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A BOUNDARY MULTIVALUED INTEGRAL “EQUATION”
APPROACH TO THE SEMIPERMEABILITY PROBLEM
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C. C. BanioropouLos, P. D. PaANaGioTOPOULOS, Thessaloniki

(Received January 15, 1992)

Summary. The present paper concerns the problem of the flow through a semipermeable
membrane of infinite thickness. The semipermeability boundary conditions are first consid-
ered to be monotone; these relations are therefore derived by convex superpotentials being
in general nondifferentiable and nonfinite, and lead via a suitable application of the saddle-
point technique to the formulation of a multivalued boundary integral equation. The latter
is equivalent to a boundary minimization problem with a small number of unknowns. The
extension of the present theory to more general nonmonotone semipermeability conditions
is also studied. In the last section the theory is illustrated by two numerical examples.

Keywords: approximations of unilateral BVP, mixed and dual variational formulation of
unilateral BVP

AMS classification: 65N30, 35J85

INTRODUCTION

The problem of semipermeable media and in particular, that of semipermeable
membranes has been recently investigated for monotone semipermeability relations
within the framework of convex analysis in [1]. These relations describe the flow
through porous media (or, in particular, the behaviour of semipermeable membranes
either on the boundary or in the interior of the medium) and give rise to a variational
inequality formulation of the problem connected either with the V-operator or with
other elliptic operators. Similar variational inequalities can be formulated for a class
of semipermeable heat conduction, potential and temperature control problems, as
well as for pressure control problems in hydraulics provided the controlled quantity
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obeys monotone semipermeability relations along the boundary or in the interior
of the body. In the case of nonmonotone semipermeability relations the variational
formulations have the form of hemivariational inequalities which have been studied
by the last author in [2] using the new notion of nonsmooth analysis, the generalized
gradient. However, from the point of view of numerical treatment of these problems,
the formulation in terms of variational and hemivariational inequalities has a disad-
vantage, the large number of unknowns. Therefore in all unilateral problems, i.e. in
all problems having variational expressions in the form of inequalities, there is an
effort to obtain variational formulations containing only the unknowns causing the
unilateral character in order to get BVPs with a smaller number of unknowns. This
effort is based on a mathematical approach using the saddle point properties of the
problem [3]-[7] and leads to multivalued boundary integral equations (B.I.E.).

In the present paper the problem of the flow through a semipermeable membrane
of infinite thickness is investigated. For such a membrane which allows the free
flow of the entering fluid but prevents all outflow of it, monotone semipermeability
relations with graphs similar to those in Fig. 1 hold. Such a problem is of great sig-
nificance since it is applied to the sirnulation of several practical problems, as is e.g.
the operational response of valves under varying pressure of the fluid, the behaviour
of several physical membranes in biological systems, etc. The aforementioned mono-
tone semipermeability boundary conditions are derived by convex superpotentials
which are generally nondifferentiable and nonfinite; the latter lead to the formula-
tion of variational inequality problems which can be numerically treated by solving
the equivalent convex optimization problems. Several numerical techniques of the
theory of optimization can be employed to solve the arising quadratic programming
(Q.P.) problems directly or indirectly. However, the direct application of a Q.P. al-
gorithm includes certain serious difficulties concerning the limitation in the number
of unknowns combined with the often very large computer time necessary. There-
fore, in order to overcome these difficulties towards a rational and effective numerical
study of the present problem, we formulate a multivalued B.[.E. which is equivalent
to a boundary minimization problem with a small number of unknowns. At this
point it should be pointed out that the method developed corresponds to the so-
called direct method for the formulation of B.1.Es for bilateral problems. In contrast
to the so-called indirect method which, when extended to unilateral problems, does
not lead, at least for the moment ([8] or [2], p. 160), to numerical problems which
can be effectively treated, the present method leads to symmetric Q.P. problems
with a small number of unknowns which can be effectively treated. Finally, we will
present an extension of the present theory to more general unilateral boundary con-

ditions expressed in terins of general subdifferential laws [1], [2] and representing the
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Fig. 1. Monotone and nonmonotone semipermeability relations

most general case of semipermeability and potential temperature or pressure control
conditions.

1. SETTING OF THE PROBLEM

Let Q C R? be a bounded domain with a Lipschitz boundary [ = T, UT., where
I'y and T, are nonempty, nonoverlapping parts of I'. We shall consider the following
unilateral boundary value problem:

(1.1) —Au=f inQ

(1.2) u=0 onT,

(1.3 5o, w0, u=0 onr
) oy = uzv, v u= on I..
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In order to give the variational form of the unilateral B.V.P. (1.1)—(1.3), the following
functional sets are first introduced:

(1.4) VQ)={ve H(Q)|v=0 on Iy}
(1.5) KQ)={veV(Q)|v=0 onTl}.

By H¥(Q) (k > 0 integer) we denote the usual Sobolev space of functions which
are square integrable over Q together with their generalized derivatives up to the
order k. The norm (seminorm) in H*(Q) will be denoted by ||.||x (|- |x)-

Then the variational form of the B.V.P. (1.1)-(1.3) reads as follows:

(1.6) Find v € K(2) such that
S(u) < S(v) Yve K(Q),

where

! 1
(17) S() = gloli = (1,0,
or equivalently:

(1.8) Find v € K(2) such that
(Vu, V(v —u)), 2 (fiv—u)o YveK(Q).

In the above problems f € L?(2), Vu = grad v and the symbol (.,.)o stands for
L*(Q) or (L'“’(Q))z—scalar product. In practice we often meet situations that the
knowledge of the gradient of u is more important than the solution u itself. To this

end, another variational formulation for the problem (1.6) is more convenient, [7].
Let

(1.9) UH Q) = {q € [L* () | (4, Voo = (fiv)o Vv € K(Q)}
and
(1.10) I@) = Sl = ol v e L@

By expressing the B.V.P. (1.6) in terms of the gradient, the following problem is
obtained:

(1.11) Find X € U;'(Q) such that
JN) < J(a) YeeUF Q).
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The relation between the solution of problems (1.6) and (1.11) is given by the fol-
lowing proposition [7].

Proposition 1.1. There exists a unique A solving problem (1.11). Moreover,
A =Vu,

where u € K(Q2) solves problem (1.6).

Remark 1.1. Using Green’s formula in the definition of UP’(Q), we obtain that

divg+f=0 inQ

1.12 el ()
( ) : 1 j() {q-uZO on [,.

Let

(113) U@ = {ee [L2@)]" | (0, V) = (f,o)o Vo e H}@)},

ie.q € Us(Q) if and only if divg + f = 0in Q.

Comparing the definition of Uf(Q) and Uy(Q), we see that
(1.14) qEUf"'(Q) <> qeUi(Q) and q-v20 onT..

Let us denote by H%([‘c) the space of traces of all functions v € V() and by
H~=%(T.) the corresponding dual space over H#(I';). The duality pairing between
H=3(T.) and H3(I.) will be denoted by the symbol (.,.). The following result is
evident:

Lemma 1.1. Let ¢ € Uy (). Then

0 ifqeUf(Q)

400 elsewhere,

(1.15) sup {—(q-v,v)} = {

veK(§)

i.e. (1.15) is the indicator function of Uf(Q)

Using Lemma 1.1, problem (1.11) can be written in the following equivalent form:

1.16 inf  J(q)= inf sup L(g,v),
(1.16) qeUf () @ 9€Us (D) ve Kk () (@v)

where L(q,v) = 1||q||3 — (¢ - v, v) is the Lagrange function define on Uy () x K(R).
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On the basis of Proposition 1.1, one can easily prove the following proposition [7]:

Proposition 1.2. There exists a unique saddle-point (A*,u*) of L on Us(Q2) x
K(R) and

(1.17) A"=Vu in§
v''=u inQ,
where u € K(2) solves problem (1.6). Moreover,

1.18 LA\, v*)= min sup L(q,v)= max inf L(q,v).
( ) ( ) qu!(n)vEKl()ﬂ) (9:v) veK () geUy(52) (9.v)

The corresponding min, max are attained for \*, u*, respectively.

2. FORMULATION OF A MINIMUM PROBLEM ON THE BOUNDARY

Let v € K(Q) be given and let us introduce the notation

2.1 ®(v)= mf L(q,v).
(2.) ()= inf  Lig.)

Then the problem
Find u* € K(§2) such that
(2.2) d(u*) < b(v) ve K(Q)

will be called the dual problem to (1.11).
We now derive the explicit form of ®.
Let A(v) € Us(Q) be the solution of the following problem (2.3), where v € K(Q):

(2.3) L(A(v),v) € L(g,v) VYq € Uy(R).

It is well-known that problem (2.3) has a unique solution A(v) € U;(Q) for any
v € K(2). Moreover, ,

(2.4) A(v) = Vw(v),

where w(v).is the unique solution of the mixed boundary value problem

(2.5) —Aw(v)=f inQ
(2.6) w(v) =0 on Ty,
(2.7) w(v) =v on [,.
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We can split Uy (2) and write

(2.8) U5(9) = 00+ Uo(®)

where ¢qo € Us(Q2) is an arbitrary element and

(29) Uo(®) = {g € [L*(D?] | (1,V0)o =0 Vv € Hy()}.

In other words

(2.10) g €Up() <= divg=0 inQ.
Now
1

2.11 inf L = inf = inf H —lgoll? = (g0 -
(2.11) ﬁw“n(%v) ﬁgkan+qmw e (2) + 5llaollo = (90 v, v)
with

: 1
(2.12) Hw)=§M%+%m%k—(mvm% q € Up(Q).

Let ¢(v) € Up(§2) be the solution of the problem

Find ¢(v) € Ug(2) such that
(2.13) H(g(v)) < H(q) Vq € Uo(9),

or of its equivalent form

Find ¢(v) € Up(R) such that
(2.14) (4(v),4), + (00,00 = (4 -1,) Vg € Uo(Q).

For the sake of simplicity it is assumed that go = V@, where @ is the solution of the
homogeneous Dirichlet boundary value problem

(2.15) —AT=f inQ

w=0 onTl.
Then

(217) (flo,(l)o = (V’(_U, q)() = —(IT),(“V ‘[)0 + ((] v, ’lT}) =0



by virtue of the definition of @ and Up(§2). With such a choice of go, one gets

L, s
(2.18) H(q) = gllallo = {g - v, v).
The solution ¢(v) of (2.13) is equal to the gradient of a function z(v) solving the
problem
(2.19) Az(v)=0 inQ
(2.20) z(v) =0 on Ty
(2.21) z(v)=v onl,

(see also (2.5), (2.7)). It is known that

e2) M) =l @) =5 () 1) = =5l

Let G: HZ(T.) — Uo(R) be the linear continuous mapping defined by
(2.23) G(v) = q(v) Vv e Hi(L,),

where ¢(v) = Vz(v) and z(v) solves problem (2.19)-(2.21).
In this way we are led to the following expression for i)(v):

2.25 d(v)= inf L(g,v)= inf L(g+qo,v

(225) ()= il Lgo)= inl Lla+a)
1, 1

= 5 (G) v, 2) ~ (a0 1) + llaolR.

Next, the term ||qo||2 is omitted and thus the following expression is obtained:

- o1 .

(2.26) vérll\él();l) P(v) = — uell;‘l'l(l}l) {5 (G(v) -v,v) + (g0 - v,v) } =- Uen}‘n(l&)@(v),
where

(2.27) d(v) = %7(1}, v) — 8(v)

with y(v,v) = (G(v) - v, v) and é(v) = — (o - v, v).
1
Denote by HZ(T'.) the subset of H3(T.) containing only traces of functions be-
longing to K (). Clearly

2.28 min ®(v) = min d(v).
( ) veK(Q) ) ueuf(rc) )
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Note that the symbol v on the right-hand side of (2.28) denotes the trace of v € K(2)
appearing on the left-hand side.

Now we consider the following boundary minimization problem:

Find v* € Hi(l’c) such that

(2.29) ) $(u*)= min  P(v).
veHE(re)

As has been already mentioned (see Proposition 1.2), problem (2.29) has a unique
solution u*. Moreover,

(2.30) v =u onl,,

where u € K(Q) is the solution of problem (2.29). However, the uniqueness of u*,
follows froi the Hi([‘c}ellipticity of the quadratic form 5, which will be established
in the sequel: ,

It is known [3] that HZ(T';) can be equipped with the norm

(2.31) lellyr, =, df lols =1als,
v=¢p on "¢

where @ is a solution of the B.V.P.

(2.32) Ai=0 inQ

(2.33) =0 onTly

(2.34) i=¢ onl,.

The relation (2.22) leads to

. | ! g _ | o _ 1 2
(2.35) ~H(4(w) = @)} = S1V:IE = 1),

where z(v) solves problem (2.19)-(2.22). Comparing problem (2.19)—(2.21) to (2.32)-
(2.34) and applying the definition of || . “%yrc, we sce that

9 9 1 o L s
(2.36) ~H (4(v) = Zl@) = ol .
Thus ®(v) can be written in the form

1 1
(2.37) d(v) = E”"“érc —6(v), veHIT.).
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Before passing to study the discretization of problem (2.3), let us make some remarks
concerning the norms in H3(T,), H=3(I',).

Let || . ”%,Fc be given by (2.31). Then for u € H~%(T.), the dual norm is given
by
(2.38) llloyr, = sup ”(—"“’i’i)—.
pen ) 1PI3.re
p#0

It can be shown that

(2.39) lell-so. = sup Alallo = lldllo = lu(p)l1,
geUL(0)

qv=p

where u(y) is the unique solution of the problem

(2.40) Au(p) =0 inQ

(2.41) u(pg)=0 onTl,
dulp) _

(2.42) 5, "MK on r.

and ¢ = Vu(p).

Lemma 2.1. Let ¢ € H3(I'.). Then

(243 sup AL ol
geto() lallo
970
where q(p) € Uo(R?) is a solution of the problem
(244) (4(0),0)y = (a- v, ) Vg€ Up(Q).
Proof. By the definition
" q(¢)q 2
(2.45) @lo= sup LDo o lave)
geto()  llallo geto() ldllo
q#0 q#0
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Remark 2.1. Wehave ¢(¢) = Vu(p), where u(¢p) is the solution of the problem

(2.46) Au(p)=0 inQ

(2.47) u(e) =0 on Iy
(2.48) u(p) =¢ on .
Thus

(2.49) lla(P)llo = lul(e)lr = llelly r.-

3. THE GENERAL SUBDIFFERENTIAL BOUNDARY CONDITION.
CONVEX AND NONCONVEX CASE.

In this section we assume that instead of the semipermeability boundary conditions
(1.3) a more general boundary condition of the form

(3.1) qivi € dj(u) on T,

holds, where j is a convex lower semicontinuous (l.s.c.) functional on R taking values
in (—oo,+00], j # oo, ¢ = {qg;} is the flux vector and v = {y;} is the outward
unit normal to I'.. Here j is a convex superpotential [9]. We refer to [2], Ch. 3
for the mechanical meaning of (3.1). Note only that the graph (z;jv;,u) in (3.1) is
a monotone graph containing finite or infinite complete jumps. According to [4] we
are led to the following problem:

Find v* € H2(T,) such that

(3.2) ‘ d(u*) = inf {d(v) |ve HZ(T,)}
where

(3.3) B(0) = 23(0,0) = 5() + £ (1)
with

j(v) AL if  j(v) € LY(T,
(3.9) /(v)z{fn“) Jw el

oo otherwise.

Note that ¢ is a convex Ls.c. functional on H 3(T.) with values in (0o, +00], 7 (v) 2
0o. Due to the symmetry of v(.,.), the following proposition can be proved:
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Proposition 3.1. Problem (3.2) is equivalent to the variational inequality
(3.5) Findu e H%(l“c) Y(u,v—u)+ F(v)— F(u)—b(v—u) 20 Vve H%(FC)
and to the multivalued B.I.E.

(3.6) —0 + grady(u,u) € 0_F (u).

Proof. The proof of (3.5) is a direct application of Prop. 2.1 of [10], p. 37. The
proof of (3.6) results from the definition of the subdifferential 0. O

Proposition 3.2. Problem (3.2) admits a unique solution.

Proof. According to the Halin-Banach theorem we may write
(3.7) S @) > —(allvll-yp, +e2) Yve HED:) e, 220,
Thus we get that

~ 1
(3.8) d(v) > E“UHZ-%F - CIx”””—%,FC +cy ¢}, cy constant

c

and thus

(3.9) d(v) — 0o for [[v||_%)rc — 00.

By using Prop. 1.2 of [10], p. 35, we obtain the existence of the solution. The strict

convexity of 7(.,.) guarantees the uniqueness of the solution. O
Further let us assume that instead of (3.1) we have a nonmonotone boundary

condition

(3.10) qivi € 9j(u) on ..

Here 0 denotes the generalized gradient of Clarke [11] and jisalocally Lipschitz func-
tion. The law (3.10) describes nonmonotone semipermeability conditions (Fig. 1c)
(see also [12]). We assume that j is obtained as follows:

Let b € I72.(R) and for any yt > 0 and £ € R let us define functions

(3.11) b () =ess inf b(&), bu(€)=ess sup b(&)
le=&l<p e~ l<n
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from which, due to their monotonicity, we can get functions

(3.12) b(&) = Lim b,(6), b(€) = lim b,(€).
=04 pn—04

Now the multivalued function

(3.13) , € — b(€) = [b(6), b(¢)]

is defined. The graph {E,IA)({} results from {£,b(¢} by completing it at the points
of discontinuity of b with vertical segments. From b a locally Lipschitz function J is
defined [13] by the relation

. ¢
(3.14) HG) :/0 b(t) dt

up to an additive constant, such that 53({) - b(f) If, moreover, b(é+) exists for
every £ € R, we can write that

(3.15) a(€) = dj(€) Ve eR.

The law (3.10) is a nonconvex superpotential law. This type of nonmonotone
mechanical laws and boundary conditions has been introduced by the third author in
[14] and leads to a new type of variational expressions, the so-called hemivariational
inequalities [15], [16]. We are now led to the following problem (cf. e.g. [6]):

(3.16) Find v € H%(FC) such that
y(u, v — u) +/ PP, v—u)dl 2 6(v —u) Yo e H%([‘C).
. e

Here j°(.,.) denotes the directional derivative of Clarke. We can prove the following
proposition:

Proposition 3.3. Let mes['y > 0. Then problem (3.16) has at least one solution
if there 3€ > 0 such that

(3.17) ess sup _ b(¢) < ess(i_nf)b(f).
£,00

(—00,-¢)

Proof. The proof follows the general pattern used for the existence proof for
coercive hemivariational inequalities (cf. e.g. [2] Ch. 8, [15] Ch. 2, [12], [16], [17]).
First, let p € 2(—1,+1), p > 0, with j':; p(€) d€ =1 be a mollifier and let

(318) b€ = Pe * b where ps(f) = ép (g)
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Let us also consider a Galerkin basis of H3(T) |r. NL™(I'.) and let V, denote
the corresponding n-dimensional subspace. Now we consider the finite dimensional

regularized problemn

Find ue, € V, such that
(3.19) Y(tten, v) +/ be(uen)v dl = 6(v) Vv € V.
r

c

Due to (3.17) we obtain the estimate (cf. e.g. [15], p. 86)

(3.20) } / be (Uen)Uen AT = —proamesT,, 0, >0, g2 >0

c

and applying Brouwer’s fixed point theorem we obtain due to the coercivity of v(.,.)
that Ilumn%rc < ¢. Thus a subsequence can be determined such that

(3.21) Uen — u  weakly in H%(l_‘) Ir, -

Because of the compact imbedding Hz(I') € L*(T'), we have

(3.22) Uen — u strongly in  L%(T,)
and thus
(3.23) Uen — u a.e.on [

Further we show (cf. e.g. [15], p. 87 or [12], [17]) that {bc(uen)} is weakly precompact
in L'(I'.) and thus a subsequence can be determined such that

(3.24) b (uen) — x  weakly in LI(FC).
Since V, C H%(F)[r N L*°(I';) which is dense in 11]5(1_‘)|r for the H %-norm, we

may pass to the limit € — 0, n — oo in (3.19) thus obtaining

(3.25) _ ¥(u, v) +/F xvdlh=68(v) Yve H%(I“)!rc,

c

From (3.23) we see that we can apply Egoroff’s theorem, i.e. for any a > 0 there is
aw C I'; with mesw < «a such that

(3.26) Uep, — u  uniformlyon I, —w

with u € L®(I', — w). Exactly as in [15], p. 89 (or as in [12], [17], or in [16], p. 148)
we show that

(3.27) X € [b(u),b(u)] = b(u) C dj(u) a.e. on T,
and the proof is complete. . (]
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4. DISCRETIZATION

First we treat problem (1.1)-(1.3) in the plane. Let @ C R? be a bounded polygo-
nal domain, {Z,}, h — 04 a regular family of triangulations of Q. With any .7, we
associate the following sets, constructed by means of finite elements:

(4.1) Vi(Q) = {vn € C(Q) | vi|r, € Pi(Ty) VT € T, va=0o0n T}
(4.2) Kp() = {vn € Va(Q) | v 2 00n I'.}

and
(43)  Vou(®) = {an € [L2Q)" Lanlr, € [PuT)])* VT3 € 7,
div ¢, = 0 (in the sense of distributions) in Q}.

The construction of V},(€2), K, () is classical. Let us briefly describe the construction
of U()h(Q)

@3

(&3] l (6]
e

\ Fig. 2. Concerning the definition of triangle T

Let T be a non-degenerate triangle with vertices ay, as, az and set aq = a;. The
length of the side ajaj17 will be denoted by !; and the corresponding outward unit
normal vector by v(¥) (see Fig. 2).

Denote

(4.4) M(T) = {‘lh ) e [P (T) ] | div q(7) =0 in T}.

Then it is easy to see that (cf. [18])

3
@5 ¢V eMT) = "€ Z (@™ + M) =0



where

(4.6) ot = ¢V (@) v, A7 = ¢ (@ign) 0O

K3 1

are values of the corresponding fluxes at the indicated nodes. If 7" is an adjacent
triangle to 7" with a common side @ja;y7, then a function ¢, defined on TUT"
through the relation

(47) (") (') _

qslf) onT div q,(lT) =0
qn = , .
q, ~onT div g,

satisfies div g, = 0 on T'UT" if and only if the continuity of fluxes across ;a7 is
guaranteed, i.e.

8 oM 4 al™ =0, g 48T =0,

From this the construction of Ugp(§2) follows.
Let

(49)  N@) ={ge LX) [diva=0 inT, g-ve HoEe @)} )
for some positive €.

If ¢ € N(T), one can construct a mapping ly € L(N(T), M(T)) (and write

Mrq = qu)) be means of the equations

(4.10) [0 v, A = aldP AT+ B A, =102

J 2 7%y
T 1 T .
g (@) v D = g, g (i) VD =

where [.,.]; is the L?(@7a;47)-scalar product, /\(vl), j =1, 2, are linear basic functions
on a;@; 41, 1.

(4.11) /\(li)((,r,') =1, /\(,i’)(a’j“) =0
(4.12) A () =0, A (aj) =1

and :\;i) are extensions of /\g-i) by zero from @ag;; to the whole 9T Let

(4.13) N©Q) ={qlqglr € N(T) VT € F}.

*) H=2%¢(9T) denotes the dual space to H %_S(BT) (for the definition see [19], [20]; the
corresponding duality pairing will be denoted by []).
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Then one can define the “global projector” 7, € L(N(S), Uon(€2)) by means of the
local mappings

(4.14) (ta)|, = Nr(gl,) Vg€ N(Q) VT € T

Approximate properties of 75, are studied in [18], [21].
Finally, let us define

(4.15) Ur,n(2) = qon + Uon(Q)
and
(4.16) U, () = qon + Ugh(Q).

The choice of qon will be specified later and
(4.17) US(Q) = {gn € Uon(Q) | {gn - v,o8) 2 0 Yop € K ()}

We mention here that the corresponding duality is realized by the L?*(I') scalar
product. Now we are able to define the finite element approximations of problems
(1.6) and (1.11) respectively as follows:

Find uwy € K,(2) such that
(4.18) S(up) < S(vy) Vop € Kp(Q)

and

N

Find A, € U;h(ﬂ) such that
(4.19) J(An) < J(qn) Van € U (Q).

It is easy to verify that both problems (4.18) and (4.19) have unique solutions wuy,
An, respectively.

Adopting the same approach as in the continuous case, one can write

4.20 inf  J(¢qn) = inf sup  L(qn,vn),
(4.20) U () (qn) et @ o or? o) (qn,vn)
where

1 2
(4.21) L(gn, vn) = 5llanllo = {an - v, va) .
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Theorem 4.1. There exists a unique saddle-point (A}, u}) of L on Uy p(2) x
Kn(Q).

Proof. As
(4.22) L(qan,va) = o0 if [|gallo — o0

for any vy € K,(R) and L(qa, vs) as a function of gy is strictly convex, the existence

and uniqueness of (A}, u;) will be consequences of the following implication (see

[22]):
(4.23) {qn -v,vn) =0 Vg € Upp() <= vp=0onT.

So we shall verify (4.23). Let a;, ai41 be nodes of a boundary triangle T' € F, (see
Fig. 3).

@

g1

Fig. 3.
By qgf) we denote a function belonging to Upx(€2) the boundary fluxes of which at
«i, a;j+1 are equal to 1, —1, respectively and in all the other nodes are equal to zero.
Then, in particular,

(4.24) ‘ [0 v,on)i = 0 = wa(ai) = valairn),

i.e. v, is a constant on ['.. As on the other hand v, = 0 on I'y, we obtain that vy, =0
on [. Obviously

(4.25 L(A,up) = min sup  L(qn,vn) = max inf  L(qu,v
) MO = i s L) = e ()

and the corresponding min, max are attained at A}, uj, respectively.

For v, € K let us denote

4.26 &) (vy) = inf - L(qn,vn).
(4.26) n(vn) et ) (an,vn)
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Analogously to the continuous case, the problem

Find u) € Kp(2) such that

(4.27) bp(u)) = o élkah)zn)éh(vh)

is said to be dual to (4.20). Now, in the same way as in Section 1, we derive the
explicit form of Oy

(4.28) act o (qn,vn) el ) (gn + qon, vn)
1
= inf H + = 2 _ v,
qn€Uon () w(2n) 2”‘1%“0 {qon h)
where
1
(4.29) Hu(gn) = 5llanll§ + (an, gon)o = {an - v, vn)

The minimizer of Hy over Ugn(2) will be denoted by gn(vn). It is characterized by
the relation
(4.30) Find g¢p(v) € Uon(£2) such that
(gn(va), qn) o+ (gn, qon)o = (an - v, vn)  Yau € Uon(Q).
Next we shall suppose that ¢qop, = Vi, where @, is the Galerkin approximation

of the homogeneous Dirichlet boundary value problem (2.15), (2.16) on the finite
element space V;,(€2). With such a choice of ggn, we have

(4.31) ~ (gn,90n)0 = (g, V@n)o = —(div qn, @n)o + (g - v, 1) = 0
due to the fact g, € Upp(?) and @, =0 on .
Thus
1 9
(4.32) Hi(gn) = 3llanllo = {an - v, va) -

The value of Hj, at qn(vs) (the solution of (4.32)) is

(4:33) Ha(an(on)) = =5 lan )l = ~5 (auen) - v,vn)

where ¢ is the discrete analogue of ¢, namely for v, € Kup(Q), qn(vn) € Uon(RQ)
denotes the solution of (4.30). Finally, we obtain the following expression for Oy

- 1 1
(4.34) Pu(vn) = =5 (an(va) -v,on) = {qon - v, va) + §||‘IOILH(2)' ’
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We can omit the term §||q0,.||g and write

. , 1
(4.35) ?ng}fﬁﬂ)q,h(vh) = [5 {(an(vn) - v, vn) + (qon - v, vp) ]

=— min o,

o ihin o, B vr)
where
1

(4.36) Pu(vn) = 570 (vh, va) — 8(vn)
with
(4.37) Yn(vh, o) = (qn(vn) - v, vp),
(4.38) 6n(vn) = — (qon - v, vn) .

Let By (I') be the space of functions defined on I', which are given by restrictions of
all vy € Ki(R2) to the boundary I'. Then (4.35) is equivalent to

Find u} € B(T) such that

(4.39) &y (uy) = vh?}},f'(r) by (vn)-

Analogously to the continuous case (see Lemma 2.1 and Remark 2.1) we can define

(440) "vh”l,h = sup M
: gn€Uon(Q) llgnllo
qn #0

On the other hand

UA), h v,
(a.41) llan(wn)llo =  sup M= {gn-v,on)
aeUan(@)  llanllo aeUon(@) llanllo
qn #0 @ #0

Comparing (4.40) with (4.41) and taking into account that
1 2

(4.42) v (on, va) = 3 llan(on)llo,

we see that & (vp) can be written in the form

1
(4.43) ¢;.(v,,) = 5””"“2%,11 - 6(1)},).
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Concerning the more general convex or nonconvex semipermeability problems, there
are several still open questions especially with respect to the nonconvex case. Thus
in the case of relations (3.5), (3.6), the numerical calculation requires the derived
multivalued B.ILE. (3.6) to be discretized. We can apply either a direct mathematical
discretization of the corresponding boundary minimum problem based on Galerkin
approximation (c.f. [3], [4], [7]), or a more engineering oriented discretization result-
ing from the mechanical interpretation of the expression (3.6) which is a simple and
direct procedure and thus makes the previously presented method attractive from
the numerical point of view. In order to obtain the discrete form of the problem
under consideration we consider the domain € resulting from the original one by
assuming only the kinematical constraints on ['y,. Then the structure is solved for
the unit flux q¢;) = 1 on the first node of I'. and we obtain all m components of the
corresponding solution (e.g. temperature, pressure, electric potential) for all m nodes
of I'¢, constituting the first column of matrix B. This procedure is repeated for the
second node (q(2) = 1), the third (¢@3) = 1) and so on. Thus a symmetric matrix
B is formed. Next, the solution for the nodes of ', for the same domain under null
boundary fluxes denoted by g is calculated. Then the solution of the discrete convex
programming (C.P.) problem corresponding to (3.3) gives the unknown fluxes on I,.

O
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