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REMARKS ON POLYNOMIAL METHODS FOR SOLVING SYSTEMS 

OF LINEAR ALGEBRAIC EQUATIONS 

KRZYSZTOF MOSZYNSKI 

(Received November 12, 1990) 

Summary. For a large system of linear algebraic equations Ax = 6, the approximate 
solution Xk is computed as the k-th order Fourier development of the function 1/z, related 
to orthogonal polynomials in L (ft) space. The domain Q in the complex plane is assumed 
to be known. This domain contains the spectrum &(A) of the matrix A. Two algorithms 
for Xk are discussed. 

Two possibilities of preconditioning by an application of the so called Richardson itera­
tion process with a constant relaxation coefficient are proposed. 

The case when Jordan blocs of higher dimension are present is discussed, with the follow­
ing conclusion: in such a case application of the Sobolev space H*(Q) may be reasonable, 
with s equal to the dimension of the maximal Jordan bloc The paper contains several 
numerical examples. 

Keywords: Fourier Expansion, Orthogonal polynomials on L (Q) space, approximate 
solution of linear algebraic equations, Richardson Iteration, preconditioning 

AMS classification: 65F10 

1. INTRODUCTION 

Consider a system of linear algebraic equations 

(1) Ax = b 

with an n x n non-singular matrix A} in general complex and non-hermitian. 

Let Q be a bounded (open) domain of the complex plane C containing the spectrum 

cr(A) of A} and such that 

0£fi. 
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We assume that ft is known; in other words we assume that we are able to estimate 

roughly the location of the spectrum <r{A) of A. For any open K with a regular 

Jordan boundary P such that 

<r{A)cKcKcSl 

and for any complex function / analytic on ft, the well known Dunford integral 

formula reads 

HA) = hjT
f{z){z~A)~Uz 

where T is taken with positive orientation. 

Let || • || be any operator norm of an n x n matrix, and let || -Jjy^ be the supremum 

norm on K. The last formula implies that 

ll/OOII < § sup ||(- - A)'l\\ \\f\\Woo = dl/fofc, 

where the constant C depends on A> ~K and the norm || • ||, but not on / . It is easy 

to see that C depends strongly on cond(A). 

Put now f{z) = <p{z) - wN{z)y where (p{z) = 1/z, and WJV(Z) is a complex poly­

nomial of degree ^ N; we get 

(2) p - 1 - ^ ( ^ H ^ C\\<p - WNWJ?^ 

This estimate suggests the following 

General Algorithm: 
1. find a polynomial wN approximating <p{z) = 1/z on ft in the || • Hj^, norm; 

2. take xN = u;j\t(./l)6 as an approximate solution of (1). 

Various realizations of this algorithm are possible; for example: 

(i) interpolation over ft [3], 

(ii) optimal L2{Q) approximation, 

(iii) optimal C{K) approximation in the || • Hg^ norm. 

We shall discuss here only the second possibility: optimal L2{0) polynomial ap­

proximation. 

The interpolation method ensures the so called optimal convergence when N —> 

oo (see Section 2), provided the interpolation knots are chosen in a special way. 

L. Reichel pA eposes to construct to this end a certain conformal mapping related to ft. 

Once the interpolation knots, are given the interpolator^ polynomial is constructed 

by successive application of the Richardson iteration formula. However, here the 

problem of the order of interpolation knots arises, [3]. 
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We can avoid these difficulties by applying the optimal L2(íl) polynomial approxi-
mation of y?(z) = l/z in order to define wjf. Also in this čase WN converges optimally 
when N —» oo, however, we háve to restrict ourselves to simply connected domains fi 
(see [2]). Moreover, the algorithm of construction of the optimal polynomial wjsr(z) 
is a little more complicated than in the čase (i). 

In order to overcome the drawbacks of this method we may divide the whole 
process into two stages: 

Stage 1. Construction of wjy for a given Í2. This preparatory stage may be 
accomplished even a long time before actually solving the problém (1), and the 
results represent a certain information which enables us to construct on the second 
stage the vector XM = ww(Á)b for any matrix A such that <T(Á) C 0. The problém 
of the computing time on this stage seems to be not very essential 

Stage 2 is t h e solver, It should rapidly calculate the vector XN = wjy[{A)b. 

Srnce the quality of approximation depends on N, and not on the dimension n 
of the systém (1), we hope that methods of this kind may furnish a class of rapid 
sol verš for big systems (1), when N < n . 

In practice N ^ 40; clearíy the computing time on the stage 2 also depends on n, 
but the complexity of this part of the process is of the order of N multiplications of 
A by a vector only. 

It is always possible to apply for (I) the so called Gauss transformation: 

(3) A*Ax = A*b. 

The matrix of the systém (3) is hermitian and positive definite, and, in principle, 
all known methods as that of TchebychefF, conjugate gradient and others may be 
applied here. 

Unfortunately, the Gauss transformation squares the condition number cond(A). 
The effectivness of polynomial methods depends on the effectivness of the approxi­
mation over the domain fi (which reduces to an interval in the čase of (3)). Clearly 
the globál polynomial approximation to <p(z) = l/z on fi is not effective when ň is 
large and/or very close to zero. On the other hand, the measure of the extent and 
closeness of <r(A) to zero is just the condition number cond(.A). Hence it seems to 
be better rather to apply a certain preconditioning process shrinking the spectrum 
c(A) and/or moving it farther from zero that to apply the Gauss transformation. 
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2. OPTIMAL i 2 ( f i ) APPROXIMATION OF (f{z) = i/-? -IMPLEMENTATION 
OF THE STAGE 1 

The most nátura! way to realize the stage 1 of the method seerns to be the ap-
plication of the Gramm-Schmidt orthogonalization process to a certain set of basic 
polynomials, in order to generate a systém of orthogonal polynomials PQ} P Í , PÍ, . . . , 
Pjv and then to calculate the Fourier coefBcients c* of the function <p(z) = l/z. We 
then get 

N 

It is worth noting here that orthogonal polynomials in the complex domain obey 
in generál the quasitriangular recurrence formula 

(4) *A« = £*«piW 

and not (except a very speciál cases) the three-term one. Hence in this čase the 
Lanczos type orthogonalization process (4) is no more superior to that of Gramm-
Schmidt 

*+i 
(5) **+!« = Ětti^M, 

i=o 

because both produce quasitriangular matrices of coefíicients. Here {$*} are certain 
given basic polynomials, subject to orthogonalization. There is at least one advantage 
of the Gramm-Schmidt process: it is easy to apply here the Green formula which 
replaces double integrals by single ones in scalar products defining the coefficients 
jkj and the Fourier coefficients c* of the function <p(z) = l/z. 

For the coefficients of formulas (4) and (5) we háve 

(6) akj= í zPk(z)Pj(z)dQ k = 0,l,...,N-l;j = 0,l,...,k, 
Jn 

«**+!=(/ |z|2|Pt(z)|Mfi-£|«t>|2)1/2>0, 

7ti = / *k+i(z)Pj(z)dfi * = - 1 , 0 , 1 , . . . , N - 1; j = 0 , 1 , . . . , * , 

7**+i = ( / |**+i(*)|2dfi - £ l7t>l2)1/2 > 0, 
Ja >=o 

ck= f(Pk(z)/z)dQ k = 0,í,...,N. 
Jn 
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By easy recurrence applied to the last three formulas of (6), we get relations 
involving only integrals of known functions $ ; and <p(z) = l/z. This is not possible 
for the coefficients a*j . 

1 / t j~l \ 
(7a) ykj = ( / # lk+1( jr)# i(*)d0- 5> i - i . 7*J 

Ti-li V o ^ ; ' 
fc = - l , 0 , l , 2 , . . . , i V - l ; ,' = 0 ,1 ,2 , . . . ,* ; 

(7b) T*,t+1 = ( / |$fc+1(*)|2dí2 - 2 |Ttil2)1/2; 
J& i=o 

(7c) ck = ( / (**(*)/*) dfi - ^ Tfc-iic,) i = 0 ,1 ,2 , . . . , 

In the recurrence relations (7) the double integrals over Í2 may be replaced by single 
integrals over positively oriented boundary díl with help of the so called complex 
Green formula: 

(8) f f(z)f(z)dQ = ^ í f(z)l(z)dz. 
Ja *l Jda 

Clearly this operation may signifrmtly simplify the numerical process. 
Put, for example, 

Mz)=(Ll-f1)k k = 0,l,2,...,N 

where z<y is a fixed point chosen somewhere in the centrál part of O and d =" 
diameter(íí)/2. For many regions íi such a choice ensures a rather stable com-
putational process. 

If 0 £ fi, the Fourier expansion WN of <p(z) = l/z 

N 

(9) % w = E c ip iW 
i=o 

converges to <p in the L2(íl) norm provided the following condition of Markuszewicz 

and Farrell is satisfied: 

íl is a bounded, simply connected open domain o/C such ihat its boundary díl is 

at the samé Ume the boundary of a certain unbounded domain (see [2]). 
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Moreover, the polynomial WN converges optimally to <p in the |[ • Hjfoo norm, where 
cr(a) C K C K C 0 , provided dQ is a Jordán curve. The term optimally means the 
following: 

There exists a conformal mapping ý(w) = cw -f CQ 4- ci/tz; -f . . . , with O O of the 
external domain of ihe unit disc \w\ ^ 1 onio C\K. Let Cr be the image of the disc 
\w\ ^ r, r > 1 by ip, and 

# = sup{r> 1 | 0 $ C r } . 

We say that WN converges optimally to <p(z) = l/z if 

l i m s u p d l ^ - V>lbřoo)1/Ar = llQ (see [2]). 

l im ^ ^ _ _ ^ ^ 

írzil Ur 
Fig. 1 

In connection with the inequality (2) this condition implies the convergence of the 
method. We will extend this convergence discussion in Section 4. 

The stage 1 of the algorithm may be implemented exactly as the formulas (5), (6) 
and (9) show, with application of the Green formula (8). 

As the result we obtain 
1. the triangular matrix of coefficients jkji k = —1» O, 1, . . . , N, j = O, 1, . . . , 

* + l; 
2. the vector of Fourier coefficients c0, Ci, . . . , cjq, 
This is the information which should be stored. If needed, it may be ušed as part 

of the data for the stage 2 of the algorithm. 
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3. IMPLEMENTAT10N OF THE STAGE 2 OF THE ALGOR1THM 

At this stage the vector 
xN = wN(A)b 

has to be computed. Provided that the first stage of the process was executed as 
described in Section 2, the most natural way to compute XN seems to be as follows. 
The data of this stage are: 

- the matrix A of dim n x n, n >• N. 
- the triangular matrix (7*1), k = —1, 0, 1, . . . , N, l = 0, 1, . . . , k + 1; 
- the Fourier coefficients co, c\í . . . , cw< 
For Jfe = 0, 1, 2, . . . , N put 

(10) vk = $*(A)6, 

uk = Pk(A)b, 

xh = w*(,4)&, 

In order to compute x^, the following simple recurrence may be applied: 

initiation: 

(ii) 

iteration 

(12) Vfc+1 = 

ttfc+1 = 

£*+l = 

v0 = 6, 

«o = ty7-io 

Xo = CotioJ 

A - z0 

1 / 
= 1 vk+i — 

7*,*+i V 

= Ĵb + Cjfe+iUjb+l. 

» 

i=o 
«j )> 

Formulas (12) follow directly from (5). 
It is worth noting that the process (11) (12) seems to be perfectly stable: at any 

step the Fourier expansion xk is computed (orthogonal projection!). Experiments 
confirm this supposition. 

Observe that the process (11) (12) needs the following, rather extensive working 
memory space: 

ifo>tii,...,ifjv : n ( JV+l ) words, 

v.x 2n words. 
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This is the only drawback of the process (11) (12). 
It is possible to avoid this inconvenience and to reduce the working memory space, 

however, the author does not think this to be very recommendable. In order to do 
it, the first stage of the process should be slightly modified. After computing jkj 

and cj. we may present WN(Z) as follows: 

WN(Z) = a0 + ai(z - zi) + . . . + aN(z - Zi)N 

with 
wty(zi) 

«i = - i £ T Í Í Í = 0 , l , . . . , iV, 

Z\ being a certain chosen point of fi. To compute ctj the iterative process similar to 
(5) may be applied: 

with 

fc = - i , o ) i ) . . . , i s r ) 

j = 0,l,...,N. 

Here only two vectors, námely ao, ai , . . . , a# and co, ci, . . . , CJV should be stored. 
The second stage data are 

- the matrix A; 

— the vectors ao, . . . , a/v and co, . . . , CJV. 
The solver has to compute recurrently: 

XQ = ajy&, 

xjb+i = (A - zi)(a:jb -f aN-k-ib) k = 0,1, . . . , iV - 1. 

No problém with large working space in this version, but now the nice feature of 
the stable process, computing at any step of the iteration the orthogonal projection, 
is lost. Perhaps, we can meet certain serious stability problems. Another possibility 
is to present WN(Z) as the interpolatory polynomial with certain fixed knots, say z%y 

2:2, . . . , ^iv+i, and its coefficients expressed by successive divided diíferences. But 
now returns the old problém of the proper choice of interpolatory knots and their 
order. 
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In the end, observe that, if needed, in order to get a better approximation of the 
solution of (1), the whole process of the stage 2 may be recycled in the following way. 

Put 

(13) q0 = xN = wN(A)b, 

gjb+i = qk + wN(A)sk 

with 
sk -b~Aqk * = 0 ,1 ,2 , . . . . 

We také g& as the ife-th cyclic approximation to x = A~xh, Observe that for the 
residuals Sk we háve 

**+i = 6 - Mh - AwN(A)sk = (/ - j4ti>j\r(>l))s* 

and hence 
Sk = (/ - 4̂t̂ 7sr(A)) *0 = (/ - ^tyjvr(yi)) rjy. 

It is clear that the cyclic process will converge when k —• oo provided |1 — 
ZI«;JV(^)| < 1 for all z G fi; this is a very week requirement concerning the ap­
proximation of <p(z) = l/z by wjsf(z). 

4. PRECONDITIONING BY RICHARDSON ITERATION 

Consider the Richardson iteration algorithm 

(14) 3/ib-f-i = yk + h(b - Ayk), 

where yo is arbitrary aqd h / 0. It is easy to find the generál solution yk of the 
difference equation (14): 

(15) Vk = A-1V>-(I-hA)*go} 

where g* = 6 — Ayt k = 0, 1, 2, The process (14) converges ifF the spectrum 
<r(vl) is contained in the interior of the disc |1 — hz\ < 1, oř if 

|l/ft - s| < l/A. 
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>*~Re 

fig.2 

íf the process (14) converges, then y* —• A~1b when k -* co. 
For the residual vectors ^ we háve 

where 

(16) 

6k zz (I - M)*£ 0 = Vi(yi)^0 

F*(*) = ( l - / i z ) * 

is the so called residual polynomial: V*(0) = 1. Such a polynomial always defmes an 
interpolatory polynomial qk-i(z) of degree ^ Jb — 1 for (p(z) = l /z , with knots being 
j ust the zeros of Vk; we háve 

(17) Vk(z) = 1 — ^ f c-.i(z). 

This is a generál rule (see [1]). 

Since Vjb(z) has a unique zero of multiplicity fc: l/A, hence l/A is the unique knot 
of multiplicity k ofqk-i(z) for interpolation of <p. Moreover, the vectors yk and g^-i 
are connected by the relation 

Vk ~yo + qk~i(A)Q0. 

Propos i t ion 1. 

(18) , ? i t - iW = ; 

moreover, the following recurrence relation holds: 

(19) qo(z) = h, qi(z) = h(2 - hz), qk(z) = h + qk-i(z){l - hz). 

428 



Assume now that the domain íí containing the spectrum <r(Á) of A is contained 
in the interior of the disc \z — \/h\ < l/|ft|. Choosing h > 0 small enough, we get 
the configuration as in Fig. 3. 

>-Re 

Fig. 3 

Clearly, the best approximation is attained near the knot 1/A, i.e. the Richardson 
iteration process shrinks the spectrum of A towards zero. Hence we háve: 

Preconditioning by pre-iteration 
Suppose the situation is as in Fig. 3. 
- First execute several steps of the Richardson iteration 

Sfc+i = yk + h(b - Ayk) 

with h small enough, in order to ensure the arrangement as in Fig. 3. This preiieration 

cuts the part of the spectrum close to 1/A-the high part of the spectrum of A. 

- After, say, m steps of the Richardson process, start the polynomial method with 
a polynomial WN ensuring the best approximation near zero, and neglecting the far 
regions of the spectrum. 

We get 

(20) 

with 

XN+m = Vm + WN(A)Q„ 

em = b-Aym=(I-hA)m
eo. 

For the residual vector we háve 

rm+N = b - Axm+N = (/ - AwN(A))(I - hA)mg0. 
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The first bracket from the left reduces the residuum on the part of Q, close to zero. 
The second bracket reduces it on the part of fi far from zero. 

Precondi t ion ing by pre-mult ipl icat ion 
Consider as before the configuration as in Fig. 3. Define the matrix Bk k = 0, 1, 

2, . . . as follows: 

Bk = Gk(A) 

with Gk(z) = zqk-i(z), where qk-i is the polynomial deíined by (18). Since in a 
certain sense qk-i(A) approximates A""1, hence the spectrum of Bk = Gk(Á) = 
Aqk-i(A) should be closer to 1 than that of A, From (19) we get the following 
iterative process for Bk: 

(21) Bx = hA, 

Bk+l = (J - hA)Bk + hA, fc = 1 ,2 ,3 . . . . 

At the samé time, let us define 

(22) 6i = hb, 

6fc+i = (J-fcA)6fc + 6i. 

We háve 

Propos i t ion 2. If tne spectrum a(A) is contained in the open disc 

| z - l / f t | < 1/ft-p 

where 0 < / i < l , 0 < p < 1/fc, then tne spectrum a(Bk) is contained in the open 

disc 

|* -, 1| < (1 - hp)k = 1 - khp+ k(k~lh2p2 + . . . = 1 - khp+ 0(h2p2). 

*-Re >-Re 

Fig. 4 
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P r o o f . Since Bk = G^Á), let us transform the circle l/h + (V A - M 6 ' * 
0 ^ (p < 2n by means of the transformation Gh(z) = 1 - (1 - ftz)*. We get G* (l/h + 
(l/h - p)e{*) = 1 - (-1)*(1 - hp)ke>k*. • 

Proposition 3. Equations 

(1) ji* = 6, 

(23) B*s = i*, 

wiiere i?* and 6* are defined hy (21) and (22), are equivalenř. 

P T o o f. We háve 

Bix = hAx = ftt = 6i. 

Assuming that 22*2 = 6*, by (21) and (22) we get 

Bk+Xx = (J - AA)B* + M i = (/ - M)6jb + bx = *»+ l . 

Let 21 be the class of problems (1) such that CT(J4) is contained in the disc \z—l/h\ < 
l/h — p, and 93* the class of the corresponding problems (23). Put (see Fig. 4) 

cond(2l) = V±Z± * 
P hp 

cond(95jb) -
khp khp 

We háve 

(24) cond(®jb) s i(cond(«) + l) - 1. 
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5. JORDÁN FORM AND SOBOLEV SPACES Hk(SÍ) 

First, let us define the class of Sobolev spaces of analytic functions. For any 
bounded (open) domain íí C C and any natural jfe put 

Hk((l) = { / analytic in Q 

Jř°(íí) = L2(fi). 

In Hh(Q) the scalar product (/,í)f)n* = £ / n / ^ O O S 0 ^ * ) ^ defines the corre-

sponding norm || • ||n*. 

Lemma (see [2]). Let z0€Q,R = dist(*0, díl), f(z) = £ aK* ~ zo)l> f € L2(Q). 
íssO 

Then 

H/lln.>7TTÍ;(M^20+1))-

Proof . Put K = {z | | z - z 0 | <iř}; then 

ll/l&o = / l/WI2d« £ / l/M|M* = £ j j > * / (* - z0y ( 7 ^ 7 ^ . 
</n ./JT j_0 j _ 0 /JT 

But 

JJ2Í+2 f 2it if i = 1 
f(z- zoy (7=^7d/ř = / * r^+Mr / ^ e^-O^dy. = ^ í 2* * ' " * , V ' 7o io 2j + 2 \ o if j # 1. 

jf 1/WI'dfi £ ^ |/(z)|Mtf = j ^ 2 £ |a,- |a*2«+1>. 
Hence 

Proposition 4. Let iř C íí be compact and f € L2(Q) analytic on Í2. Then 

n(inf dwt(z,0n)) ,+l 

i*>; I I / IIJCOO s x ( ^ dist(z> dQ)) s x ( inf dist(Z) dQ) ) . 

P rp of. Since a,- = ^(zo)/j\, we get (25) and (26) directly from Lemma. D 
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Suppose that A has a Jordán decomposition of the form A = TJT~l with J = 

diag[Ji, /2> • • •) Jp]> where J,- = k+Ei is the $,- x$i diagonál block with the eigenvalue 
p 

Aj and nilpotent £7*, £2 «i: = ^5 $ = max{s t}. 

If 0 is análytic on Q, 0 jí fi and ^(A) C i£ C O, where J£ is compact, we 
get g(A) = Tg(J)T~l and <?(/) = d i a g ^ ) , $ ( J 2 ) , . . . , y(Jp)]. Moreover, g(Ji) = 

g(Xi +Ei}= £ {9U)(*i)/J-)(Eiy. For the operátor norm || • || we obtain 

MAM < cgu/Ofc. < c,(g — - i — ^ ) ^ . 

However, the formula (26) yields 

Ibllnj-i 
11 )̂11 <C 2 7 inf dist(z,dfi)' 

Let w r̂ be a polynomial of degree AT and put g{z) = l /z — w^(z). This is an 

anály tic function in fi. The last inequalities imply 

(27) M- - *̂ )ll < « (g ( ^ ~ ^ r ) l k - «h, 

(28) P - ' - . ^ ^ ^ —j^-—Hy-^llo... 
inf dist(z,<9Q) 

z Civ 

where (p(z) = l /z . 

Conclusion. Věry often tne specériim 0"(̂ 4) of the matrix A of the systém (1) 
comes close to the point zero in C. In such a situation 

inf dist(z,<9fi) 
z&K 

is small, and if Jordán bíocs of dimension s > 1 occur in A, then comparing the 
inequalities (27) and (28) one shouid conclude that it is perhaps better to minimize 
\\<p — WNWÍIS-I rather than \\<p — t07vr||n0- Hence, if we suppose that Jordán blocs of 
dimension s > 1 are present, we shouid rather apply the norm \\ • ||n*-i to construct 
the polynomial WN on the stage 1 ofout algorithm. 
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6. EXAMPLES 

Fig. 5 shows various domains Í2. Numbers inside the domains represent values of 

|1 — zw(z)N | with N equal to 10 or 20. 

Relatively poor approximation was obtained for two last domains, especially for 

that which approaches better the entire ring. This phenomenon is comprehensible 

because there is no good polynomial approximation for l/z on a ring centred at zero. 
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0.10.2 2 2.1 • Re 

Fig. 6 

Fig. 6 Í2 shows an ellipse with boundary díl given by 

z = 1.1 4- cos^>-f 0.5isin<p 0 ^ >̂ < 2K 

with TV = 40. The numbers inside the rectangle represent the exponents of 10 of 
|1 — zwjv(z)\ calculated in a neighborhood of fi. 

In the table given below we present the best and worst coordinates r, of the 
residual vector r = b — Aws(A)b computed for the systém of 50 equations. The full 
complex matrix A was generated in such a way that its spectrum is located in the 
centrál part of the ellipse 

z = 5 + 4 cos <p + 2 sin <p> 0 ^ (p < 2n 

and all its Jordán boxes are of dimension 2. The degree s of wa was taken equal to 
30, 25, 20, 15 and 10. 

In all experiments, on the first stage the algorithm given by formulae (7) and (8) 
was applied with the use of 16 point composed Gauss-Legendre quadrature. On the 
second stage, algorithm based on formulas (11) (12) was applied. 

s 

best 

worst 

30 

10-12 + i l0-1 5 

10-7 + i l0-7 

25 

10-10 + il0-15 

10-6 + ilO-6 

20 

10~9 + il0-16 

10-4 + i l0-3 

15 

10-7 + il0"15 

10-3 + il0~3 

10 

10"4 + il0-1 6 

10-2 + il0"2 
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