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OSCILLATIONS OF A NONLINEARLY DAMPED 

EXTENSIBLE BEAM 

EDUARD FEIREISL, LEOPOLD HERRMANN 

(Received Decernber 21, 1991) 

Summary. It is proved that any weak solution to a nonlinear beam equation is eventnally 
globally oscillatoryj i.e., there is a uniform oscillatory interval for large times. 
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1. ÍNTRODUCTION 

A possible model for vibrations of a beam may be written in the form 

(1.1) uu + auXsxx--l0 + 7 u%d£ + 6 U(tftt{dfjtiM 

+ ff(«0 «t + /(ti) = 0, < G R + , i € ( 0 , / ) , 

(1.2) ti(í,0) = u(ty£) = ti«,(t,0) = * . . (* ,*) = 0, t € R+, 

(1.3) ii(0,*) = tio(*), u*(0,*) = tii(«)f a? 6 ( 0 , / ) . 

We assume that 

(1.4) a , /? ,7 , í are rea/ constants, a > 0, 

(1.5i) # w a locally Lipschitz continuous function on R, 
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(1.5a) g(*>) ž 9o > O, ti € R, 

(1.61) / is a locally Lipschitz coniinuous function on R, 

(1.62) F(u)= T / ^ d O O , t i € R , 
./o 

(1.63) t i / ( t i ) - F ( t i ) £ 0 , « e R . 

The term — (/?+•••) u** corresponds to the effect of the presumed extensibil-
ity of the beam, see e.g. Woinowski-Krieger (1950), Eisley (1964), Balí (1973a,b), 
Kopáčkova-Vejvoda (1977), Lovicar (1977), Lunardi (1987). The function g rep-
resents the external damping coefficient depending on possible non-homogeneous 
surrounding media (water-air), cf. Feireisl-Herrmann-Vejvoda (1991), and / is the 
restoring force caused by the foundation or by external constraints, cf. McKenna-
Walter (1987). 

The boundary conditions (1.2) describe the hinged beam (which is, in fact, the 
only situation we are able to cope with). The corresponding eigenvalue problém 

(1.7i) vxxsx = \v, xe(0J), 
(1.72) v(0) = v(£) = vxx(0) = vxx(£) = 0 

is easily solvable, viz. 

(1.8) A * = ( T J ' «* s s d n í7 í . *GN-
A measurable function u: R+ x (0,^) —• R is said to be eventually globally oscilla-

tory if there exists T ^ 0 and 0 > 0 such that for any interval J C [T, -foo) the length 
of which is greater than 0 we háve either u = 0 on R+ x (0,^) or simultaneously 

meas{(ť, x) £ J x (0, t) | u(ty x) > 0} > 0 and 

meas{(*,x) € J x (0,/) | u(t,x) < 0} > 0. 

Our goal is to prove the following result. 

Theo rem 1.1. Let the hypotheses (1.4)—(1.6) be satisfied and, moreover, let 

(1.9) 0>-*\u 

(1.10) ^ < A ° + >Ai> 
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Then any weak solution to (1.1)—(1.3) is eventu&Hy glohally oscillatory. 

The weak solution is defined in the usual way; for the precise definition see Sec. 2. 
There is a great amount of papers dealing with oscillatory properties of solutions to 
undamped equations, e.g. Kreith (1973), Kreith-Kusano-Yoshida (1984), Cazenave-
Haraux (1984), (1987), (1988), Haraux-Zuazua (1988). The cases of the damping of 
the form h(ut) and /i(||t*ť||) ut are treated by Zuazua (1990); here and hereafter || • || 
stands for the norm in L2 = £2(0, í) . The problém (1.1)—(1.3) with 6 = g = 0 is 
studied by Yoshida (1988). 

2. EXISTENCE, UNIQUENESS AND ENERGY DECAY 

We will look for a solution pair tx, ut of the problém (1.1)—(1.3) belonging, for all 
t G R+ , to the natural energy space 

E^H2C\Hl x l 2 . 

It is well-known that the operátor 

L(U) = ( " \ 9(L) = H*xH'nNl 

where 
H4 = {v £ H4 I v satisfies (1.72)}, 

generates a group of linear operators on E. Consequently, setting 1; = ut we may 
solve the problém (at least locally) via the variation-of-constants formula and the 
íixed point argument. To this end, we háve to show that the nonlinear operators 

u *-+ ÍP + 7 tildčjt*,*, 

u 1—• / ( t i ) 

acting on H2 n HQ and ranging in Li are locally Lipschitz continous and, similarly, 
that 

(u,v) H-> / Utfvd£uXX) 
Jo 

(u}v) i-* g(u)v 

are locally Lipschitz continuous from E into Li. But this is ensured by the hypotheses 
(1.5i) and (I.61). 
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Thus the classical existence theory gives rise to the following local result. 

Propos i t ion 2 .1 . For any pair (tio, u\) £ E there is a Jife tirne s > 0 SUCÍJ that 

the problém (1.1)—(1.3) possesses a weair solution u determined uniquely in the class 

(2.1) u € C([0,«), # 2 n Fo1) n C\[Q, s), L2). 

As we need globál existence, some a priori estimates are of interest. We multiply 
Eq. (1.1) by u% and integrate by parts to obtain 

(2-2 ) ^[l i thi i2 + <*IK*II2 + /%, | | a + \l\\ux\Ý + jT F(«) dx] 

+ í í / tiarar^ť d x J + / | / ( l i) t i^ d x ^ 0. 

Consequently, having the hypotheses (1.52) ^&d (I.62) in rnind, we see that if 
(tio, u\) £ B C E where B is bounded, then any local solution remains in a bounded 
set C($) ^or all t, Thus, in fact, any local solution may be prolonged for all i —» -f 00. 

Propos i t ion 2.2. Assume that (uo>^i) č B C E, B bounded. Then there exists 
a unique globál weak solution (uyut) of the problém (1.1)—(1.3) satisfying 

(2.3) ( t i , t i t )eC(£ ) , * e R + . 

R e m a r k 2.1. We háve tacitly assumed that all functions in question are smooth 
enough so that all integrations may be justified. Using the regularization technique 
due to Lions-Magenes (1968) or the arguments of Temam (1988) we may show that 
the energy inequality (2.2) holds, in fact, for any weak solution. The samé remark 
applies to integrations in what follows. 

Finally, we shall prove the decay of solutions in the energy space. Suppose that 
all the hypotheses (1.4)—(1.6) are satisfied. Multiplying (1.1) by eu and adding to 
(2.2) we obtain 

(2.4) ~ [ | | « « | | a + a | |«„ | | a + ^ | |«, | | a + Í7ll«,||4 + j [ F(u)dx + 2eJo u.udx] 

+ í (g(u) - £ ) « 2 d x + í ( / «,,«, dx)2 + e(/? + 7 |K | | 2 ) IK||2 

+ eó||t»*||2 / uxxutdx + e g(u)utudx + e (/(«)« - F(u))dx ^ 0. 
Jo Jo Jo 
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According to (2.3) we can estimate 

(2.5) / g(u)utudx ^ Ci(utlu) as u £ H2 f\HQ <~* C. 
Jo 

Similarly the remaining nonlinear terms may be estimated. Consequently, for any 

B C E bounded there is e{B) > 0 such that 

(2.6) —S{t) + i<?(t)šO 

where 

<? = \\ut\\
2 + a ^ f + 0\\ux\\

2 + ly\\ux\\
4 + / F{u)dx + 2e f utuáx 

* Jo Jo 

with ti, ut solving the problém for the data from B. 

As (2.6) impiies exponential decay of the energy, we conclude: 

P ropos i ton 2.3* For any bounded B C E there is e = e(B) > 0 such that 

(2.7) \\uxx(t,-)\\
2 + \\ut(t,-)\\

2^C1(B)exp(-et), < e R + 

for any solution pair (uyut) originating frorn B. 

3. OSCILLATION 

In this section we will use notation and results concerning the summit function ů 
and the universal comparison function C from the páper Herrmann (1991). For the 
reader's convenience we recall some of these topics in Appendix. The comparison 
function, in its particular form, was ušed in the study of oscillations for the řirst time 
by Zuazua (1990). 

Proposition 3 .1 . Let the hypotheses (1.9) and (1.10) be satisfíed. Then for any 
weak solution u of (1.1)—(1.3) and any couple (g,p) G R2 satisfying 

(3.1) ^ < -p < y/q < yfi^W^J3 

there exists T = T(u, q, p) such that the following implication holds: 

Jc[T,+oo), \J\>Ů* + ůl, « ^ 0 (SCO) on J x (0,/) = » 
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= > ti = O on R+x(0,£). 

P r o o f . Let J be an interval with end pointsti, ii and let itslength \J\ = *2 —1\ 
be greater than #£ 4- t?o, where 5, p satisfy (3.1). Let u be a weak solution which 
does not change the sign on J x (0}£). Proposition 2.3 yields 

(3.2) \\u\\Loo - 0, t - +oo, 

(3.3) |M | , |K||, | | t i . . | | -0 , *->+oo. 

Thus, defining 

U(0), «(*,«) = o, 

b(t) = yj u*{t,S)dt + 6j u((t,t)ut({t,0d<i, 

we háve 

(3.4) | | G ( t , - ) - í ( 0 ) | | L » - 0 , í - + o o , 

(3.5) 6(ť) - » 0 , i -> +oo. 

Let us denote 

p = \ia+y/\lp-q (>0), 

— p - t 1 <>»>• 
Taking into account (3.4) and (3.5) we find T > 0 such that for all ť ^ T 

\\G(t,.)~g(0)\\Loo<2p, 

\AT|6(ť)|</i. 

Choose tj > 0 such that —p < y/q — řj and 

l J | > t>*-*» + ďg"" > i?« + t?g. 

This choice is possible since the function ů is continuous and decreasing with respect 
to q, see (A.4). Denně 

m = C{t-tuq-n,p,o), 
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where C is the universal comparison function defined in (A.8). Let us mention some 
properties of the function %l> we shall need. 

(3.6) V-€C2[ť1)ť1 + ^ - " + * * - ' ] , 

(3.7) V' + 2p^ + + ( g - i ? ) V = 0, ť€[ťi,ť1 + ^ - " + ^ - " ] , 

(3.8) HO) = H^p-,' + ůo"') = o, m>o, te^h + ůi-o + or*), 

V>(*)>0, t€[ti,ti + ů*->), 
(3.9) V>(ť1+^-") = 0, 

m < o, <€(<!+*«-vi+K~n+^o-"]-
Multiplying Eq. (1.1) by i/>(t) vi(x) where v\ is given in (1.8) and integrating over 

t e(ti,ti+ ůy + dq
0~n) and x € (0,*) we obtain 

0 
Jo 

v\ t/>dar + / / ÍÍVI h / i -G(ť ,x)^ 
t = ť i Jo Jt, l 

4- (Aia -f \Ai~/? + \ A i *(<) + /("(*, *))/ti(i, a?)) ] dx d* 

(where f(u(tyx))/u(t}x) is to be replaced by 0 if u(ť,x) = 0). Employing the above 
mentioned properties of the function V>> the positivity of the first eigenfunction v\ 
on (0,í), the sign condition 

u / ( t i ) ^ 0 , ueR 

which follows from (1.6), and the following two inequalities which are easily seen to 
hold for all* ^ T and x G (0, £): 

GV>^-2pV>+, 

Aia-f \fop+\/Txb{t)>qy 

we get 

0 > sgn u l — / u ví ^ 

+ 

dx 
tzztx+ůy+ů V-IMAI-I 

Jí 
J0 Jti 

uv\ \ý + 2p^ + +(q — r})\l> \dxdt\ 

^77 sgn i i / / tivi^dxdť. 
Jo iti 
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Consequently, u = 0 on (ti, tx + ůy -f ůq
0"n) x (0, £) and hence on R+ x (0, l) because 

of the uniqueness of solutions ensured by Proposition 2.2. 
The proof of Proposition 3.1 and, in fact, of Theorem 1.1 is complete. • 

APPENDIX 

The mam tool for studying oscillatory phenomena in dissipative systems is the 
universal comparison function c. This function is a speciál solution of the equation 

( A I ) c + 2(pc4"-fné"~) + gc = 0 

which is non-negative and has positive local maximum. So, it is defined for (g,p), 

(g, n) E & on the interval t € [0, # | + #*]. Here 

(A2) ^ = { ( g , p ) € R 2 j g > 0 , P > - V * } 

and 1? is the so-called summit function defined by 

x 1 
; H ; ^ arctan 

(A3) % , p ) = ^ = < 

\ A - Í > 2 \/< 

Ví' 
i 

Í - P ' 

: arctan 
\ / ? - P 2 

\ / í - P 2 

Ví' 
The function i? is reál positive continuous on ď and 

p = 0, 

P > 0, p / ^/g, 

P = >/«• 

(-A.4) decreasing in each variable while the other is fixed. 

The function c possesses the following properties 

(A5) C € Č 7 2 M + tf»], 

(A6) c(0) = cM + Úl) = 0, c ( t ) > 0 , * € M + tf»), 

(A7) č ( ť ) > 0 , ť € [ 0 , ^ ) , č(tf«) = 0, č (ť )<0 , ť € ( ^ , ^ + t?»] 

476 



Explicitly, denoting c(t) = C(t,q,p,n), we háve 

( A 8 ) C(t,q,p,n)=< „ . „ . , . 
M ( d « + t f « - ť , g , n ) , I € (*• ,*$ + * * ] , 

where 

11exp(~ 

==exp(-p*) s i n í x / g - p 2 ^ ) . P > ~y/Š> P # V?> 
( A 9 ) ^ ( ť , g , p ) = : ^ v ^ - P 2 

[1 

[2: 

(3; 

[7; 

K 

K 
[10: 

[11 
[12 

[13: 

[14: 

[16 

For details see Herrmann (1991). 
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