mistakes.

As noted by many authors (see e.g. [4], [5]) there exist models for which the
Bates-Watts approach is unsatisfactory. Therefore we introduce a four-dimensional
parameter-effects array which together with the three-dimensional array explains
the behaviour of models better than the Bates-Wats array alone. In addition, we
present a formula for such an array after reparametrization. This formula will be
useful when improved confidence regions for parameters of a model presented in [7]
are constructed.

2. PARAMETER-EFFECTS ARRAY

In what follows we denote by V. and V.. the first and second derivatives of the
model function 7(@). Their elements are

0?1)q
00; 00y

I
Vaj = ;(ga‘ I@ and Vg =
j

|,

respectively. We suppose that the rank of V. is p and V. = UR is the unique
orthogonal-triangular decomposition of V. (Q R-decomposition for short) where the
columns of the n x p matrix U form an orthogonal basis for V. and R is an upper
triangular matrix with R;; > 0, ¢ = 1, ..., p. Then the parameter-effects array for
the parameter @ at @ is defined as follows (see [1])

3) A® = [U[L'V..L]

where L = R~! and the pre- post- and square-bracket multiplications of matrices
and arrays are defined in the following way.

If E is an m x p matrix and T is an n x p X ¢ array, then the term of the a-th
face of the n x m x ¢ array ET residing in the ¢-th row and the j-th column is
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(ET); = 3. E;T;. Analogously for a ¢ x s matrix £ and an n x p x g array T we
have (TE)Y; = 3, Ti{Eyj,a=1,..,n,i=1,..,p,j=1,..., s Finally if £ is an
s x n matrix and T is an n x p x ¢ array then the term residing tin the a-th face, the
i-th row and the j-th column of the array [E][T] is ([E][T]):'] =3 EaTf;, a =1,
Lsi=1,...p,7=1,...,¢.

The following properties can be easily verified (see, e.g. [4], [7]).

a) [D][ETG] = F[D][T]G where D, F and G are s x n, t x p and ¢ x k matrices,
respectively, T is and n x p x ¢ array;

b) [JE][T] = [J][[E][T]] where J and E are r x k and k x n matrices, respectively,
and T is an n X p X q array.

Definition 1. By an n X p X ¢ x r array we understand

Tl
T...= :
Tn
where T2, a=1,..., n are p X ¢ X r arrays.

The premultiplication ET..., the postmultiplication T...E the x-multiplication
E x T... and the square-bracket multiplication [E][T...], where E is a matrix, denote
summation over the second, third, first subscripts and the superscript, respectively.

For example, if E is an s x 7 matrix and T... is an n X 7 X p X ¢ array then
the (a,i,j, k)-term of the n x s x p x ¢ array ExT... is (E x R...){, = 2, EadT.
Analogously, the square-bracket multiplication of an s x n matrix E by an nxrxpxgq
array T... results in the s x r x p x ¢ array [E][T...] with terms ([E][T])Zk =
> EatTiijk and so on. ' The reader is recommended to consult Table 1 for better
understanding of the above operations.

The following properties will be used throughout the paper:

[E][FT...6] = F([E[T])G,
[E)[H+ (FTG)] = H (FIENITIG) = F (H + ((E)[T])) G,
where T is a four-dimensional array and E, F, G, H are matrices.

Definition 2. The p x p x p x p array
(4) A® = [U][L'x (L' V...L)]

where U, L are as above and V... is the n x p X p x p array of the third derivatives

of the model function 7 with the elements nj, = |@ is called the four

A PR
50,;00,00;
dimensional parameter-effects array.



Table 1

Rules for computation

T-nxpxgq ET-nxsxyq (ET)E = 32 BT
E-sxp

T-nxpxgq TE-nxpxs (ET)szztﬂ‘;Etj
E-gxs

T-nxpxg [ET]-sxpxq ([E)[T));; = Xy BT
E-sxn

T..-nXxrxpxgq ET..-nxrxsxgq (ET..08%% = 2o Eie Ty
E-sxp »

T..-nxrxpxgq T..E-nxrxpxs (T,.,E)ijkzztﬂ‘}tE,k
E-qgxs

T..-nxrxpxgq ExT..-nxsxpXgq (Ex T = 22 BTy,
E-sxr

T..-nXxrxpxgq [E][T.]-sxrxpxgq ([E][T...]);’jk:z:t EaTf),
E-sxn

3. THE BATES-WATTS ARRAY AFTER REPARAMETRIZATION

Suppose we wish to determine the parameter-effects array in a parameter 8 which
is the result of a non-linear transformation of 9,

B=G(0)
or
Bi=Gi(®) i=1,...,p.

We assume that the inverse transformation is

0 = 5(8)

or
@i :Sz(,B) 1= 1,...,1)
and denote by S. and G. the p x p Jacobian matrices with elements gjf* |ﬁ and %I@,
J 7

respectively, where ﬂ = ﬂ((:)) The p X p x p second derivatives arrays with elements
agjgbk and 63??@’ evaluated at 3 = ﬁ(@) and @ are denoted by S.. and G..,
respectively, where a term with subscript 7, j, k resides in the i-th face, j-th row and

k-th column.-
In [2] Bates and Watts claim that the parameter-effect array for the new parameter
is

(5) A2 = IN[LT6I NG
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The following example shows that this formula is, in general, wrong.
Example 1. The Fieller-Creasy problem. Let
f(.’L'a, @) = (‘_‘)1£u + @1@2(1 - (L‘a)

where z, is an indicator variable that takes the values 1 and 0 for populations 1 and
2, respectively. We assume equal sample sizes for the two populations, ny = ny = n,
and assume that o2 is known and @ = (8;,0,) with 6; > 0, ©; > 0.

In other words we have the model

Ya = O1 a=1,...,n,
Ya = 010, a=n+1,...,2n.

The parameter-effects array for @ is

Al . 1/2 1
A..:(A?.>,whereA}_:@gA?_, A2 =671 (n(1462)” (1 ‘2(3)2)'

The matrix R from (3) is

~ A2 e
R =n'/%(146%)"1/2 (1+@2 . 2) (see [4]).
0 0,

0 1
Consider now the transformation §; = ©,, 83 = ©,05. We have G. = <é) é );
2 1

0 0)
_0.0-1 a-1 (
S. = ( 91162 6(2) ), and G.. = 0 0/ 1. Using (5) we obtain that the

()

0 o
o7 (1 + )21/ (%;‘ 12 )
( 1 —26, )
The straightforward computation leads, however, to the different result
-20, -1
(67105 1n"112) ( -1 0 )

(o o)

new parameter-effects array should be

>
~
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Theorem 1. The parameter-effects array for the parameter 3 is

(6) AP = [X'][X'A..X]
where
(7) A.=A® - l'[L7'67Y[G..]L,

A® is the original parameter-effects array, X is the orthogonal part of the QR-
decomposition of RS. = RGT!; i.e. RG™' = XK, where K is an upper triangular
matrix with elements K;; >0 and L = R™1.

We omit the proof since it goes along the same lines as the proof of Theorem 2
which is given below.

4. FOUR-DIMENSIONAL PARAMETER-EFFECTS ARRAY

In what follows, given an array T..., the array T, is defined to have the terms
(T2 = Ty, + Ty + T+ Evidently,

(8) Q*(QT2Q) = (@ +(Q'T...Q))~

where @ is a matrix.
Now we prove a formula for the four-dimensional parameter-effects array in the
new parameter 3 which is the result of a reparametrization 8 = G(@) given above.
Put h(B) = n(@(B)) and let B = B(O) be the least squares value of 3. Denote
the Jacobian matrix, the second and the third derivatives arrays of h, § and @ by
B., G, S., B.., G..,S.. and B..., G..., S..., respectively. Then the following theorem
holds.

Theorem 2. The four-dimensional parameter-effects array for the parameter

(9) AP = XX % (X'A...X)]
where
(1) Ao=A% - 1'% (U171 67Y(6.00) - (AU 67607 ),

A®_ is the original four-dimensional parameter-effects array, G, G.. and G... are

defined as above, X, L and A.. are as in Theorem 1.
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Proof. Differentiating once, twice and three times the identities h(8) =

n(@(B)) and B = B(@(B)) we obtain

B.=V.S.
(11) B..=[V.][S.]+S'V..S.
B...=S!x(SIV...S.) + ([S!V..][S..])™ + [V][S...]

and

(12) I=G.S. or G'=8..
0=[G][S..]+S/G..S. or —S7'S.571=[GY[G..]
0=S'(5/G...S.)+ ([S/G..][S..))” +[G][S...] or

(13) 87w (575,57 OLP 660+ (16716 [167)16.))

~

We recall that the first and second formulae in (11) can be found in [2].
From the QR-decompositions V. = UR and RS. = XK we get

(14) X'UV.=X'"UUR=X'R, K=X"'RS. or
K-'=S7'R7'X, SK'=R7'X.

Since (UX)'(UX) = I, UX is a matrix with orthogonal columns. It follows that
B. = V.5. = URS. = (UX)K, which provides the QR-decomposition of B. Hence

(15) A8 [(UXY][K'™ w (K'=1 B K1) LMD

[X'U"] [(X’R’"‘S"‘) " {X’R"‘S_’*‘ (5_' *(SIV..S) + ([SIV.IS..) "+

+ [V.][S...])S_‘IR"IX} =01+ 0, + Os.

Refining further we obtain
(16)01 = [X'UI[(X'R™) % (X'R'™IV.L.RTIX)] = [X'][X' * (X' A% X))
0.2 [x'v] [([X’R"‘ V.. [X’R’”‘(S_"IS..S_")R"X])N] =2

= - [ (R VIIVIRT R IXRIG(G.IRX]) | =

a7 = -] [([X'A.Gf] [X'R'-‘[RG.—IMG..]R-IX1)~] C XX« (X'Z2...X)]
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where Z = — ([A2)[R-*RG1[6.IR1])

(18) O3 = [X'U'V][(X'RIS= ) % (X'R'™ISI7IS..STTRTIX)]
= [X'RI[(X'R™1) % (X'R'T...R7'X)]

=[x [x' *X’([R][R’"‘ « (R T...R‘l)])X]

where T... = S§/71 % (§'71S...571).
Using (8) and (13) we obtain from (17) and (18)

(19) O3 + 03 = [X'][X" % (X'W...X)]

where

=
.Il

—[RGT[R'x(R7'G...R™Y)]

+ ([R"‘[RG.‘l][G...]R“] [R='RG[G.JR™]

- [Af?][R”-l[RG-‘MG..JR”J)~

= Ux (UL 676 = (AUt e i6.e) ™

Finally, inserting (16) and (19) into (15) we obtain (9). O

5. CONCLUSIONS

It turns out that the error in the Bates-Watts formula stems from the fact that
M = S 'L is not, generally, an upper triangular matrix. If this is the case, e.g. when
S~ 1is an upper triangular matrix then X = / and the Bates-Watts result is correct,
je. AB = A..

It is worth mentioning that it makes no difference whether A2 or A.. is used for
computing the Bates-Watts parameter-effects curvature but they can lead to different
results when the confidence regions for parameters are constructed.

As shown in 7], not only the Bates-Watts but also the four-dimensional parameter-
effects array should be used in order to obtain an improved confidence region for
parameters in the case when the parameter-effects curvature is moderate. If it is
relatively large a suitable reparametrization is recommended. Having constructed
the confidence region for the new parameter one can back-transform it to obtain the
confidence region for the original parameter.

The problem of finding a suitable transformation for a single parameter has been
discussed by Hougaard [6], Clarke [3], Cook and Witmer [5] and others. It follows
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from their investigations that, as a rule, different criteria would lead to different
transformations. Perhaps the best illustration is the Fieller-Creasy problem men-
tioned above.

As pointed out by Cook and Witmer the obvious transformation in the Fieller-
Creasy model 3 = ©;, B2 = ©;0, tends to obscure the parameter of primary
interest @,. Therefore, other transformations have been tried. The transformation
B = O1, B2 = tan~1(O,) suggested by them has the advantage of making the
“compansion” terms A}, and A2, as well as the “arcing” terms A}, and A%, zero.
On the other hand, the “fanning” terms A}; and A%, are unchanged. 1t follows that
this transformation may produce considerable improvement in situations when there
are substantial “compansion” and/or “arcing” effect.

While Clarke [3] in this case has used the transformation 8, = ©;, B =

A 2
6(21+®2A”R") we advocate the transformation 8; = ©), B2 = cexp(Ls, A3,02),

where ¢ is a suitable constant, on the grounds that this transformation sets the
parameter-effects curvature for 85 to zero. We recommend to use this criterion also
in the case of a vector parameter. The corresponding problem for a vector parameter

is, however, outside the scope of this work and will be dealt with in a separate paper.
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Stihrn

O BLOKOCH PARAMETRICKYCH EFEKTOV V NELINEARNYCH
REGRESNYCH MODELOCH

RAsTisLAV PoTockyY, To VAN BaN

V ¢&lanku st uvedené vzorce pre vypotet blokov parametrickych efektov po reparamet-
rizdcii nelinedrnych modelov. Tieto vzorce sii uzitoéné pri konstrukeii oblasti spol’ahlivosti,
ktoré si presnejsie ako doteraz pouzivané oblasti.
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