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FINITE ELEMENT SOLUTION
OF A STATIONARY HEAT CONDUCTION EQUATION
WITH THE RADIATION BOUNDARY CONDITION

ZDENEK MILKA, Praha

(Received June 8, 1992)

Summary. In this paper we present a weak formulation of a two-dimensional stationary
heat conduction problem with the radiation boundary condition. The problem can be
described by an operator which is monotone on the convex set of admissible functions. The
relation between classical and weak solutions as well as the convergence of the finite element
method to the weak solution in the norm of the Sobolev space H'!(f2) are examined.
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1. FORMULATION OF THE PROBLEM

Let © C R? be a bounded domain with a Lipschitz boundary I'. The stationary
heat conduction equation is

(1.1) —div (A grad u) = f,

where u is the temperature, u € C*(Q)NC! (ﬁ), u > 0, since the temperature is mea-
sured in Kelvin’s scale, A is a symmetric positive definite matrix of heat conduction
coeflicients, A € (C‘(Q))zxz, f € L2(Q) is the volume heat energy.
Let I'1, Ty be relatively open sets in I', I'y NTy = @, T, UT; = I'. We prescribe
boundary c:onditions
u=yq on I'y,

1.2
(12) —v" ) grad v = au + Bu’ on I'y,
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where g is the temperature prescribed on I'y, g > 0, g € H!(Q), v is the outward unit
normal to ', @ > 0 is the coefficient of convective heat transfer on 'y, @ € L (T2),
where, in the case I'y = (), we suppose a > 0 on a nonempty open subset of I', 3 > 0
is the coefficient of radiation heat transfer on 'y, 8 € Loo(I'2).

The boundary condition on ['y is called the Stefan-Boltzmann condition. The
function u, which statisfies the above conditions, is called the classical solution of
the problem (1.1)~(1.2).

There exist many different methods how to treat analytically and numerically the
Stefan-Boltzmann condition, see e.g. [1, 3, 6, 7, 10, 12, 13, 15, 16]. In the present
paper, we slightly modify a variational approéch, which is briefly described in [14].
Then we will examine the associated finite element approximations.

Let us set

V={ve H'(Q)|v=0onT},

where H!(€) is the standard Sobolev space with the norm ||.||; 2 and the seminorm
|.]1,2- Multiplying (1.1) by an arbitrary function v € V and integrating over Q we

obtain from Green’s theoremn:
/ A grad u - grad vdx — / (v Agrad u)vds = / fodx YveV.
o) I, Q

Employing the boundary conditions (1.2), we get
(1.3) / A grad u - grad vde +/ (au+ pu)vds = / fodz Yvev.
9] I, Q

So every classical solution of (1.1)-(1.2), if it exists, satisfies the equation (1.3).

Now we shall show that all integrals in (1.3) are well-defined even for u, v from
H'(Q). This is clear for the first and the third ones. The following theorem is
presented in [11, p. 86]:

Theorem 1.1. Let Q@ C R? be a bounded domain with a Lipschitz boundary.
Then for every real number q > 1 there exists a single continuous linear mapping Z :
HY(Q) — L(T) which satisfies Zv = v on T for all v € C*(Q).

From Theorem 1.1 we see that the second integral in (1.3) is also well-defined for
arbitrary u,v € H'(§).
For the sake of simplicity set

a(v,w) = /n A grad v - grad wdz +.A avwds, b(v) = /‘; fvde.
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Now the equation (1.3) can be rewritten as

(1.4) a(u,v) + Butvds = b(v) Vv eV.
I

Let us define
U={veH' (Q)|v>0 inQuv=gonl}

The set U is called the sel of admissible functions. Note that U is convex and closed

with respect to the norm ||. ||y 2.

Definition 1.2. Let © C R? be a bounded domain with a Lipschitz boundary.
A function ug € U is called a weak solution of the problem (1.1)-(1.2) if

(1.5) a(ug, v —ug) + [ Bug(v—uo)ds > b(v—1ug) YveU.
2
For the functions ug and v € U we have v — ug € V. So the condition (1.5) is
weaker than that in (1.4).

Consider the functional
1 1 5
(1.6) (v) = za(v,v) + = | Bv’°ds —b(v).
2 5 Jr,

By Theorem 1.1 this functional is well-defined and continuous in H'!(Q2). Moreover,
I1 is clearly (i-differentiable, strictly convex and coercive in U. That is why there
exists precisely one element @ € U in which II attains its minimum over the set U.
This element fulfils

(1.7) Dll(wv—w) >0 Vvel,

where

(1.8) DI (v; w) = a(v, w) +/ Bvtwds — b(w)
rs

is the Gateaux derivative of II at the point v in the direction w. We see the inequality
(1.7) is the same as that in (1.5), so U is the only solution of (1.1)-(1.2) in the sense
of Definition 1.2.
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2. SOME PROPERTIES OF THE WEAK SOLUTION

It is clear that a classical solution is also a weak solution. Now we shall formulate
conditions ensuring that the weak solution is the classical one.

Definition 2.1. The set 'y is said to possess the property (K) if it is the union
of a finite number of connected and relatively open sets in I such that their closures
are disjoint.

Let us set
(2.1) Q = {z € R? | dist (I',z) < 6}, Qs = Q% NQ.

The next lemma follows from a more general proposition which is presented in [4,
p. 618].

Lemma 2.2. Let 'y have the property (K). Then for an arbitrary function u € V
there exists a sequence of functions {v,} C VNC*®(Q) such that v, — v in the norm
of H}(Q) and v, =0 on Q..

For an arbitrary real constant » > 0 define
W(r) = {ve Q)| lvllc@ <m v="0o0nT}

Theorem 2.3. Let 'y have the property (K) and let vy be the weak solution of
(1.1)=(1.2). Let ug € C*(Q)NC(Q) and let there exist a constant Cy, > 0 such that
wy = Cy, holds in the domain Q2. Then wq is also the classical solution of (1.1)—(1.2).

Pro of.. The weak solution ug € U satisfies the condition
DI(up;w—1u) 20 YweU.
For every function v € W(Cy,) we have ug +v € U, ug — v € U.. Therefore
DI (ug; uo + v — ug) = DI(ug;v) = 0, DI(ug;uo — v — ug) = DII(ug; —v) > 0.

From linearity of DII(wo;.) and density of VN C®(Q) in V (cf. Lemma 2.2) we have
DII(ug;v) = 0. Hence by (1.8) we obtain

(2.2) a(ug,v) + [ Bugvds = b(v)
r2
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for all v € V. From here we arrive at
—/ div (A grad wo)vda = / fodz Yve Hy(),
' Q Q
—/ (v Agrad uo)vds = / (aug + Buf)vds Yve V.
I, s

Since the space HJ(Q) is dense in Ly(€2) and traces of the functions from V are
dense in Ly(T3) (cf. [11, p. 87]), uo fulfils (1.1)-(1.2). a

Theorem 2.4. The weak solution ug of (1.1)-(1.2) depends continuously on the
functions a, B a f.

Proof. Suppose there are two weak solutions u; of two problems given by

functions ay, B, fi, i = 0, 1. From the definition of the weak solution we have

/ A grad ug - grad (u; — up) dz +/ aoug(uy — ug) ds
9] I,
+ Boug(uy — ug) ds 2 / fo(uy — uo) d,
) Y Q
/ A grad u; - grad (up — up) dx +/ ayuy(ug — uy)ds
o I,
+/ Bruf(uo — up)ds > / Ji(uo — uy) da.
I, Q

We multiply both inequalities by —1, sum up and obtain

/ X grad (up — up)|? da + / (qvouo — ajuy)(ug — uy) ds
Q

s
+/r (Boug — ﬂlu‘l’)(u() —uy)ds < /n(fg — f1)(uo — uy)de.

Using the relations
Qollg — QU] = g — oty + g — g = ag(ug — uy) + ui (g — ay),

Boug — Brut = Boug — Bout + Bou? — Biuf = Bo(ug — ut) + ui(Bo — Br),

we have
/ X lgrad (wp — wy)|? da: + / ao(ug — up)* ds
Q 2
+ (ﬁo(ug —ul) 4+ u}(Bo = B1))(wo — uy) ds
r,
< /(fn — fi)(uo — uy)de — / uy (g — ay ) (1o — up) ds.
N | Y
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Since
Bo(ug — u})(uo — uy) = Bo(uo — up)?(wo + w)(ud + u?) >0

for ug, u; € U, we obtain from the foregoing inequality

/. A |grad (uo — ul)ll“' dz + / ao(up — up)?ds < / [(fo — fi)(uo — uy)|de
Q r. Q
+ /r2 Juy (oo — g )(ug — uy)|ds + /[:2 uf|(Bo = B1)(uo — uy)| ds.

Now we estimate the left-hand side by the Friedrichs inequality and the second and
third terms on the right-hand side with help of Theorem 1.1. Then for a sufficiently

large constant C' > 0 we have

lluo — w1l 2 < CIlfo = fillo,2 + llo = aiflo,co,r, + 180 = Billo 00, )0 — will1,2,

where C' depends only on u;. ‘ O

3. SOLUTION OF THE VARIATIONAL FORMULATION
BY THE FINITE ELEMENT METHOD

For simplicity we shall suppose that Q C R? is a polygonal domain with a Lipschitz
boundary and 'y has the property (K). Then Q can be divided in the sense of [2,
p.38] into a finite number of closed triangles Ky, i € I. Such a triangulation will be
denoted by Ty, where h = max diam K;.

Consider a family of triangulations & = {T}}, h — 0+. For a fixed h the trian-
gulation T}, is formed by the triangles K, i € I". Let us define

Xn = {vn € CQ) | on| o0 € Pi(KT) Vie 1"}

The spaces X}, contain functions continuous on Q and linear on each of Kih € Th.
Moreover (cf. [9, p. 27]),

(3.1) Xy CHY(Q).

Let m,: C(R) — Xp be the standard linear interpolation operator such that for
all functions v € C(Q) we have m,v(2) = v(z) at the vertices z of the triangles K,
i€t

72



For simplicity we shall suppose that the function g occurring in the boundary

conditions (1.2) and the chosen family of triangulations Z satisfy
(3.2) Iho > 0 Vh € (0, ho) g € X.

It means that the function g is equal to its interpolation mg for sufficiently small h.
For h € (0, ho) let us define
Uy =UNX,.

Clearly the sets Up are convex and closed. So for h € (0, hg) there exists one and

only one solution of the discrete problem
(3.3) I(up) = inf II(vy).
v €Up
Now our goal is to prove that under certain assumptions the solutions u of the

problems (3.3) tend to the weak solution of (1.1)~(1.2).

Definition 3.1. We say that a family of triangulations & satisfies the maximum
angle condition if there exists an angle v < 180° such that every triangle K € T, €

Z has all its angles less or equal to 7.
In the paper [8, p. 225] it is proved:
Theorem 3.2. Let Q C R? be a polygonal domain with a Lipschitz boundary,

Z a family of triangulations which fulfils the maximum angle condition. Then there

exists a constant C' > 0 independent of h such that

llv = mav|li,2 < Chlvla Vv € H2(Q).

For an arbitrary parameter ¢ > 0 we denote by R, the standard regularization
operator which maps L () into C*(Q) (cf. [11, p. 58]):

(Re)@) = [ otz + p)olv o) dy,

lyl<e

where we define v = 0 outside Q and where w(y, @) (the regularization kernel) is

a smooth non-negative hill function defined in R%, which vanishes for y such that

[ o=t
lyl<e

ly] = o and fulfils
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Recall that the sets Qs, Qf were defined in (2.1).

Lemma 3.3. Let Q@ C R? be a bounded domain with a Lipschitz boundary. Then
for every § > 0 there exists a function 05 € C*(Q), 05 = 0 in Q%, 05 =1in Q—Q;,
0s > 0 in Q.

Proof. Putr= %6. Let us define
05 =0 forzeQ,
05 =1 forzeR*—Q.
If we choose g € (0, %), we can take 05 = R,0]. O
The folléwing lemma is to be found in [5, p. 25]:
Lemma 3.4. Let Q C R? be a bounded domain with a Lipschitz boundary. For

v € H1(Q) define

vt = max (0,v), v~ = max (0,-v).
Then the functions vt, v~ belong to H'(Q) and the mapping v — {v*, v~} from

HY(Q) into H'(Q) x H'(Q) is continuous.

Lemma 3.5. Let Q C R? be a bounded domain with a Lipschitz boundary and
v,w € H'(Q). Let {v,} C H'(R) be a sequence of functions, v, — v in H'(Q) and
let

o = max(v,w), U, = max (v,,w).
Then v, — v in the norm of the space 11]((2),

Proof.

v

max(v, w) = 1((v+ w) + v — w]),
1
3(

By = max(vn, w) = 5((vn + w) + v, — w|).

Since v, — w — v — w, it follows from Lemma 3.4 that |v, — w| — |v — w|. O

Lemma 3.6. Let Q C R? be a domain. Let Q C Q,, where Q; C R? is a bounded
domain, and let v € C(R). Then

;L“'(') llv— Re“”cm‘) =0.
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Proof. The proof is similar to that in [11, p. 59], which deals with the case of
convergence in the spaces L,(£2). For an arbitrary 2 € Q and ¢ < dist (0%, 0Q) we

have

[v(z) = (Rov)(e)| =

o(z) - /H( + )y, o) dy

= ‘ /lyke(v(:c) —v(z + y))w(y, 0) (|y|.

The set Q7 is compact, so v is uniformly continuous there. Then for every € > 0

there exists 8 € (0, €) such that for arbitrary 1, xo € Q we get
|z1 — 22| < 8 = |v(z1) — v(22)| < €.

For ¢ < % this yields
[v(x) — (Rov)(z)] < e.

a

Theorem 3.7. Let Q C R? be a polygonal domain with a Lipschitz boundary.
Let F be a family of triangulations which satisfies the maximum angle condition,
and let (3.2) hold. Then for all v € U there exists a sequence of functions {vy},
vy, € Uy, such that

Jim flo —walli 2 = 0.

Proof. The proofis a modified version of the proof of a similar theorein, which

is in [, p. 35]. Let v € U and let us define w = v — g. Lemma 2.2 yields that there

" exists a sequence of functions {w,} C C“’(ﬁ), wy, = 0 on Q2 and w, — w in the
space H!(Q). "

The function g, which is continuous and piecewise linear in Q, can be easily con-
tinuously extended onto R2. The functions w, € C°°(§) can also be continuously
extended onto R? by Calderon’s extension (cf. [11, p.80]), since C®(Q) C H%*(Q).
We denote the extended functions by the same symbols.

Let us define functions
(3.4) Wy, = max(—g, wy).

Obviously, w, € C(R?), , > —g and @, = 0 on Q2. Since w = max(—g, w),

Lemma 3.5 implies that @, — w in the space [/(Q).
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Now let us fix n and make the regularization of w,. We choose ¢ € (0, %) The
functions R,tw, vanish on Qi, they are from C>(R?) and by Lemma 3.6

[ e A - R
(3.5) glgl(])Hw,, Rytnllc@m) = 0.

From here and (3.4) it follows that for every € > 0 there exists a sufficiently small

00(¢) € (0, 1) such that for all ¢ € (0, go) the inequality
(3.6) —g—€L Wy — €< Ry, < Wy 46
holds in ©. In the domain €, put

(3.7) w;, = Ry, + 50%,

where 0.1 is the function from Lemma 3.3. Then wi € C*®(Q), wi = 0 on an_,
and from (3.6), (3.7) and (3.5) we have

(38) wrel 2 -9,
lim ||, — wi||1,2 = 0.
e—0

Since C*°(Q) C H?(R2), Theorem 3.2 implies that }1'133) [lwg — mpwt 1,2 = 0.
According to (3.8), the function mpws, +g € H'(£) is non-negative and, moreover,

it is clearly mpw? + ¢ = g on I'y. Therefore m,wf, + ¢ € Uy. Obviously,
lv = (mawy + Dlhz = [lw+ g — mawy, = glh,2
< llw = @l + [Jon — w12 + llw; = mawy [ 2.
The last three norms tend to zero, since we have already proved that
W, — W as n — oo,

wi, - W, ase—0 foranyn=12,...,

mpwh, — why, ash—0 foranyn=12,... and any ¢ > 0.

a

We see that a family of triangulations .Z which fulfils the maximum angle condi-
tion, allows for sufficiently small i a very precise approximation of a function v € U

by an appropriate function from the space Uy.
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Theorem 3.8. Let Q C R? be a polygonal domain with a Lipschitz boundary.
Let .Z be a family of triangulations which [ulfils the maximum angle condition, and
let (3.2) hold. Then the functions u;, which are the solutions of the problems (3.3)
satisfy '

Jim fluo = uafhi,2 = 0,
where ug is the weak solution of (1.1)-(1.2).

Proof. From Theorem 3.7 we know that there exists a sequence v, € Up
such that ,llh% [luo — vnll1,2 = 0. Evidently, it is II(ug) < I(up) < H(vp). Since II is
continuous, we have
(3.9) ’Ein'é M(up) = U(ug).

Taylor’s expansion of II yields that

H(up) = M(ug) + DU (ug; up — uo) + %DQH(UO + 04 (up — ug); up — ug, up — ug),

where 0, € (0,1). From (1.8) it is easy to derive that for an arbitrary v € U and
w € H'(Q) we have

D21 (v; w, w) = a(w, w) + 4/ Briw?ds > C||w”f}2,
rs
where C is a positive constant independent of v. In the last inequality we have used

the Friedrichs inequality for the first term and neglected the second term, because it

is non-negative. So we have

(3.10) O(up) — M(ug) — DI (ug; up — ug) = Clluy — uOny.“,.
From the definition of the weak solution we know that

(3.11) DI (ug; up — wo) 2 0.

Using (3.10), (3.9) and (3.11), we obtain

[|n — uoll1,2 — 0.
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Theorem 3.9. Let Q C R? be a polygonal domain with a Lipschitz boundary.
Let Z be a system of triangulations which fulfils the maximum angle condition, and
let (3.2) hold. Let the weak solution uy of (1.1)-(1.2) be from the space H?*(2) and

let there exist a constant Cly, such that w > Cy, > 0 holds in Q. Then
|lwo — uplli,2 < Ch for h — 0,

where uy, solve (3.3) and C > 0 is a constant depending only on ug.
Proof. As well as in the proof of Theorem 2.3 the condition ug > Cy, ensures

the validity of (2.2) for any v € V. Using this'relation, we can easily verify that

(uo + v) — (o) = La(v,v) + Budv? + 2ulv® + ugvt + évs) ds
. rs

for every v € V. The integrals over I'y can be estimated with help of H5lder’s integral

inequality and Theorem 1.1. So we obtain
(3.12) o (e + v) = D(ue) < Cloll} . YoeV, [lvhz2<1,
where C' > 0 is a constant depending only on ug.

If uo € H*(RQ) (C C(R), cf. [11, p. 72]), then thanks to (3.2) it is possible to define
Thug € Up. Since uy, solve (3.3), we have

(3.13) O(up) < N(mpuo).
Then the relations (1.7), (3.10), (3.13), (3.12) and Theorem 3.2 imply

Cillun — uoH'f,z Chl|lun — uo||'f,2 + DI (wo; up — wg) < M(un) — M(uo)
2
1,2

<
< (mhug) — M(wp) € Co < C’;,h."'|uo|§,2,

|7"h.'UO - Uo||

where C1, Cq, C5 > 0 are constants independent of h. O
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Souhrn

RESENI STACIONARN{ ULOIY VEDEN{ TEPLA S OKRAJOVOU
PODMINKOU SALANI METODOU KONECNYCH PRVKU

ZDENEK MILKA

V ¢&lanku je uvedena variaéni formulace staciondrni dlohy vedeni tepla s okrajovymi

podminkami vedeni a sdldni. Je dokdzdna existence a jednoznacnost feseni. Ddle je iiloha
feSena metodou linedrnich kone&nych prvki. Je ukdzdna konvergence piibliznych fesen{
k pfesnému-a je zkoumdna i rychlost této konvergence pfi jistych pozadavcich na hladkost

piesného Feseni.
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