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VARIATIONS ON THE GRAM-SCHMIDT AND THE HUANG
ALGORITHMS FOR LINEAR SYSTEMS: A NUMERICAL STUDY

EmiLio SpEDICATO, MARIA TERESA VEspuccl, Bergamo

(Received August 22, 1990)

Summary. In this paper we compare the numerical performance on a set of ill conditioned
problems of several algorithms for linear systems based upon the explicit QR factorization
and the implicit LQ factorization associated with the Huang and the modified Huang al-
gorithms in the ABS class. The results indicate that the modified Huang algorithm is
generally more accurate than the Huang algorithm and competitive with commercial codes
based upon the QR factorization with Householder or Givens reflections. The best version
of the modified Huang algorithm performs similarly, as theoretically expected, to the dou-
bly iterated Gram-Schmidt method of Daniel et al., applied on the rows to generate search
vectors.

Keywords: ABS methods, Huang algorithm, QR algorithm, Gram-Schmidt orthogonal-
ization

AMS classification: 65F05

1. INTRODUCTION

In a series of recent papers (Abaffy, Broyden and Spedicato (1984), Abaffy and
Spedicato (1985), see also the monograph of Abaffy and Spedicato (1989)), a gen-
eral class of algorithms of direct type, here referred to as the ABS class, has been
introduced for solving the determined or undetermined linear system of equations

(1) alz=ble;, 1<i<m, m<n, z,6,ER" be €R™
or, in matrix form

2) Az =b.
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In (1) e; is the i-th unit vector in R™ and in (2) A = A} where fori=1,...,m
(3) A; = (a,...,a).

The ABS class of algorithms (extended to nonlinear systems in Abaffy, Galantai

and Spedicato (1987a) and Abaffy and Galantai (1986) and to nonlinear optimiza-

tion in Abaffy, Galantai and Spedicato (1987b)) is defined, in exact and sequential

arithmetic, by the following procedure:

(A) Let x; be an arbitrary vector in R". Let H; be an arbitrary n by n nonsingular
matrix. Let v; be an arbitrary nonzero in R". Set i = 1.

(B) Compute the vector s; € R™ by

(4) §; = H,‘AT’U,'
and the scalar 7; by
(5) 7 = v} (Az; —b).
If s; # 0, go to (C). If s; and 7; are zero, set ziy1 = Zi, Vi41 = Vi, Hip1 = H;
and go to (G). If s; is zero but 7; is nonzero, stop (system incompatible).
(C) Define the search vector p; € R™ by
(6) pi=H]z

where z; € R" is arbitrary save that z's; # 0.
(D) Update the estimate z; of the solution by

(7) Ti41 = T — ;i
where

T
8 P = .
(®) o=t

If i = m stop (£m41 solves the system).
(E) Update the matrix H; by

(9) ’ H,’+1=H,'—S,‘w;rHi)
where w; € R" is arbitrary save that

(10) wls; = 1.
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(F') Define the scaling vector v;41 € R™ as an arbitrary vector in R™ subject to
linear independence from vy, ..., v;.
(G) Increment the iteration index i by one and go to (B).
An important algorithm in the ABS class is the so called Huang algorithm, intro-
duced by Huang (1975) in a paper which led to the development of the ABS class.
The Huang algorithm is obtained by the choices Hy = I, v; = e; and

a;
(11) Zi = a4, wi=m
so that formulas (8), (9) read
az; —bTe;
(12) o = #—'—
i Pi

and

pT
(13) Hiy1 = Hi — %’-’-’7

i Pi

In this paper we consider several versions of the Huang algorithm, corresponding
to various parameter choices and alternative formulations for the stepsize and the
search vectors. We compare these algorithms with three commercial codes, based
upon explicit QR factorization via Householder or Givens rotations, and with four
algorithms based upon the stabilized or the reorthogonalized Gram-Schmidt orthogo-
nalization procedure applied to the columns or to the rows of the matrix. The results
indicate that the so called modified Huang algorithm is usually more accurate than
the Huang algorithm and competitive with the considered commercial codes based
upon the QR factorization. The best version of the modified Huang algorithm per-
forms similarly to the algorithm where the search vectors are obtained by twice
iterating the standard Gram-Schmidt algorithm on the rows of A and updating z;
via the ABS formula

a;»r:ci —bTe;

14 ZT; =T; —
( ) +1 a;_rpi

pi-
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2. PROPERTIES AND FORMULATION OF THE HUANG
AND THE MODIFIED HUANG ALGORITHMS®

In exact arithmetic the Huang algorithm has a number of remarkable properties
that are recalled here, assuming, for the sake of simplicity, that A has full rank. For
proofs and further discussions, see Abaffy and Spedicato (1989).

(A1) The denominator af H;a; = a] p; is strictly positive.

(A2) The search vectors are orthogonal and coincide with the vectors obtained by
applying the Gram-Schmidt orthogonalization procedure to the rows of A.

(A3) If 21 is an arbitrary multiple of a; (for instance z; = 0), then fori =1, ..., n,
the vector z;4; is the solution of minimal Euclidean norm of the first 7 equations
of the given system and, moreover, the following inequalities are satisfied (in
Euclidean norm):

(15) llz:ll < lleisall,

(16) lzirs — 2| < llzi — 2™,

where zt = 2,41 is the solution of the system of minimal Euclidean norm.
(A4) The matrices H; are orthogonal projectors.

The modified Huang algorithm has been firstly introduced in the paper by Abaffy
and Spedicato (1983) corresponding to the following parameter choices in the ABS
class; Hy = I, v; = e; and

Si

(17) Zi:H,'(l,':S,', w; = —=—,

Te
Sz‘ S;

implying that

a¥ae; —bTe;
9 NI
and
T
$ip;
19 Hiy1 = H; — —-.
( ) i+1 1 S,Tsi

Among the properties of the modified Huang algorithm, we quote the following.
(B1) The vector w; = si/s;rsi is the vector of minimal Euclidean norm, which
satisfies the projection condition (10). It is also the vector of minimal Eu-
clidean norm, which solves the linear system, consisting of (10) and the equa-
tion (A;—1)Tw; = 0, which defines optimally conditioned updates for H;, in the
sense defined by Spedicato (1987) and Deng and Spedicato (1988).
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(B2)

(B3)

(B4)

A

In the Huang update the denominator a] H;a; may become negative owing to
the round-off errors. In the modified Huang update the denominator can never
become negative.

The termination condition for the ABS algorithm is equivalent to the matrix
condition

(20) VTAP =L,

where V = (v1,...,vm), P = (p1,...,pm) and L is nonsingular lower triangular.

In presence of round-off the matrix L generally has nonzero elements above the
diagonal. Yang (1988) shows, under certain assumptions, that, if the size of
these elements is €, when the Huang algorithm is used, then their size is €2 if
the modified Huang algorithm is used.

The eigenvalues of H;41 are zero, with multiplicity ¢, and one, with multiplicity
n — 1. Let ¢ be the size of the interval where, owing to round-off, the per-
turbed zero eigenvalues of the matrix H; are contained. Then, if the Huang
update is used, this interval can be amplified by a factor ¢ or also o, where
o = ||a;||/||H:iai|| may be large for ill conditioned problems, depending on pre-
cisely which formula is used for the update of H;. When the modified Huang
update is used, either there is no amplification or the amplification factor is
only o, depending on precisely which formula is used for the update of H;. See
Broyden (1989) for an analysis of this phenomenon.

number of alternative formulas for the computation of the search vectors are

discussed in the monograph by Abaffy and Spedicato (1989). In our experiments we

have considered, in addition to the formulas given above, the following formulations

for the Huang and the modified Huang algorithms.

(A) Formulas using an ¢ by 7 matrix G;

These formulas are based upon the identity, here written for H; = I and v; = ¢;

(21)

Hipr = 1 — AiG;W]T,

where W; = (wy, ..., w;) and G; is the LU decomposable matrix, defined by

(22)

Gl = (W) A;

In the case of the Huang algorithm the above formula gives

(23)

Pit1 = @iyt — A;iGi(A4i) aiy1,
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and G; is updated by
(24) G,‘+1 = é,‘ + uu’

where G; is G; bordered with an extra null row and column, u € R**! is defined by

AT a:
) u=a [T

and the scalar § satisfies

1
(26) 3 = a;rHaiH - G.;r+1AiG,'(A,')Ta,'+1.

In the case of the modified Huang algorithm the search vector is computed by
(27) Pit1 = Pit1 — AiGi(Ai) Pis,
where p;41 is pi+1 computed by (23).

(B) Formulas using order i vectors
These formulas have the following form, assuming that H, = I and v; = e;,

(28) Pi =2 — Z Sj T';rz,',

i<i

where the i — 1 vectors sj,7; € R™ have to be stored and are given by the relations
ry =ay, s = w; and for i > 1

(29) T =a; — er s}-a,-
i<i

(30) S = w; — ZSjT;rw,'.
i<i

In the case of the Huang algorithm we have identically p; = r;, s; = ﬂ, hence we

T
a; pi
obtain
T
p; a;
(31) pi=a;— ]Tavpj-
j<i Pi %
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Note that formula (31) corresponds to one of the iterations of the standard Gram-
Schmidt orthogonalization procedure.

Another form of this procedure is obtained noting that pla; = o] Hia; =
a] Hza; = p,»Tpi, from idempotency of H;, hence

p/ai
P/ p;

(32) ) pi = a; —

Jj<i

pj-

In Huang (1975) it is argued that formula (31) is more stable that formula (32). This
fact 1s to some extent confirmed by our numerical experiments.
When we consider the modified Huang algorithm, the obtained formulas are

T;rr,'
(33) pi=ri— T, P>
j<i 3
T
(34) T, = a; — ?L'—I-Tj.
j<i 33

Noting that in exact arithmetic p; and r; are identical, formulas (33) and (34) can
be changed into the following:

T
piri
(35) pi=ri— ) ~+—p
j<i PiPi
T
pai
(36) =ai- ) T—p;.
j<i p] p]
Formulas (35), (36) require the storage of only the vectors pi, ..., pi. They are

equivalent to twice iterating the standard Gram-Schmidt iteration (32), as suggested
by Daniel et al. (1976). A further variation, in the spirit of the quoted Huang’s
argument, can be obtained by substituting pijj in (35) and (36) with a;-rpj.

(C) Formulas using n — i vectors

IfHy=1,v;, =¢ and w; = , then the search vector can be defined by

2i
Z,TH,' a;

37) pi =1
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where u]1 = zj for j = 1, ..., m and for i > 1 the vectors uj- are updated for

j=i+1,.., mby

T,:
. .oa;ub o
(38) Wit =t — =Ll
J J a¥ut *
1

The Huang algorithm can be written using (37) and (38) by setting qu = a; for
j =1, ..., m. The resulting algorithm is related to a class of algorithms for linear
systems described by Sloboda (1978), see also Abaffy (1988).

(D) Formulas using ¢ vectors

When v; = e;, the termination condition (20) is equivalent to the equation
a;rp,- =0, j < i, that can be solved by the ABS method for the search vector
pi, approximated through a sequence p}, ..., pi. If H; = I, p} = z and we use
for the first i — 1 equations of the ith system the search vectors used in solving the
(i — 1)th system, then the ABS iteration has the form

oI

39 Pt =pl -2 7p;, j=1,...,i-1
( ) i a;_l'pj J

and

(40) pi = pj.

Notice that relation (39) and (38) generate identical iterates, differing only in order
of computation.

In the case of the Huang update z; = a;. Noting also that pf = Hjz = Hja;,
we have the identity a}-pf = a;-rHja,- = a}-Hjszi = p;rpz also we have aijj =
a]THjaj = ajTH]- Hjip; = p}pj. Hence (39) can be written in the form

i i Pj . .
(41) p{+1=p{—p{r p]1 ]:ly)l——l

with p} = a;.

Formula (41) is identical with the stabilized Gram-Schmidt orthogonalization for-
mula applied to the rows of A. A variation of this formula can be obtained by
substituting pijj with a}rpj.
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3. THE EXPERIMENTED ALGORITHMS

We have implemented and tested eight versions of the Huang algorithm and nine
versions of the modified Huang algorithm. We have also implemented four algorithms
based upon the stabilized and the doubly iterated unstabilized Gram-Schmidt pro-
cedure applied either to the columns or to the rows of the matrix. Finally we have
considered three commercial codes based upon the QR factorization via Householder
or Givens rotations.

The eight versions of the Huang algorithm correspond in the Tables to the following
symbols and formulas:

Method HS/ATS
This is the standard Huang algorithm, where p; = Hja;, «; is given by (12), H; is
updated by (13) written in the form

(42) Hiyy = Hi — piuf

where u; = p;/alp;. All elements of H; are explicitly computed by this formula,
implying generally a loss of symmetry, since u; may not be an exact multiple of p;

due to round-off errors.

Method HS/ATS/SYMM

This method differs from the previous one in the fact that symmetry of H; is forced
by applying the update formula only to the elements on and above the diagonal and
setting the elements below the diagonal of index (4, j) equal to the elements of index

(4,1), j <.
Method HS/STS
This is the Huang algorithm with a; computed by (12) and H; updated by (42)

with u; = p;/(p]p;). Again all elements of H; are explicitly computed by this
formula, implying generally a loss of symmetry.

Method HS/STS/SYMM
This method differs from the previous one by the fact that symmetry is forced as
in HS/ATS/SYMM.

Method HBE
Here p; is computed via relations (23) to (26), a; by (12).

Method HB/ATS
Here p; is computed by (31), a; by (12).
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Method HB/STS
Here p; is computed by (32), «; by (12).

Method HCS
Here p; is computed via (37), (38), «; by (12).

The nine versions of the modified Huang algorithm are:

Method MHS/STS

Here z;, a;, H; are computed as in (17), (18), (42), with u; = p;/s]si, and
pi = Hz. Again all elements of H; are explicitly computed by (42), implying
generally a loss of symmetry.

Method MHS/STS/SYMM

This method differs from the previous one by the fact that symmetry is forced as

in HS/ATS/SYMM.

Method MHS/ATP
This method differs from MHS/STS by the fact that u; = p;/a] p;.

Method MHST /PTP
In this method «; is given by

Ti

43 a; =
(43) P,-Tpi

and H; is updated by (42), with w; = p;/p! p;.

Method MHST/STS
This method differs from MHST/PTP by the fact that «; is given by (18).

Method MHBE
Here p; is computed by (27), a; by (43).

Method MHB/PTP
Here p; is computed by (33) and (34), a; by (43). ‘

Method MHB/ATP
As the previous one, save that «; is computed by (12).

Method MHB/STS
As the previous one, save that a; is computed by (18).
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Notice that all the Huang and modified Huang algorithms are started with z; the
zero vector.

The four algorithms using the stabilized or doubly iterated Gram-Schmidt formula
are the following:

GSM/COL

In this algorithm a QR factorization of A is obtained by applying the stabilized
Gram-Schmidt algorithm to the columns of A (i.e. formula (41) with p} = Ae;) and
then solving the triangular system Rz = Qb by back substitution.

GS2/COL
This algorithm is based upon twice iterating the standard Gram-Schmidt iteration

(31) on the columns of A to form a QR factorization of A and then proceeding as in

GSM/COL.

GSM/ROW
This algorithm computes p; by the stabilized Gram-Schmidt iteration (41) applied
to the rows of A, then updates z; by (7) with a; given by (12) (with z; = 0).

GS2/ROW
This method computes p; by twice iterating the standard Gram-Schmidt iteration
(31), then updates z; by (7) with a; given by (12) (with z; = 0).

Other considered algorithms are the following:

QR HOUSE
This method is the LINPACK implementation (codes SQRDC, SQRSL) of the QR
method, where the QR factorization is obtained via Householder rotations. ‘

QR GIVENS

This method is an implementation of the QR method, where the QR factorization
is obtained via Givens rotations, available from the N.O.C. library of the Hatfield
Polytechnic.

BRENT

This method is the code BRENTM developed by More and Cosnard (1979) for
solving nonlinear systerms. On linear systems this method has finite termination,
being equivalent to the QR method via Householder rotations. '
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The above described codes have been written in FORTRAN and run on the com-
puter IBM 4361 working in single precision and in double precision. The zero ma-

chine has the value 2=2! = 4.10~7 in single precision; in double precision the value
is 2798 = 1.10"16,

4. THE TEST PROBLEM

The algorithms have been tested on several families of ill conditioned small di-
mensional problems. The dimension varies between 4 and 20 and the L1 condition
number, estimated by the IBM ESSL routine DGEICD, varies between 4 - 103 and
8 - 10'3; it is given in Table 1.

The first four test problems are taken from Rutishauser (1968), where they are
introduced in the context of determining the matrix with largest P-condition number
whose elements are integers not greater that 10 in modulus.

They are called in the Tables as WILSON, WIL-RUT, WIL-MOR, TODD-SL and
correspond respectively to the matrices

5 7 6 5 100 1 4 0

7 10 8 1 .10 5 -1

6 8 10 9 4 5 10 7

5 7 9 10 0o -1 7 9
10 7 8 7 25 —41 10 -6
7T 5 6 5 -41 68 =17 10
8 6 10 9 10 -17 5 =3
7 5 9 10 -6 10 =3 2

Additional problems, indicated as WILSON**2, WIL-RUT**2, WIL-MOR**2,

TODD-SL**2, WILSON**3 WIL-RUT**3, WIL-MOR**3 and TODD-SL**3 are

obtained by taking the second and the third power of the above defined matrices.
Problem PASCAL corresponds to the matrix defined by the recursion formula

(43) A,"j = A,'__l,j-f-A,',j_l, i,j:?,...,n

with Al,j = Ajy] = 1, ] = 1, e n

Problem HILBERT corresponds to the integer matrix obtained by multiplying the
Hilbert matrix (4; ; = 1/(i + j — 1)) by the smallest integer such that the elements
of the resulting matrix are all integers.

Problem VANDERMONDE uses the Vandermonde matrix (A;; = JJ 1), where
the y; are distinct small integers.
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Problem MICCHELLI uses the (nonsingularj matrix defined by A; ; = |i — j|.

Problem ZIELKE uses the matrix defined by formula (21) in Zielke (1986) in terms
of Hadamard matrices.

All matrices in the defined problems have integer elements. Overall 33 matrices
have been considered. Their L1 estimated condition numbers are listed in Table 1.

For each matrix 100 problems have been defined by assigning a randomly generated
integer solution and computing the corresponding right-hand side. In single precision
the random elements of the solution have been generated in the interval [-50, +50].
In double precision they are generated in the interval [—1000,+1000]. Hence the
double precision Tables do not relate to the same problems dealt with in single
precision. The size of the involved integer numbers was checked to guarantee that
the right hand side was computed by an exact operation among integers.

5. THE NUMERICAL RESULTS

The analysis of the numerical tests is based upon the following quantities all
computed in double precision. The symbol ||.|| relates to the Euclidean norm.

E1MIN: the minimum value, with respect to all problems having a given matrix A,
of the relative error u; in the solution, defined by

. _ Iz’ =%
(45) M= ]

where z’ is the computed solution, zt the true solution;
EIMAX: the maximum value of p;
EIMED: the geometric average value of py;
E2MED: the geometric average value of the relative error p2 in the solution, defined

by
[l Az’ — b
(46) P2 = T
llell
E3MED: the geometric average value of
iy = max [HE =L
i et
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E4MED: the geometric average value of

n

Z lli]'(l:; - b,’

j=1

- ;
El(laiﬂ SEARS )]
J:

fla = max
1

ESMED: the geometric average value of

Hs = %(a‘nls—l(zj"i'm);

ANGMED: the geometric average value of ug, the modulus of the cosine of the angle
B; between p; and p,
fe = |p;‘rpn‘ ;
lIp:ll - [lpnll
ANGMAX: maximum value, fori =1, ..., n — 1, of us;
D%: fraction of the number of iterations where the monotonicity condition
[Jzit1]] > [|zs]| is not satisfied;
PAIMED: the geometric average value, fori = 1, ..., n— 1, of u7, the modulus of the
cosine of the angle ®; between a; and p,

L
Ipnll - llaill’
PAIMAX: the maximum value, for j =1, ..., n— 1, of uz;
HELMED: the geometric average value of the modulus of all the elements of the matrix
Hy;
HELMAX: the maximum absolute value of the elements of H,,.

Due to space reasons, here we present in Tables 2 and 3 only part of the data
upon which the conclusions of this paper are based. The interested reader can find
the complete data in a report by Spedicato and Vespucci (1989).

Let us first consider the results pertaining to the Huang algorithm. In terms of
accuracy, the worst results are those of algorithms HS/STS and HS/STS/SYMM,
while in terms of loss of orthogonality algorithm HBE is the worst. The other
algorithms behave similarly, with a marginal superiority of algorithm HCS, with
respect to the average values, of algorithm HS/ATS/SYMM, with respect to the
maximum values. Algorithm HS/ATS/SYMM gives marginally better results than
HS/ATS. Algorithm HB/ATS is usually more accurate than algorithm HB/STS, up
to two orders with respect to some parameters (but is worse with respect to some
other parameters).
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Let us now consider the results pertaining to the modified Huang algorithm. The
worst results are given by algorithms MHBE, MHB/ATP, MHB/STS. In terms of
the maximum error bad results are also obtained by MHB/ATP, MHB/STS and
MHST/PTP. In term of keéping orthogonality among the search vectors, the best
results are given by MHST/PTP (and MHST/STS, which generates identical search
vectors), while in terms of the orthogonality of p, with a1, ..., a,_1, the best results
are given by algorithms MHS/STS and MHS/ATP, particularly when considering
the maximum values. In terms of accuracy in the solution the best algorithms are
MHS/STS, MHS/ATP and MHST/STS. Of these MHST/STS is marginally less
accurate in the approximation of the solution, measured by the first seven accuracy
parameters, but gives less failures in satisfying the monotonicity condition ||z;41]] >
[lzil]. Algorithm MHS/STS/SYMM intriguingly performs worse than MHS/STS.
Overall the algorithms of the modified Huang type perform more accurately than
the algorithms of the Huang type. This superiority is up to four or five orders in
terms of angles, but generally of only two orders in terms of the other parameters.

Considering the algorithms based upon the Gram-Schmidt procedure, we notice
that those which work on the columns give much less accurate solutions than those
which work on the rows. This fact shows up particularly when considering the
maximum errors. The algorithms based upon the doubly iterated standard Gram-
Schmidt method are much better than the algorithms based upon the stabilized
Gram-Schmidt method, a result which Hoffmann (1989) has also found to be true
for ill conditioned problems with respect to a certain measure of orthogonality.

The three commercial codes based upon the QR factorization via Householder or
Givens rotations behave similarly, the code BRENT being marginally better. ,

A comparison among the best algorithms in the considered groupings indicates
that the best versions of the modified Huang algorithm, say MHS/STS or
MHST/STS are just marginally less accurate than the doubly iterated Gram-Schmidt
procedure applied on the rows (algorithm GS2/ROW) and usually better (marginally
on the average error, sometimes significantly on the maximum error) than the com-
mercial codes based upon the explicit QR factorization. In Spedicato and Vespucci
(1989) tables are given containing detailed results of algorithms HS/ATS/SYMM,
MHS/STS, GS2/ROW, BRENT on the considered test problems (runs in single
precision). It is seen that on problems with largest condition numbers, algorithms
MHS/STS and GS2/ROW perform similarly and significantly better than algorithm
BRENT with respect to the errors EIMED and EIMAX.
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6. FINAL REMARKS AND CONCLUSIONS

We have presented the results of extensive numerical experiments with algorithms
for linear systems based upon methods of the LQ, QR and Huang type. We have
obtained the following indications:

— different implementations of the Huang and the modified Huang algorithm be-

have differently, as already observed in Abaffy and Spedicato (1987);

- the modified Huang algorithms are more accurate than the Huang algorithms,
as already shown in the quoted paper of Abaffy and Spedicato and as suggested
by the theoretical analysis of Yang (1988) and Broyden (1989);

- the best modified Huang algorithms are essentially as good as the doubly iter-
ated Gram-Schmidt algorithm applied on the rows of the coefficient matrix and
coupled with the ABS update formula (14). They are generally more accurate
than the stabilized Gram-Schmidt algorithm and the algorithms based upon the
QR factorization, implemented in the considered commercial codes.

An important observation which arises from the experiments is that accurate re-
sults depend not only from the computation of the search vectors, but also from
the computation of the stepsize. This shows up dramatically in the comparison of
the algorithms MHST/PTP and MHST/STS. They generate the same set of search
vectors but differ in the stepsize formula. Here the use of pTp in the denominator
gives much worse results than the use of 27z. A possible explanation is that while
the used update formula for H; is invariant to the norm of p;, the update for z; is
not so invariant. Now the reprojection procedure is expected to reduce the norm of
pi, since it tends to annihilate components of p; in the null space of H;. A numerical
check of the norm of p; before and after reprojection has shown that the norm was
never increased. It was usually only slightly decreased, but sometimes it could be
dramatically decreased, especially in the last iterations. If this procedure produces
a reprojected search vector of smaller norm than the correct one, a corresponding
larger stepsize than the correct one would be obtained, with a possibly larger error
in the computed solution. A further indication that such an overshooting actually
occurs is given by the fact that the monotonicity condition ||z;41]| > ||zs|| is violated
less often by algorithm MHST/PTP.

References

[1] Abaffy J.: Equivalence of a generalization of Sloboda’s algorithm with a subclass of the
generalized ABS algorithm for linear systems, Quaderno DMSIA 1/88(1988), University
of Bergamo.

[2] Abaffy J., Broyden C. G. and Spedicato E.: A class of direct methods for linear equations,
Numerische Mathematik 45 (1984), 361-376.

96



(3]

(4]
(5]

[6

—_—

(11]

(19]

[20]

Abaffy J. and Galdntai A.: Conjugate direction methods for linear and nonlinear sys-
tems of algebraic equations, Colloquia Mathematica Societatis Janos Bolyai 50 (1986),
481-502.

Abaffy J., Galdntai A. and Spedicato E.: The local convergence of ABS methods for
nonlinear algebraic systems, Numerische Mathematik 51 (1987a), 429-439.

Abaffy J., Gdlantai A. and Spedicato E.: Application of ABS class to unconstrained
function minimization, Quaderno DMSIA 14/87 (1987b), University of Bergamo.
Abaffy J. and Spedicato E.: A generalization of the ABS algorithm for linear systems,
Quaderno DMSIA 4/85 (1985), University of Bergamo.

Abaffy J. and Spedicato E.: Numerical experiments with the symmetric algorithm in the
ABS class for linear systems, Optimization 18(2) (1987), 197-212.

Abaffy J. and Spedicato E.: ABS projection algorithms: mathematical techniques for
linear and nonlinear equations, Ellis Horwood, Chichester, 1989.

Broyden C. G.: On the numerical stability of Huang’s update, Quaderno DMSIA 18/89
(1989), University of Bergamo.

Daniel J., Gragg W. B., Kaufman L. and Stewart G. W.. Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization, Mathematics of
Computation 30 (1976), 772-795.

Deng N. Y. and Spedicato E.: Optimal conditioning parameter selection in the ABS class
through a rank two update formulation, Quaderno DMSIA 18/88 (1988), University of
Bergamo.

Hoffmann W.: lterative algorithms for Gram-Schmidt orthogonalization, Computing 41
(1989), 335-348.

Huang H. Y.: A direct method for the general solution of a system of linear equations,
Journal of Optimization Theory and Applications 16 (1975), 429-445.

More J. J. and Cosnard M. Y.: Numerical solution of nonlinear equations, ACM Trans.
5 (1979), 64-85.

Rutishauser H.: On test matrices, Progrés en Mathématiques Numériques (M. Kuntz-
mann, eds.), Editions de la Faculté de Science de Besancon, 1968.

Sloboda F.: A parallel projection method for linear algebraic systems, Apl. Mat. Ceskosl.
Akad. Ved 23 (1978), 185-198. :
Spedicato E.: Optimal conditioning parameter selection in the ABS class for linear sys-
tems, Report 203, Mathematische Institute, University of Wiirzburg, 1987.

Spedicato E. and Vespucci M. T.: Variations on the Gram-Schmidt and the Huang algo-
rithms for linear systems: a numerical study, Quaderno DMSIA 21/89(1989), University
of Bergamo.

Yang Z.: On the numerical stability of the Huang and the modified Huang algorithms
and related topics, Collection of reports on the ABS class of algorithms, 5, Department
of Applied Mathematics, Dalian University of Technology, 1988.

Zielke G.: Report on test matrices for generalized inverses, Computing 36 (1986),
105-162.

97



98

TABLE 1: ESTIMATED L, CONDITION NUMBERS
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VANDERMONDE (C)
HILBERT4**2
PASCAL9

HILBERT?7
VANDERMONDE (D)
WIL-RUTIS**2
PASCALI0
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TABLE 2: AVERAGE ON PROBLEMS (SINGLE PRECISION)

METHOD

HS/ATS

HS/ATS/SYMM -

HS/STS

HS/STS/SYMM

HBE
HB/ATS
HB/STS
HCS

MHS/STS

MHS/STS/SYMM

MHS/ATP
MHST/PTP
MHST/STS
MHBE
MHB/PTP
MHB/ATP
MHB/STS

GSM/COL
GS2/COL
GSM/ROW
GS2/ROW
QR HOUSE
QR GIVENS
BRENT

E1IMIN

1.LE—-02
1.LE—-02
2.E-01
2E-01
5.E—-02
1.LE—02
3.E-02
7.E—-03

9.E - 04
7.E—-03
1.LE-03
2.E-03
1.LE—-03
3.5 —02
2.E—-03
7.E—-03
6.E—03

- 1LE+402

7.E - 03
2.E — 02
9.E — 04
2.E — 03
2.E - 03
2.E — 03

EIMED

2.E-01
2.E-01
3.E+02
3.E+02
5.E-01
3.E-01
2.E-01
2.E-01

3.E-02
1.LE-01
3.E—-02
9.E — 02
4.E - 02
4.E - 01
8.E — 02
8.E + 02
6.E+01

7.E+03
3.E-01
3.E-01
3.E—-02
8.E - 02
5.E—02
8.E—02

EIMAX

6.E—01
5.E—01
1.LE+ 03
1.LE+03
1.E+ 00

T.E-01

5.E—-01
7.E-01

2.E-01
3.E-01
2.E-01
6.E— 01
2.E-01
1.LE+00
5.E—-01
6.E+ 03
4.E+ 02

2.E+ 04
1.E+ 00
6.E—01
1.E-01
4.E-01
3. E-01
5.E—-01

E2MED ANGMED

5.E—05
4.E—-05
6.E+00
6.E+00
2E-03
1.LE—-04
8.E—-03
2.E-05

8.E—-07
4.E—-05
7E-07
5.E—06
1.E—-06
6.E—-03
7.E - 06
6.E—02
4.E-03

2.5 -02
4.E - 06
3.E-04
1.LE-06
2.E—-06
7.E—-05
1.LE—06

1.LE-03
7.E—-04
1.LE-03
1.E-03
1.E-02
1.LE-03
2.E-03
1.LE-03

5.E - 07
5.E—-05
5.E—-07
7.E—-08
7.E—-08
4.E - 04
8.E - 07
3.E-06
3.E-06

5.E—-05
8.E—08
8.E—05
8.E—08

2.E-07
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TABLE 3: MAXIMUM ON PROBLEMS (SINGLE PRECISION)

METHOD EIMIN EIMED EIMAX E2MED ANGMED
HS/ATS 5E—-01 2E+00 9E+4+00 7E-03 2E-01
HS/ATS/SYMM 5E-01 1.E+00 1E+4+00 9E-04 2E-01
HS/STS 1.E+00 3E+05 2E+06 1.E406 7.E-01
HS/STS/SYMM 1.E400 3E+05 2E+4+06 1E+4+06 7.E-01
HBE 6E-01 1.E4+00 3E+00 7E-02 5E-01
HB/ATS 5E—-01 5.E+4+00 1.E+01 1E-02 3E-01
HB/STS 7E-01 1E+4+00 4E+00 2E+4+00 5.E-0I
HCS 5E-01 4E+00 2E+4+01 B8E-03 3E-02
MHS/STS 1LE-01 1E+00 5E+4+00 3.E-06 1.E—-04
MHS/STS/SYMM 4E-01 7E-01 2E+00 5E-02 2E-02
MHS/ATP 1.E-01 8E-01 5E+00 3.E-06 1.E - 04
MHST/PTP 3JE+00 T7E+4+02 4E+03 6E+4+00 2E-06
MHST/STS 2E-01 2E4+00 8E+00 7.E-06 2.E-06
MHBE 5E-01 2E+4+01 2E+02 5.E+00 1.E - 02
MHB/PTP 7E-01 7E+4+01 7E+02 3E-02 1.E - 04
MHB/ATP 4E+01 4E+4+20 4E+22 1E+15 1.E—-03
MHB/STS JE+01 4E+4+13 2E+15 1E408 1.LE-03
GSM/COL 1.LE+06 4E+07 2E+4+08 4E+00 3.E-03
GS2/COL 1.E4+02 9E+403 4E+04 1E-03 3.E-06
GSM/ROW 5E-01 2E+4+00 7E+4+00 1E-02 3.E-03
GS2/ROW 1.E-01 2E+00 1.E4+01 5E-06 3.E-06
QR HOUSE 3JE4+00 4E+4+01 3E+02 5E-06

QR GIVENS 7E-01 2E+01 8E+01 2E+401

BRENT 7E-01 2E+01 1E+4+02 1LE-05 T7.E-07
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