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Summary. A characterization of the Gamma distribution in terms of the k-th conditional
moment presented in this paper extends the result of Shunji Osaki and Xin-xiang Li (1988).
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1. INTRODUCTION

The problem of characterization of statistical distributions is of groal mierest
because of its applications in reliability theory and statistics.

The books by Kagan, Linnik, Rao [3] and by Galambos and Kotz [2] were tlie
basis of an increasing interest for research in this area. Most of the results deal with
the exponential distribution (see e.g. [1], [2], [3]).

As the Gamma distribytion is often used to model a wide variety of positive valued
random unities in reliability theory and queueing system analysis, the characteriza-
tion of this distribution is an appealing and interesting problem with a great number
of applications. There are several characterizations of the Gamma distributions (see
e.g. [3], [4], [5] and [6]). In this paper, we give a new one based on a relationship
between the k-th conditional moment and the failure rate (Section 2).
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2. CHARACTERIZATION OF THE GAMMA DISTRIBUTION

Let X be a non-negative, absolutely continuous r.v. with distribution function (df)
F(z). Then F(z) = 1 — F(z), f(z) = F'(z) and r(z) = f(z)/F(z) are respectively
the survival function, the density function (pdf) and the failure rate of X. In the
following, it is said that the r.v. X has the Gamma distribution with parameters
(o, B) with « > 0 and B > 0 (denoted by X ~ [(a,B)) if f(z) = [3"[[’(0)]—1 .
e Peze-l. [{z > 0}.

Without loss of generality the characterization below is obtained for the Gamma
distribution with parameters (A, 1). Let us denote, for any positive integer k£ and
for any number a # 0, by a*) the product a*)’ = a(a — 1)...(a — k + 1) and put
a® =1,

Theorem. Let X be a non-negative r.v. with df F'(z), pdf f(z) such that f'(z)
is continuous on (0,00) and with failure rate r(z). Then X ~ I'(A\, 1) if and only if

for an integer k > 1, the representation

k-1

1) E{X*| X >y} = [Z(A + k- 1)<f>y'~'~'] ry) + A+ k- 1)®
=0

holds for all y > 0.

Proof. (Necessily): Suppose X ~ I'(), 1), ie. f(z) = z*~te~*/T'(A). For any
given integer j, it is easy to obtain that the following recurrence relation holds:

[e o) {e o)
(2) / f)dt =y fly)+ (A +j — 1)/ t1f(t)dt forally > 0.
] ]

In the case of y = 0, (2) is the well-known relation between the moments EX’ and

EX7~! of a Gamma distributed random variable X, namely EX? = (A4+j—1)EX/~1,
Dividing (2) by ¥ and denoting [; = fyoo (5)jf(t) dt we rewrite (2) as a recurrence

relations between the terms of the sequence {[;}, i.e. I; = f(y) + wlj_l.

Therefore, noting that Iy = F(y), we obtain the representation

i-1

@ 16 _
11=Z(/\+]y,~ D f(y)+('\+]yj o F(y).
i=0

Consequently, for any given integer j > 1 we have

j “iran= j:(A + = DY ) + A+ - DI F(y).

y i=0
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Now, setting j = k, dividing by F(y) and taking into account that E{X* | X > y} =
F(l_y'j fym t¥ £(t) dt we complete the proof of necessity.
(Sufficiency): Let us assume that (1) is true, then we have to prove that X ~
(A, 1). We write (1) in the form of an equation with an unknown function
oo k-1 oo
/ o Z(/\ + k= DOy =if(y) + A+ k= 1)) / f(t)dt
y

=0 Y

Differentiating both sides of the last equation with respect to y gives

-y f J) Z(/\ +Iv (i)[yk—ifl(y) + (k—— z-)kk—i—lf(y)] _ (/\ + b — 1)(k)f,

which is a differential equation of order one with respect to the unknown function
f(y). The last equation can be written in the form

k-—-l . .
(3) {yZ(/\+ k— 1)(’)1/""‘1}!’(51)

1=0
k=1
= {Or k= DB = S0 k= OG- i 1)
1=0

Now applying the auxiliary identity (A — 14k —i)(A+k — 1)® = (A + k — 1)(i+D)
it can easily be verified that

k-1 k-1
Atk =1)E — gk =S At k=)D (k—i)y* =1 = (A= 1-y) D (A+k—1)Dy* =i,

1=0 i=0

To prove this relation we proceed as follows: We write

()= (1= 5) S b = DO 4 S (4 b~ 1Ok — i

i=0 i=0
- | ) 1 i, oy .
Z(/\ + k- )(I-H)yk—z—l _ Z(/\ +k— 1)(’)yk".
1=0 =0

The change of the summation index i by j = ¢+ 1 in the first term yields to

k k=1
(5 =D (A +k—1)DyrI - Z(,\+ k— 1)Dyb=i
i=1 i=0

=+ k—1DE) gk

21



which we wanted to verify.
Then the equation (3) is equivalent to the equation

k-1

k—1
PICETE DO b ) = { S0 k= 0O 0= 1= 1)
i=0

i=0

Hence for y > 0 we derive
vf'(y) = (A= 1=-9)f(y).

Consequ'ently, fly) = Ae~¥y*~1 for some constant A > 0. Therefore, the solution
of (3) is f(y) = Ae~¥y*~1. The constant A can be determined from fooo fly)dy=1.
Then we have f(y) = y*~'e”¥/T(}), which is the gamma pdf with parameters (A, 1).
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