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ACCELERATION OF CONVERGENCE 

OF A TWO-LEVEL ALGEBRAIC ALGORITHM 

BY AGGREGATION IN SMOOTHING PROCESS 

STANISLAV MIX A, P E T R VANEK 

(Received January 10, 1990) 

Summary. A two-level algebraic algorithm is introduced and its convergence is proved. 
The restriction as well as prolongation operators are defined with the help of aggregation 
classes. Moreover, a particular smoothing operator is defined in an analogical way to 
accelarate the convergence of the algorithm. A model example is presented in conclusion. 

Keywords: aggregation class, two-level algorithm, convergence factor, smoothing opera­
tor, linear algebraic system 
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1. I N T R O D U C T I O N 

Let A = (aij)J\- = i be a matrix of the order n and let us construct the matrix 

A G = (afj)?j~i with elements 

13 \ 0 if aij = 0. 

The matr ix A G will be called the structure matrix of A. Further, we construct the 

undirected graph G — ([/, H) determined by A so that the number of the knots 

Ui G U is n, i.e. i = 1,2, . . ., n, and the set of edges 

H C {{ut,Uj} : ut,Uj E U} 

is determined by defining the structure matrix Ac7 of A to be the incidence matrix 

of the graph G = (U,H). It means that {ut,Uj \. ./,-, u} £ U is an edge if and only if 

af3 = 1 (i.e. \Uiij 7- 0). 
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The set 
0(ui) = {UJ e U: {ui.Uj} e H} 

will be called the knot neigbourhood of U{ G U. Let us suppose a,, ?- 0, i = 1, 2, ..., 
n. Therefore t/, G 0(w,). 

2. DECOMPOSITION OF A SET OF KNOTS INTO AGGREGATION CLASSES 

Let G = (Uy H) be the graph of a matrix A. We employ the set U to construct the 

system of aggregation classes {FA,}™^ which is defined by the following properties: 

(2.1) l.Vu.Gt/ 3k: men. 

2. IfT inT f c^0, then 7} = Tk. 

3. If uP)Uq G Tib, then there exists w, G U 

such that MpjÛ  G 0(i«,-). 

R e m a r k . The order n of A is equal to the number of knots in the set U. 

The number m of aggregation classes, m < n, determines the order of the matrix 
corresponding to a "coarse" grid. 

The decomposition of U into the aggregation classes Ti is performed by the fol­

lowing algorithm (U% denotes the set of those knots from U which have not been 

included into any aggregation class in the i-th step). 

(2.2) U}H is given 

1. Ux := U, i := 1. 

2. If X = {UJ G Ui: 0(UJ) CUi}^ 0, then choose 

Uk G K, where k is the least integer in X. 

3. If X = 0, then choose n* G Di, where k is 

the least integer in U,. 

4 . 7 ; . = o(u fc)nU,-. 

5. Uw:=Ui-Ti. 

6. i := i + 1. 

7. If U,- ^ 0, proceed to step 2. 

8. END. 

L e m m a 2 .1 . The algorithm (2.2) generates a system of aggregation classes sat­

isfying con di tions (2.1). 
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P r o o f consists in the verification of (2.1). 
If the algorithm ends, then U% = 0 and thus the condition 1 is fulfilled. In step 

5 one subtracts a nonempty subset from a finite set. Therefore, the algorithm ends 
after a finite number of steps. The inclusion Ti C 0(uk) is valid for some k [see 
step 4 of (2.2)], which implies the condition 3 of (2.1). We now verify the property 
2 of (2.1). Suppose there is u E U such that u E 7} H 7* where j ^ k. Since 
Uj+i = Uj - Tj (step 5 of (2.2)), then u <£ U, for i > j . But Ti C Ui and ti £ [/, 
imply u $L Ti, i > j . Thus we must have 7*, k ^ j such that u £ 7*. Therefore 
it = j . D 

3. TRANSFER OPERATORS 

Let Vn and Vm be linear vector spaces (n = dimVn = order of the matrix A, 
m = dim Vm = the number of the aggregation classes). We define the matrix r = (r8J) 
of type (m, n) as follows: 

(3.1) 
í 1 for UJ € Ti, 

r'} ~ \ 0 for U j g 7i. 

This matrix represents a linear operator r : Vn —• Vm which will be called a restriction 

operator. The prolongation operator p : Vm —• Vn is defined by transposing 

(3.2) p = r T . 

The matrix r has the full rank, because there is exactly one unity in each of its 
columns (the system of aggregation classes is a disjoint decomposition of the set U). 

Let x E Vn. The vector rx £ Vm is given by its components 

(3.3) (rx)jfc = ^ x i , J^iJiUjETk}, * = l , 2 , . . . , m . 
j€J 

For y 6 Vm, the components of py E V„ are given by 

(3.4) (py), = y r, / = l , 2 , . . . , r , 

where r is the index of the class that contains the knot u\. 

Given matrices Ai , p , r, (Ai = A), we define the aggregation matrix A2 (of order 

m) by 

(3.5) A2 = r A i p . 

From the relations (3.5), (3.1), (3.2) we obtain 

(3.6) (a2)ij = ]£(<*!),,, i, j = 1,2,.. . , m, 

where the summation is over those s and t for which us € Ti, tit E 7). 
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R e m a r k . Every knot belongs to a single aggregation class if and only if there 
is one unity in every column of Ai . Every aggregation class contains at least one 
knot if and only if there is at least one unity in every row of Ax . 

4 . TWO-LEVEL ALGORITHM 

Suppose that Ai is symmetric and positive definite. We want to solve the linear 
system of equations 

(4.1) Aix = f, teVn. 

One iteration of our algorithm (xt —• x;+i) is defined as follows: 

(4.2) 1. Xi := Six,- -FTif, x t £ Vn (pre-smoothing step). 

2. d : = A i x , - f , deVn. 

3. v := ( A 2 ) - 1 r d (the solution of A 2v = rd, v £ Vm). 

4. x,- := Xi — pv, Xi £ Vm (correction step), 

5. Xj+i := S2xt- -F T2f, x,-+i G Vn (post-smoothing step). 

We assume that the consistence conditions I = T i A i -f Si, I = T 2 Ai -f- S2 are 
fulfilled, where Si, S2 are regular iteration matrices. 

5. PROPERTIES OF ERRORS OF THE TWO-LEVEL METHOD 

Let (x,y)„ be the Euclidean inner product of the vectors x ,y £ Vn. Let Ai be 

a symmetric and positive definite matrix of order n. The energy norm of x £ Vn is 

defined as 

(5A) ||x|U.= (A1x,x)1l2. 

The matrix norm is then defined by 

i i i u = s u P i L - ^ 
x6Vn | |X |U 

Let x G Vm be a solution of the system Aix = / and suppose that x; £ Vn is the 

result of the pre-smoothing step and xz G Vn is the result of the correction step. 
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If v G Vm is the solution of the residual equation A2V = rd, i.e. v = (A2) ! r d , 
then we have (see step 4 of (4.2)) 

X f - x = [ i - p f r A i p J ^ r A i ^ X i - x ) . 

In this paper we use the following notation: 

e t = X{ — x, e = x?- - x, e(v) = x,- — x, K = I - p ( r A i p ) _ 1 r A i . 

Then we have 

e = Siet-, e(v) = e - pv = Ke, d = Aie, e,-+i = S 2KSiej . 

For any w E Vm we put e(w) = e — pw. 

L e m m a 5.1. | |e(v)|L = min ||e(w)||yi if and only if v E Vm solves the residual 
w € V m 

equation A 2v = rd . 

P r o o f . We want to show that the conditions 

(5.2) ||e(v)|U ^ ||e(w)|U Vw € Vm, 

and 

(5.3) A2v = rd 

are equivalent. 
We write any vector w £ Vm in the form w = v -f 2Av, where v E Vm is fixed and 

Av E Vm, t E R1 are arbitrary. The functional <p: Vm —• R1 given by 

(5.4) v,(w) = ||e(w)||^ = (A i e (w) , e(w)) 

is strictly convex. The condition 

—<p(v + tAv) | t = 0 = 0 VAvEVm 
at 

is a necessary and sufficient condition for v to be a unique minimizer of (p. After 

elementary manipulations this conditions can be written in the form 

(5.5) ( A 1 ( e - p v ) , p A v ) = 0 

or in the form (r: Vn —-> Vm) 

(5.6) ( r A 1 ( e - p v ) , A v ) = 0 (in Vm). 

Hence rA i ( e — pv) = 0 in Vm. From this we obtain 

(5.7) r A i p v = r A i e = rd. 

Therefore (5.2) implies (5.3). 
On the other hand, (5.3) and (3.5) imply (5.5) and hence (5.2). • 

L e m m a 5.3. Tiie matrix A2 = r A i p is symmetric and positive definite 

Proof is trivial. 
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6. CONVERGENCE OF TWO-LEVEL ALGORITHM 

Lemma 6.1. The iteration method given by algorithm (4.2) can be expressed by 
the iteration formula 

(6.1) x*+i := Mx, + Nf, 

where 

M = S 2 [ I - p(A2)"-1rAi]Si = S2KSi, 

N = S2Ti + S2p(A2)-1r(I - A iT i ) + T2 , 

and Si is a pre-smoothing matrix, S2 is a post-smoothing matrix. 

Proof is trivial. 

Lemma 6.2. The vector x = (Ai)~*1f is a fixed point of (6.1). 

P r o o f . From (4.2) and from the consistence conditions I = T iAi 4- Si, I = 
T 2 Ai -f S2 we obtain I = M + NA a . The sets 

Im(p) = {z € Vn : z = pw Vw € Vm} 

T = {x€F n : (Aix ,pw) = 0 Vw € Vm} 

are Ai-orthogonal subspaces of Vn, i.e. 

(6.2) T = Ker(rAi) = (lm(p))X 

and we can write 
Vn = T e I m ( p ) . 

It can be seen from (5.5) that Ke £ T, where Ke = e — pv. • 

Lemma 6.3. The following error estimate is valid: 

(fi * »S2Ke|U ||S2X|U 
(6 .3) rprj ^ SUp - t y - r . 

IHU x€T HxlU 

x#o 

P r o o f . From (5.2) for w = 0 (i.e. e(w) = e) we obtain 
(6.4) | |Ke |U< | | e |U , e € V „ . 
For Ke € T we have 

l|S2Ke|U ||SaX|U 
||Ke|U " X 6T ||X|U " 

x*o 
Using (6.4) we obtain (6.3). D 
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T h e o r e m 1. Assume that | | s i |U ^ (fi < 1, ||S2|U ^ 92 < 1. Tnen t ie two-Jevei 
iterative process (4.2) converges and the rate of convergence can be estimated as 

((K K\ IN-fllU / ||c || c n r , HS2XlU ^ ^ , 
(6.5) —n—n— ^ HSlIU s u £ " l O j — ^ ?-?2 < 1. 

llei|U x€T ||X|U 
x*o 

P r o o f . For an arbitrary e8 £ Vn and a regular Si, e = £>,°. is an arbitrary 
vector in Vn> too. From (6.4) we obtain 

| | K | K 1 (K:Vn-+T). 

From the obvious inequality 

,. ,. ^ lls1e»lU 
l l e*IU ^ —rr«—n— 

IP1IU 

we get 
I N - H I U _ IISiKeJU ||S2Ke|U 

||e,|U " INIU * " 1 , U HSie.|U • 

We now may use (6.3) to obtain (6.5). D 

7. ESTIMATE OF THE ASYMPTOTIC CONVERGENCE FACTOR 

BY BRANDT'S TECHNIQUE 

L e m m a 7.1. The correction operator K - I - p(TAip)~ 1 rAi (see Lemma 6.1) 

is an identity operator on the space T, i.e. Kx = X ̂ X € T. 

P r o o f . From (6.2) we obtain 

( rAix ,w) = 0 V w e K n 

therefore 

r A i x = 0, XeT 

Now it can be seen that 

Kx = [I - P(rAip)-1rAi]x = X - p(rAip)- l0 = x-

D 
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Lemma 7.2. Let S2 = I — u;Ai (the damped Jacobi method) and suppose that 

0 < LU ^. |[A
2 | | . Further suppose that for each \ £ T there is w G Vm such that the 

condition 

(7-2) | |x |U^o l lx-pw| | 2 

with C > 0 is satisfied. Then the following error estimate is valid: 

13 
u 

.Here, we denote 

(7.3) Щ?M,çi-uc\2-Ш\\A1\\2). 
IІXІI? 

|x | | 2 = (x .x) 1 ! 2 for x Є Vn, ЦAЛU = sup Џф-
XЄK. | | X | | 2 

X5ÍO 

P r o o f . Using the equality 

||S2X||2 = (A_(I - _ A0X> (I - _ Ax)x) = Hxll2. + "2||A lX||2 - 2_||AlX||2 

and the inequality 

llAtxll.WllAill_-llA_x.l_ 

we obtain 

(7-4) ||S2X||2 *: Hxll2, - _ ||A1X||I(2 - _||A,||a). 

Every vector \ £ T is Ai-orthogonal to Im(p), i.e. (Aix ,pw) = 0 Vw G Vm- Thus 

( A i x x ) — (AiX.X — pw) (Brandt's technique [1]) and therefore 

Hxll.UI|A,xllHlx-pw||2. 

Multiplying by C and using (7.2) we obtain the estimate C||x|U ^ H-^-iXlb-
From the assumption 0 < u> -$ .jA. and from (7.4) we then obtain 

l |S2X| | 2
1 ^ | | x | | 2 4-^o 2 | | x | | 2

1 (2 - - | |A 1 | | 2 ) . 

D 
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T h e o r e m 2. Let the assumptions of Lemma 7.2 be satisfied. Then the rate of 
convergence of the two-level method with S2 = I — u;Ai can be estimated as 

(7-5) fe# < llsillM- ~"C\1 -w||Ai||2)]. 
lle*IU 

Proof follows immediately from Lemma 7.2 and Theorem 1. 

We will now generalize the results of Theorem 2 to a two-level method with the 

smoothing operator S2 = I — C J D _ 1 A I , where D is a symmetric positive definite 

matrix. 

L e m m a 7.4. Let S2 = I — u>D_1 Ai7 u > 0 (the generalized Jacobi method) and 

suppose that for each x € T there exists w E Vm such that the condition 

(7.6) | |xlU>d||x-pw||j> 

with C\ > 0 is satisfied and the condition 

(7.7) IID-'AJXIU ^ C2\\B-xAlX\\D, uC\ < 2 

with C2 > 0 is satisfied. Then 

(7-8) H | M i < l - W C 2 ( 2 - W o 2 ) . 

P r o o f . Using the evident relation ( A i x , D _ 1 A i x ) = (DD _ 1 AiX, D _ 1 A i x ) = 

| | D - ' A J X H 2 , , x G T we get \\S2X\\A = \\X-u,D~lAlX\\A = UxI f t+^HD^AixI f t -

2w||D-1A1x| |2
5 . Using now (7.7) we have 

(7.9) \\S2X\\2
A ^ \\X\\2

A + w
2 C 2

2 | |D- 1 A l X | | 2 , - 2W | |D-1A1 X | |2 , . 

Since x E F, i.e. (AiX^pw) = 0 Vw E Vm, and since the condition (7.6) is valid, we 

successively obtain \\x\\\ = (A1X1X) = ( A i x . * - p w ) = ( D _ 1 A i x , D ( x - p w ) ) = 

( D ^ D - ^ I X , D 1 / ^ - Pw)) ^ HD-^IXIIDIIX - pw||p ^ HD-^XXIID^HXIU-
Therefore 

(7.10) CiHxIU < \\to-XAlX\\D. 

Combining (7.9) and (7.10) we obtain (7.8). • 
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T h e o r e m 3. Let the assumptions of Lemma 7.4 be satisfied. Then the rate of 
convergence of the two-level method with S2 = I — wD _ 1 Ai can be estimated as 

(7.11) fejjjp. ^ | |S, \\\ [1 - «C?(2 - u,C2
2)]. 

Proof follows from Lemma 7.4 and Theorem 1. 

R e m a r k . The assumptions IJSiH^ ^ q\ < 1, ||$2|U ^ #2 < 1 of Theorem 1 
are not necessary to prove Theorems 2, 3. Hence, the smoothing need not be a 
convergent process for a two-level method to converge. 

8. GENERALIZED JACOBI METHOD DETERMINED BY THE SYSTEM 

OF AGGREGATION CLASSES 

We shall briefly describe the construction of the positive definite matrix D in the 
generalized Jacobi method with the iteration matrix I — u;D~1Ai by the system of 
aggregation classes. 

Let us have the system {7A.}™=1 of the aggregation classes generated by the algo­

rithm (2.2). For each class T* we construct a diagonal matrix V* of order n with 
(k) 

elements v}4
 J such that 

(8.1) »jjfc) = 0 for 1\± j , 

(k )_ f l i f« . € 7 * . 
v" ~\o ifuitn, 

where t/,, i = 1, 2, . . . , n is the t-th knot of the graph G introduced in Sec. 1. 
We define matrices D^, k = 1, 2, . . . , m of order n by 

(8.2) Dfc = VjbAiV* 

and we put 

m 

(8.3) D = V2Dt. 
* = 1 

Now we want to determine the constant C2 in the condition (7.7) to get the particular 
estimate of the convergence factor (7.11) for this matrix D. 

R e m a r k . From (8.2) it is clear that D is a symmetric and positive definite 

matrix. 
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Lemma 8 .1. Let B be a matrix of order n. Then for the matrix 

(8.4) D^D^+Bpr 

and for any X G T we have 

(8.5) D A l X = D ~ x A l X . 

P r o o f . D A l X = D _ 1 A l X + B p r A l X . From the definition of T we have 
( A l X , p w ) = 0 Vw G Vn, i e . ( r A l X , w ) = 0. Therefore r A l X = 0 on T. Q 

Theorem 4. Let Di and D 2 be matrices which can be expressed in the form 

(8.4) with matrices B\ and B 2 , respectively, and let all the eigenvalues X(D\) and 

A(D2) be real. If 

(8-6) l |Ai | | 2 -A m a x(Di)^C 2
2 .A m i n (D 2 ) 

then the inequality (7.7) holds. 

Proof. For x 6 T (8.5) yields 

HD^Aixlft = (A 1 D- 1 A l X ) D- 1 A l X ) = ( A I D I A I X ) D J A I X ) 

^ ||A1||3(D1 AlX> DxAiX) ^ HAill., • A^ax(D1)||AlX||I, 

||D-1AlX||io = (DD- 'Aix .D- 'Aa) = (D3AiX )A l X) 
> Amin(D3)||AiX|||. 

Using the inequality (8.6) we obtain 

o2
2Amin(D3)||AiX||2 ^ IIA^IaA^tDOIlAixllH, 

which implies (7.7) D 
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9 . A MODEL EXAMPLE 

We consider the two-level algorithm (4.2) with Si = I, S 2 = I — a j D ^ A i , where 

the matrix Ai was obtained by applying the usual finite-difference method to the 

boundary value problem 

- t i " = / on (0,1), 

u(0) = a, u(l) = 6. 

We use a uniform grid of 2m interior points with a step h. 

The matrix Ai of order 2m is then of the well-known form 

A , = 
Л2 

2 - 1 

- 1 2 - 1 

0 

Lo 
- 1 2 - 1 

- 1 2 

The system of the aggregation classes is defined as follows: 

Tk = {>2fc-i, t/2ik}, k = 1,2,..., m, 

where the knots it, are defined by the interior points of the grid. The matrix D will 

be block-diagonal 

D = 
Һ? 

2 - 1 

- 1 2 

2 
:0 

- 1 2 i 

2 - 1 

- 1 2 

Analogously, the (2, 2)-blocks of the block-diagonal matrix D l are 

*! 
3 

2 1 

1 2 

The matrix p r has the same structure, its (2,2)-blocks being 
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We now show that a special construction of the matrices Di , D 2 from Sec. 8 allows 
us to give an estimate of the rate of convergence (7.H) with particular values of C\> 

Put B = - - £ l , i.e. D = D " 1 - ^ • p r = ^ 1 , and put Dx = D 2 = D. Hence we 

have Amin(D) = Amax(D) = V* B e c a u s e ^max(Ai) = HA1II2, the inequality (8.6) 

can be written in the form 

x <x^(h2^\<r*h2 

Amax(Ai) ( — I ^ G2 y > 

or in the form 
h2 

-^-Amax(Ai) -̂  C2-

From Gershgorin's theorem we have Amax(Ai) -̂  -fa and hence we can put 

C2 _ 4 
2 ~ 3-

Our first attempt is to find an estimate with the constant Ci (see (7.6) and (7.11)). 

We can write (7.6) in the form 

(9.1) oi2(D(x-pw),x-pw)^(Aix,x). 

We want to find Ci such that for every % € T there exists w £ Vm such that (9.1) 
holds. 

With respect to (7.11) it is desirable that C\ be as large as possible (then the error 
after the correction step will be much less then the error after the smoothing step 
alone). 

Therefore, we will minimize (D(x — pw),% — pw). This inner product will be 
evidently minimal, if 

(9.2) ( D ( X - p w ) , p A w ) = 0 VAwGVm . 

It can be easily verified that this condition on the matrix D is satisfied if we take 

w = | r X . 

Then we have (x = (Xi> X2, •• •, Xn)) 

1 f3 " 
(D(X - £p-*x)> X - |prx) = - j [«j z3(*2«' ~ X2.-1)2], 

t= i 

1 r 2m_1 i 
(Aix, X) = £2 [*i +*lm+ X) (x'+1 _ Xi?. • 
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Therefore the inequality (9.1) (with w = i r x ) , i.e. 

Cl(D(X - §prx),X - |prx) ^ (AiX.X) 

will be fulfilled if § C\ ^ 1. The biggest C\ satisfying the last inequality is C\ = §. 

Substituting C\ -= | , C| = | m t o C«--l) w e obtain 

* * < - . " < " . • > • 

2 
Л 

— 3 We can now readily find that the optimum value of the damping factor u is u> = --

(the minimizer of the quadratic function 1 - |u;(2 - §o>)). For this w we arrive at 

the estimate 

i t e l " 2 -
R e m a r k . Numerical experiments performed with a TGM algorithm using the 

aggregation according to (2.2) have shown an interesting property of the generalized 

Jacobi method of Sec. 8: the rate of convergence of the two-level method used almost 

did not decrease with an increasing number of knots in the aggregation classes. In 

other words, to realize the correction on the coarse grid it would be possible to 

employ aggregation matrices of an essentially smaller order. This property could be 

useful when solving large scale, in particular 3D-problems. A heuristic exploitation 

of this phenomenon may be the fact that the more knots the aggregation classes 

contain the more "similar" to Ai the matrix D is, and thus the more effective the 

iterative method with I — LJT>~1A is. 
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