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WEIGHT MINIMIZATION OF ELASTIC BODIES
WEAKLY SUPPORTING TENSION
I1. DOMAINS WITH TWO CURVED SIDES

IvaN HLAVACEK, MICHAL KRIiZEK

(Received September 12, 1991)

Summary. Extending the results of the previous paper [1], the authors consider elastic
bodies with two design variables, i.e. “curved trapezoids” with two curved variable sides.
The left side is loaded by a hydrostatic pressure. Approximations of the boundary are
defined by cubic Hermite splines and piecewise linear finite elements are used for the dis-
placements. Both existence and some convergence analysis is presented for approximate
penalized optimal design problems.

Keywords: shape optimization, weight minimization, penalty method, masonry-like ma-
terials, finite elements

AMS classification: 65N30, 65K10, 73C99

INTRODUCTION

The present paper is a continuation of the previous article [1], where the shape of
the cross-section has been restricted to “trapezoids” with one curved side. The aim of
the present paper is to study similar problems for domains with two curved sides. The
left curved side is supposed to be loaded by a hydrostatic pressure and therefore—
in contrast with the part [1]—the existence and convergence analysis now requires
to introduce C''-metric for the design variables, which themselves are to be smooth
enough. Consequently, we approximate the boundary by cubic Hermite splines. On
the other hand, we keep the simplest possible finite elements, i.e., the piecewise linear
displacement model on triangulations, which are completed by triangles with one
curved (cubic) side along the boundary of the cross-section. Thus we obtain piecewise
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constant stress field approximations, which simplify the penalty computation, as in
(1].

Section 1 contains some definitions and auxiliary results. The existence of an
optimal domain is proved in Section 2. Approximate problem is introduced and
analyzed in Section 3. We present some sensibility analysis by means of an adjoint
problem technique in Section 4. The last section contains a convergence analysis
based on an intermediate penalized optimal design problem.

1. ASSUMPTIONS AND DEFINITIONS

Throughout the paper we shall use the same notation as in [1]. Consider a class of
domains {Q(v)}, where the design variable v = (v, v3) belongs to the following set
Una = ULy x U2,
Ugg = {v € CONI) [ S w(@2) < B | < Cpin 1| < Gz acesin 1},
U2 ={ve CONI) |0 < v(za) < 7, 0(1) = 0, ]| < Cy in I, o] € Cy ae. in I},

where

, 2,
1=100,1, = dv v’ = d7v

" dzy’ T dz¥’

Qv) = {(x1,22)] — valas) < &) < vy(22), 0 < x2 < 1},

a, 3,7y, Cy, Ca, 6’1, (_72 are given positive constants, o« < 3. Henceforth I'(v;) denotes
the graph of the function v; € U;d, (i=1.2), Qs = (—6,8) x (0,1), 6 > max{3.v}.

A%2

Fig. 1
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Assume that the elastic body occupying the domain Q(v) is in the state of the
plane strain and the following basic relations hold:

strain-displacement

Ou;  Ou; .
e;j(U)=(6—;—+a—2) i,j=12,

stress-strain
Oij = Cijmleml

(any repeated index implies the summation over 1,2), where the coefficients c;jm; are
given in L>(Qs), being symmetric and positive definite (see [1]-(1)), as usual.
Let body forces F € [L?(25)]? and the following hydrostatic surface pressure

g € [L%(T(v2))]? be given

9=0(91,92) = (H — z2) (1 + (v4)*)73(1,v4) for z2 € (0, H),
g=0 forz, € (H,1) with some H € (0,1).

We introduce the space of virtual displacements
V(v) = {w € [H'(2(v)))’ | w = 0 on Tu(v)},

where
Fu(v) = {(z1,0) | —v2(0) < z1 < v1(0)}

and the virtual work of external forces
H
F(v; w) =/ Fiw; dz +/ (H = z2)(w: + w””'n:—u:(z:) dz,.
Q(v) 0

The weak solution of the elastostatic problem is defined by the formula (2) of [1].
Before proving the existence and uniqueness of the weak solution, we establish the

following auxiliary result.

Lemma 1.1. There exists a constant ' > 0 independent of v and such that
! :
oy = ( [ (u(=vataa).22))* dzz) < Cllulh

holds for all w € H'((v)) and all v € U2, where
Uza = Upd x Ugd,
U = {v e COUDI 5 < o(z2) < 28,10/ 201, 10" < Cs ae ),

U2 ={ve C'“)’l(l)l - % < v(zy) € 27, V'] € 2C, |v"| < C» ae}.
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Proof. Assume that u € C®(Q(?)) for the time being. Then we may write

u(—vz(z2),22) = u (3,1:2) - / -axidl‘l,

4 Oz,
—v2(z3)
g 2
2 Q[ a Ou
u (—-»‘vg(l’z),l‘z)s?‘u (74-,172)+2(27+Z) / (—6-;1-) d(L‘],
—vg(l;)
L d<212(°’ dzs +2 « ou )’y
/Ou(~v2(12),-’02) z3 < /ou 4;12) z + (2‘)’+Z) / <3‘;1') z,
ﬂo(uz)

where Qo(v2) is the domain between I'(v;) and T'(—%).
Denoting R = (§,$) x (0, 1), we have R C Q(v) for all v € U2, so that

||“”§,r(—%) < Crllull} = < Crllull} o)

with C independent of v. Therefore, we may write

2
2 2 a Ou
Il ey < 2Cm Il oy +2 (214 5) [ (5 ) e
Q(v)

. «
<2 (Cn + 27+ '4') ||U||?,n(u)-

Making use of the density of C*(Q(v)) in H!(Q(v)) and the Trace Theorem, we
extend the inequality to all u € H'(Q(v)). 0

Lemma 1.2. There exists a unique weak solution u(v) for any v € UY,. Moreover,
a constant Cj exists, independent of v and such that

(1) llu(v)lh 0wy < Cs VYo € Uy

Proof. We may divide Q(v) into two parts by a straight-line z; = § and

apply the results of the paper [4] (Section 2.2(i)) to both parts separately to get the
uniform Korn’s inequality

(2) lle(w)llo,aq) = Cllwll, )
with some positive constant C mdependent of v.
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Next we derive the following estimate for any v € U2,

1
(3) [F(v; w)| < |IFlo,04llwllonw) + H/ (lwi| + 2C1 |w2]) dzy
0
< 1 F o0 llwllo,aw) + Cllwill ) + QC'C'xllw2[|1,mu)
<

C4Hw”l,ﬂ(u)

employing Lemma 1.1 twice.

Using the positive definiteness of the form cijmieijem, (6) of [1], (2) and (3), we
prove the unique solvability and the estimate (1) in a way parallel to that of proof
of Lemma 1.1 in [1].

We introduce the set of statically admissible design variables

aa = {v € Vaa | 0(v) € M(Qv))},

where the set M(Q(v)) and o(v) have been defined in [1]-Sect. 1. Then we define
the following Optimal Design Problem

(4) vo = arg min j(v),
vEEad

where
i) = [ pads, pe L), p>o
v)

2. EXISTENCE OF AN OPTIMAL DOMAIN

We shall follow the main features of the argument of Section 2 in [1]. First we
establish an important

Proposition 2.1. Let {v,},n — oo be a sequence of couples vy, € U, such that
(5) v — v in [CO(1)]2

Then
G(vp) — a(v) in S(S2s),

where (v, ) and &(v) denote the extensions by zero to the domain Qs — Q(v,) and
Qs — Q(v). respectively.

In the proof the basic role is played by the following
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Lemma 2.1. Let the assumptions of the Proposition 2.1 be fulfilled. Then

u(vn)|Gm — u(v)|; (weakly) in [HY(GW))?

holds for n — oo and any integer m > ;8;, where
, 1 1
Gm = {-"3| —vg(zg) + — <z <vy(xg)— —, 0< 22 < 1}
m m

Proof is an easy modification of the proof of Lemma 2.1 in [1]. We employ the
extension %(v,) of u(v,) symmetric with respect to both I'(vs1) and ['(vn2). The
only difference occurs when proving that (cf. [1]-(27)) if vy — v in C'(1), then

(6) lim F(v,; w) = F(v; w).
r—o00
Here we may write, denoting I'; = ['(v,2), I' = ['(vs),

lf(vr;ﬁ))—f(v;w)lg'/ F,-ii};d:l:—/ F,-w,-d:c’
Q(v,) Qv)

H H
+ I/ (H — z2)(v1 + “72"?2)|r, dz, — / (H — z2)(w; + U)2‘U’2)|r,dl'2|
0 0

H
< / |F',-1i),-|d:|:+/ |li}1|r - w |r|(lx2
A(QUv,)N(v)) 0 4

H
+ / l'l’:-gli)glr, - vf_ﬂ”?lrl d‘t? = Ar + By + Gy
o r

lim A, =0

r—00

by virtue of the uniform convergence of v,2 to vy. Furthermore, we may write

H

B, s/ dz,
0
H

H
Cr < / |U;2(ll’g|r - wg|r)| day + / J(vhg — vi,)w'_;lrl dzs = Cry + Cyg,
0 T 0

max(—v,2,—v2)

max(—v,2,~v2)

- dz; — 0,
oz,

lﬁﬁ;l

min(=v,z,-v2)

Ow»
—| dzy — 0,

- H
(r'r] < 2(:']/ (lmg
0

min(—vy2,~vz)

H
Cra <y = thllecy [ fulpldez =0
. 0

fl']

by virtue of the uniform convergence of the derivatives v., to vy. Combining the
above results, we arrive at (6). O
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Proof of Proposition 2.1. On the basis of Lemma 2.1 we derive that
(7) G, — & (weakly) in S(Qs),

where 0, = 0(vy,), 0 = o(v) (cf. the derivation of (29) in [1]). Then we have to show
that

8) lim F(vn; un) = F(v; u).

To this end, we may write (denoting Q,, = Q(v,), @ = Q(v), T = ['(vp2), I =
I'(v2)),

9) If(vn;u,.)—f(v;uns[/n F'~u,,d:z:——/nF-udz|

H
+ |/ (H - "’2)(“'”'1*,. - “"r +v:l2uﬂ2|[‘n - Uéuzlp)ldl‘zl =A+B,
0

Asl/ F‘(u,.—-u)d:c|+|/ F‘undz|+|/ F-udz
Gm =G Q-G
:Al +A2+A31

A; — 0 as n — oo by virtue of Lemmma 2.1 ;
Az < |IFllo,on-Gm C5 — 0

by virtue of (1) and the limit

meas(Q, — G,,) — 0 as n — oo, m — 00, n > ng(m);

Az — 0 as m — oo.
Combining these results, we deduce that
(10) A—0asn— oo
An estimate of the term B is more difficult. We may write

1 1
(1) B< [ lumly, = wilpldea+ [ gunaly, — vhualpldes = By + By
0 0

1 1
B, < / Iunllr“ = tin1 || dz2 +/ ln1|p — w1|pldz2 = By + Bia,
0 0

where u,, denotes the extension of u,,; symmetric with respect to [y,

1
By S/dx'z dz, = /
0

min(l",,,IM) Qr,,r)
1
< (meaSQ(rm F)) : ”unl”lﬁo:

aur\l

Bz, dz
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where
min(Fy,, [) = min(—vy,2(22), —va(22)),
max([,, I') = max(—vnpa(x2), —va(x2)),

Q(l,, ') denotes the set “between” I';, and T,

N, =0 (-—vg — %,vl + (4—') .

Recall that (cf. (22) in [1])

(12) Htnjlli o, S C Vo> no(a), j=1,2,
and
(13) tn |, — u (weakly) in [H'(Q)]?

can be derived as in the proof of Lemma 2.1 in [1].

Using (12) and the uniform convergence of v,2 to va, we obtain

By —0asn —oo.
Next we have
Bys < |Juny — uillor — 0,

since the trace operator T': H'(f2) — L*(I') is compact and (13) holds.
We also have

1 ]
By < /|v:]2u,,v_.|r - vf_,u,,'_;lr | das + /|uf_,('u,,g|r — 'it,,-_;]r)!da:g
0 0
1
+ / [U,?(“"er — Us r)| deg = Bay + Bay + Bag;

0

Bay < lviys = vhllern unallor, — 0.
since
funzllo.r, < Cllunzlhia, < CCs

by virtue of Lemma 1.1 and (1});

I
If:!'.’ g 2(~'l /l"!l'.’lr - “n'_’,ll-l (]J"_l g 2(§'| / —_—
J " Q.

<20 (meas QU D)) Huelly o, — 0
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using (12);

Bas < / [in2|p = uz|p| dza < 2C||dng — uallo,r — 0
[
(cf. the case of Bya) by virtue of (13).
Altogether, we obtain that B — 0 as n — oo. Consequently, (8) is verified. The
rest of the proof goes through as in [1]. O

A consequence of the Proposition 2.1 is the following

Lemma 2.2. The set £uq is compact in [C(V)(I)]2.

Proof. Both U}, and U2, are compact in C)([) (cf. [3], Lemma 2). Therefore
Uadg = U}y x U2, is compact in [C1)(1)]2. The argument is then the same as that
for Lemma 2.2 in [1], except that the scalar v, is replaced by a vector (v,1,vp2) and
the convergence in C(1)(I) by the convergence in [C(})(I)]%. O

Note that both Remarks 2.1 and 2.2 of [1] remain true.

Theorem 2.1. Let the set £,4 be non-empty. Then there exists at least one
solution of the Optimal Design Problem (4).

Proof follows from Lemma 2.2 and the continuity of j(v) in [C(})(1)]2. O

Remark 2.1. Since the trapezoidal shapes of Q(v) can be embedded into our
class of domains with v € U,q, the assumption &,4 # 0 can be satisfied by means of
some results of [5].

3. APPROXIMATE SOLUTION

In the present section we propose an approximate solution of the problem (4),
which is based on piecewise cubic approximations of the unknown boundary, a simple
piecewise linear finite element model and a penalty approach, similar to that of [1].

Let N be a positive integer, h = & and Aj = [(j — 1)h,jh], j=1,2,..., N. We
define

Usi = {vn € CD(1) [on|, € Po(A), j=1,...,N,
a < un(jh) €8, |vh(]h)| C1, |v)(jht)] € Ca,
j=0,1,...,N},
= {vn € CVND) [wa],, € P3(A), =1, N,
0 < wa(3h) < 7,va(1) = 0, [04(jk)| < Cy,
loj (jht)| < Ca, j=0,1,...,N},
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where
vi(iht) = _lim  ofl(z2),

P3(4A;) is the space of cubic polynomials on A;,
Usa = Udd x Uzd.

In what follows, we shall need and estimate of the “distance” between U;‘d and
Uad, since UL, ¢ Uaq. To this end we establish the following

Lemma 3.1. Let vy, € U;'dl. Then

(14) |vi] K C2 foraa zy€l,
1
lvklley < Cr + 5(3211,

1 1 1 1
(15) o — -2—C1h - ZCgh2 <u(z2) B+ ~2—Clh + ZCgh2, zo €I
Let vy, € U:(f. Then

v € C'z for a.a. x5 € I,
N
HUMIC(I) <G+ §C2h,

1~ 1~ 1 1
— §C,h - ZCgh2 Sop(zr) <7+ §C1h + 4—C2h2, z, €I

Proof. The estimate (14) follows from the linearity of v} in A;j. In any interval
Aj we have (z € Aj,z; = jhor zj = jh—h)

2 1
Jvn(2)] < |vi(z)] + I/ v},’(t)dtl <Ci+|z2—-2z]|Ca < C1 + 5 hCs.
The derivation of (15) is analogous. a

Lemma 3.2. There exists a positive constant hy such that

UL CcUY Vh < hg.

Proof is immediate consequence of Lemma 3.1. a
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Let v, € U;'d and denote Q, = Q(v). The domain Q will be divided into triangles
and curved triangles as follows, by means of a reference domain triangulation Th(vg).

Let us choose an initial function v) € [Pi(1)]> N UL and construct a suitable
uniform triangulation 7,(v}). For a general vy € UL, let us construct 7x(vh) as a
“distortion” of the initial triangulation 7j(v)), preserving the number of nodes on
any straight line segment

{.’L’ | T € [_th(jh))U’ll(jh)]y L2 = jh: ] = 01 lr e )N}

and the uniform partition of these segments. The elements adjacent to I'(vn1), ['(va2)
may have one curved side. We assume that the parameters C; and C’,-, i=1,2 are
sufficiently small so that the curved sides of the triangles cannot cross the other sides.

We shall employ finite element spaces with linear polynomials on any triangle or
“curved triangle” K € T,(vp):

(16) Va(vn) = {wn € [C(Q))* | wa| € [PI(K))? VK € Ta(vn),

wp = 0 on Ty(vn)}.

The finite element solution of the elastostatic problem (cf. (2) in [1]) will be defined
as up(vp) € Vi(vp) such that

(17) a(vn; un(vn), wn) = F(vn; wr) VYwy € Vi(va).

Since Vi(va) C V(vn) and vy € U2, for h < ho by virtue of Lemma 3.2, we can use
the positive definiteness of the form ¢;jmi€ijemt (cf. (1) from [1]), (6) of [1], (2) and
(3) to verify the existence and uniqueness of ux(vy), provided h < hg. Moreover, we
obtain that

(18) llen(vr)ll, 0@,y € Cs Yun € Uk, Vh < hg

with the constant C'5 independent of v, and of h.
We define the approximate stress field o®(vs) by the following formula

(19) a:'j(v;,) = c,-j,,,,eml(uh(vh)), i,j = 1,2.
Note that the stress field o”(vp) is piecewise constant, if the coefficients c;jmi are

constant in every triangle K € T4 (vp).
We introduce the penalized cost functional

3
Jelo,0) = §0) + £ 2 fiw,0),
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where

fi(v,0) = / (0ii — k)tdz (nosum),i=1,2,
J(v)

f3(v,0) = / (det(o — 3)) " dz, »j = kbij, k€ Lz(Qg), k>0
(v)

and the Approximate Optimal Design Problem

(20) v§ = arg min j¢ (vk, 0" (vp)).
"heufd

Theorem 3.1. The Approximate Optimal Design Problem (20) has at least one
solution v}, for any fixed h = % and any positive parameter €.

In the proof the following lemmas play the crucial role.

Lemma 3.3. Let h = L be fixed and let v} € UL,

v
v — v in [CO(D)])? asn — oco.
Then
& (vR) — " (vn) in S(),
where " denote the extensions of o" by zero.

Proof is analogous to that of Lemma 3.1 in [1]. O

Lemma 3.4. Let the assumptions of Lemma 3.3 be fulfilled. Then fori =1, 2,3
fi(vh, o™ (W) = fivn, oM (vn))  asn — co.
Proof is the same as that of Lemma 3.2 in [1]. O
Proof of Theorem 3.1. From Lemma 3.4 we conclude that
(21) Je(u}, o™ (W})) = je(vh, 0" (vp)) asn — oo,
if v — vy in [C(1))%.
Any function vy € UL, is uniquely determined by a vector a of 4(N+1)—1 parameters
oa1 (jh), vy (i) and vaa(h), vhy(jh), = 0,1,..., N (excepting vra(1)).
It is therefore easy to realize that
vn EUMy & ae AC RIS,
where A is a compact subset, being bounded and closed. Since
vi(a®) — va(a) in [C(D))? as n — oo
iff
a” — a in RV¥3,
the function a — j.(vn(a),o"(vn(a))) is continuous in A by virtue of (21). Hence it

attains a minimum in A. O
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4. GRADIENT OF THE COST FUNCTIONAL—ADJOINT PROBLEM

To calculate the gradient of the penalized cost functional we can use the method
of Adjoint Problem. Let us denote

N+1 N+1

vh = Y ajpi(z2) + Y aj¥j(z),
j=1, ji=1
2N 41 2N 42

Vh2 = z ajpj(z2) + Z a;¥;(z2),
J=N+2 j=N+2

where ¢; and ¥; are cubic basis functions, the support of which consists of the
subintervals containing the node z3 = (j — 1)h or z3 = (j — N — 2)h, respectively,

vm(jh—h), 1<j<N+1,
a; =
vh2((J — N - 2)h) N+2<j<2N+1,

v (Jh—h), 1<F<N+1,
vho(( = N - 2)h),N+2 J<2N +2,

a= (al,az,...,a2N+1,a1,a2,...,a2N+2)
(cf. the proof of Theorem 3.1.).
Denoting the basis functions of the space Vi(vs) by {wr(a)}, r =1, 2, ..., d,

we may proceed as in Section 5.1 of [1] to arrive at Lemma 5.1 of [1] without any
formal change. Some changes will occur in Lemma 5.2 of [1], where the formula (71)

remains valid, but for the derivatives 2L Ba; and we get new expressions as follows.
Let j=1,2,..., N+ 1. Then
1
J(a,U
(3 ) - /%(l‘z)P(vm(%),zz)dIz
aj
0
2 (r)
1 Ba (a)
2] Hok( a)—k)):U

6'711

1
+/¢J(32)((au k)lz‘1~"hl(x2)) dx?]

0

1

€

H(~ det(o"(a) - x))ZUr( (o32(a) — &)

ﬂ(a)

%
R
N~
N

26012

2 (ohy(a) - 1) - 02 0t (0)) da
1
+ é/ (:cz)(det(a"(a) - "”z.:u,..(z,))_dz?'
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Forj=N+2,..,2N +1 we have

aJ(ngU) /‘PJ(-'L'2)P(—'UI|2(1:2) z3)dz,
1g by S 095 (a)
;};[ e H(o}i(a) k)r;Ur———aaj dz
/ 2@ (eh(@) = B, __,,...) "daa]
0
1 6011
= )H( det(c"(a x))ZU ( (ohy(a) — k)
0 -
6 Lad 4 (”11( )"k) 26 12 12(‘1)) dz
1
-2 / o3 @) (det(o™(@) — ), __, . ) das
0
(9J(a U)

/‘Il (z2)p(vh1 (22), z2)dz,

i=1

2 1 1
+ Z E / ‘I’J'(IZ)((U?:'(“) - k)lx,="m(’z))+dzz
0

1

1

P / () (det(o™(a) = ), _,,. (,.)) w2
0

fOl'j: 112v ?N+1’

3Jg; U) /\I/ (z2)P(—vn2(22), z2) dz,
0

1< l +
- E Z/‘I.’](1'2)((0',h,(a) - k)‘zl=—vh2(-'f'2)) d.’l)z
0

1
l -
-O/\Il (.’L’z)(det(ah(a) - x)lg,:—v,‘;(l‘z)) d132

forj=N+2, ...,2N +2.
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5. CONVERGENCE ANALYSIS

First we shall introduce an intermediate Penalized Optimal Design Problem (cf.
Section 6 of [1], (84))

(22) ve = arg min j¢ (v, o(v)).
v€Uaq

Proposition 5.1. There exists at least one solution of the problem (22) for any
positive parameter €.

The proof is based on the following lemma.

Lemma 5.1. The functions
v fi(v,o(v), i=1,2,3

are continuous in the subset US, C [C)(I)]2.

Proof follows from Proposition 2.1 in the same way as in the proof of Lemma
6.1 of [1]. a

Proof of Proposition 5.1. The set U,qg is compact in [C(1)(I)]? and the function-
als j(v), fi(v,o(v)) are continuous in the latter space by Lemma 5.1. Consequently,
a minimizer v, of je(v, o(v)) exists. ]

Theorem 5.1. Let £,q4 be non-empty, let {v.}, € — 0, be a sequence of solutions
of the problem (22), {o(v.)} the sequence of corresponding stress fields.
Then there exist a subsequence {v:} C {v.} and an element v* € Uaq such that

ve — v* in [CO(D))?,
a(ve) — a(v") in S(2s),

where v* is a solution of the Optimal Design Problem (4) and & denote the extensions
of the stress fields by zero.

Proof is the same as that of Theorem 6.1 in [1}. 0

Proposition 5.2. Let {v,},h — 0, be a sequence of vy € U, such that

(23) v — v in [C(D))2.
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Then
(24) " (vy) — &(v) in S(),

where 6" denote the extensions of o" by zero.

First of all we shall establish an auxiliary lemma.
Lemma 5.2. Let the assumptions of Proposition 5.2 be fulfilled. Then

""(v")lc,.. — u(v)|Gm (weakly) in [H'(G)]? ash — 0

8 .
holds for any m > — (see Lemma 2.1 for the definition of Gm)-
a

Proof. Let us denote Q, = Q(vs), 2 = Q(v) and define the extension 4y of
tp = up(vn), symmetric with respect to both I'(vp1) and ['(va2) in the z;-direction.
Then 1y, is defined in the domain

=0 (i)

and since the derivatives v}, and v}, are bounded, we obtain
(25) [lenllio, SC Yh< hg

(cf. the proof of Lemma 2.1 in [1]). Then a subsequence of {1} exists (and we shall
denote it by the same symbol), such that

(26) it — @ (weakly) in [H'(Q)]?

with some @ € [H'(R24)]?. Since @y € V(—vz — §,v1 + $), we obtain @ € V(—vy —
o o
el v + ?)

Let any w € V(v) be given. We construct an extension w € V(8) by means
of (possibly repeated) extensions symmetric with respect to I'(vy) and I'(vy). There
exists a sequence {wy, }, 7 — 0, such that w, € [C*®(Q5)]?, w, = 0 in a neighbourhood
of the z,-axis and

w, — w in [H'(2)]%.

Let mhw, be the linear Lagrange interpolate of w, over the triangulation Ty(vs),
mhwy € Va(va). Let us define the rectangle Q5 = (—6,6) x (—3,3). There exists an
extension Ew, € [H%(2})]? of the function w,. We shall prove that

(27) lmnwy — wylli0 < Chl|Ewyl2,0;
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holds with some constant C' independent of both h and v,. Indeed, for any curved
triangle K adjacent to I'(vs;), ¢ = 1,2, we define a “twice enlarged” triangle K =
Aaja;ai. For the remaining triangles let K=K.

Let 75 denote the linear interpolation on K with the nodes a;, aj, ap. Making use
of the affine equivalence and the regularity of the family {7x(vi)}, h — 0, v, € UL,
(which can be verified by a direct calculation), we arrive at the following estimate

|2 Ew, — Ew’l“:j’ < (.'hlE'w,,Iz’,;,,

where C' is independent of h and vy,. Since 7 Ew = m,w holds on any K, using also
the standard esimate on the remaining straight triangles, we may write

llwn — thn“'f),n,. = Z [y — thn”?,l( < Z | Ewy — ”ZEWH?'R
K€eTh(vw) K€Tn(vn)
< C*h° Z |Eu’nl-§‘k < (_.,'hZHEw,,”%.n;
KeTh(vn)

and (27) follows. We may write
(28) a(vh y Uh, 7rhwn) = }'(UILQ 7rhw1))~
\Let. us pass to the limit with h — 0. We have

|a(vn : un, Thwy) — a(v; @, wy)| < la(va; un, Thw, — wy)|
+ |a(va; up, wy) — a(v; up, wy)| + |a(v; @ — @, wy)| = Ky + K2+ K3;
K < Ch”“h“l,ﬂh”7rhwn - wn”l,ﬂh < C3("5("h“Ew"”2'Q; -0
by virtue of (18) and (27);
Ks < / |eijmieij (wn)emi(wy)] dz < Callunlh o, llwylh,a@.0) — 0,
A€ S2)
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making use of (25) and
(29) meas A(2p,Q) — 0;

K3 — 0 follows from the weak convergence (26).
Conseguently, we have

(30) a(vn; up, Thwy) — a(v; @, wy).
Next we derive that
(31) F(vn; mawy) — F(v; wy).

Indeed, we may write (denoting 'y, = I'(vp2), I' = ['(v2))
|F(vn; mhwy) — F(v; wy)| < l/ F - mhw, dz ——/ F - w, d:l:l
Qp o

H
+ ./ (H - 12)(7"hwnllrh - w'll|r + v;lgﬂ'hwn:"rh - Ulzwrﬂ'r) dz'zl
0

=A+ B,

Ag[/ F~(7rhw,,—w,,)dx'+|/ F~w,,d1:—/F~w,,dxl
Qn Qp aQ

< IFlloullmnin — wylloq, + / IF - wy) dz — 0,
A(S,9)

using (27) and (29). Furthermore, we have

1 1
B < /lvrhw,,lln — wy1 || dza + / |v;,27rhw,,-_>|n — vywya||dzy = By + By,
0 0

1 1
(32) B: < /Iﬂhwn1|n — wy|p, | dza +/lwy,1|n — wy |l d22 = By + Bz,
0 0

(33) Bll < ”7rhwnl - wr)l”O,l‘h < ("”thnl - wr;l”l,ﬂh -0

by virtue of Lemma 1.1, Lemma 3.2 and (27);

(34) Bys < /
ATy, M)

where Q(T,, ') denotes the set “between” 'y and I'. Since

6“"] 1
f)l‘ 1

dz < (meas Q(T'x, 1) 5w |l1,05,

meas Q(I',,T) — 0,
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B3 tends to zero. Combining (32), (33) and (34), we arrive at
(35) B, — 0.

Next we have

1 1
B> < /|(sz — v)mhwn2|p, |de2 + / lvp(Thwnz|p, — wnzlp, )l dza
0 0

.
+ / |”,2(“"i2|rh — wya|p)|dza = By + Baz + Bas;
0

Ba1 < (|[vhe = valle(nllmawnzllo,rs < Cllvn = vllcrnllmnwyzllia, — 0
by virtue of Lemma 1.1, Lemma 3.2 and since

Imawnall.an < llwn2lli 0 + Chl| Ewyallan; < C VA < ho;

Baz < Ci||mhwnz — wyallo,r, < CiCl|Thwn2 — wyzlli,a, — 0

(cf. (33)),
Bys < Ci(meas (T, T)) ?|lwyzlli,0, — 0

(cf. (34)).

Combining the last three results, we arrive at
By — 0.
Altogether, (31) is verified. Consequently, from (28), (30) and (31) we obtain
a(v; @, wy) = F(v; wy).
Passing to the limit with 7 — 0, we arrive at
a(v; @,w) = F(v; w).
Since v € de, we can use Lemma 1.2 to obtain that

(36) a

o = uv)

follows from the uniqueness of u(v).
Since G C Q4 C Qg holds for all h < ho(m), (26) and (36) imply the assertion
of our Lemma. 0
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Proof of Proposition 5.2. Let us denote ¢ = o(v). From Lemma 5.2 and the
definition (19) of o” it follows that

(37) a"| — 0’|G (weakly) in S(G)n) VYm > §—, as h — 0.
m «

Gm
Then we show that
(38) " — & (weakly) in S(Qs),

using (37) and the boundedness of all ¢" in (), which follows from (18), (19),
(for detail, see the proof of (102) in [1]).
Making use of the inverse relation

e(up) = bo™,
we may write
(39) (&",b&")m = a(vn; un,up) = F(vp; up).
Next we can show that
(40) Flvn; up) = F(v; u).

The proof is quite analogous to that of (8). It is sufficient to replace u, by un, I',
by I', and to use (18), (25) and (26).
Since
F(v;u) =a(v; u,u) = (&'b‘}>116 ,

we are led to the limit of the energy norms
(41) (&",b&")nﬁ — (5. b5)q,

The equivalence of the energy norm with the standard norm of S(€2s), the weak
convergence of (38) and (41) yield that

“(?h - (.7“()_96 —0as h—0.

Proposition 5.3. Let the assumptions of Proposition 5.2 be satisfied. Then

Je(vn, o™ (vr)) = je(v, a(v)), as h — 0.

Proof follows from Proposition 5.2 if we argue as in the proof of Lemima 6.1
of [1]. O
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Theorem 5.2. Let {v}}, h — 0, be a sequence of solutions of the Approximate
Optimal Design Problem (20) for a fixed € > 0.
Then there exist a subsequence {v;} C {v}} and an element v, such that

(42) v — ve in [COU(D)]?,

7 (v5) — 3(ve) in S(Rs)

as h — 0 and v, is a solution of the Penalized Optimal Design Problem (22).

Before proving the above Theorem we shall establish an important

Lemma 5.3. Given any v € U; , 1 =1, 2, and any sequence {h,}5%,, h, =
—)\—}:, hn — 0, there exist a subsequence {hi}{2 g , a sequence {vp,} and a positive
constant ho(v) such that

vn, € UMY Yhy < ho(v),

vh, — v in CY(I) as k — co.

Proof. Let us show the detailed proof for i = 2. The case i = 1 is analogous
(cf. also [3], proof of Lemma 11).
1° Let us extend v(zg) for z2 > | in an antisymmetric way, i.e., let s = 5 — 1,
9(s) = v(1 + s) for s € [—1,0] and (s) = —(—s) for s € (0, 1].
Define vy(s) = 9((1=A)s), s € I = [-(1=A)"!,(1=X)~1], where A € (0, 1). Denote
d*u

also u() = e i =1, 2, in what follows.
s

Obviously, we have

(43) vy € CONI), 0K va(s) Sy forse[—(1=X)"10],
(44) loa®(s)| < (1 =A)iC;, i=1,2foraa. s€ly,
(45) loa — 3] < C1A,

(46) [vh — #| < (C1 + Ca)A  for s € [-1,0].

2° We apply the regularization Ry as follows:

Raf(s) = (eH)™ [ wr(s -, 1) d,
where H = const > 0,
22
exp ———— if |z| < H,
wl(z‘H):{ b ifle
0 if |z| > H,
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x=H"! / wi(z, H) dz.

|z|l<H
Thus we obtain
(47) Ryvy € C([-1,0]), 0< Ruua(s) <7,
(48) [(Revx)®(s)| < Ci(1 =AY, i=1,2forse[-1,0]

and H < 125, using (43), (44) and the odd character of v,.
Moreover,

(49) Ryvy — vy in C*([~1,0]) as H — 0.
In fact, for # = 0,1 and any p > 1 we may write

IRe — va®lle=1,0) < CollREAD — va@llwir(-1,0)

<
< Col|[Ruva — vallwar (1,01,

using the continuous embedding
wir(J)c, C(J), J=[-1,0]

and
va € COA(IL) € W2P(IY).

The last norm in W2P(J) tends to zero as H — 0.
3° Let us denote

= 5w(h, (Ruava)")

(50) 02

where w(h, f) is the modulus of continuity of the function f. Note that

(51) pu—0ash—0for any fixed A, H < A(1 —A)"'.

Let us introduce the cubic spline interpolation Sp f of the function f € C%(I) on
the mesh {s; = —jh, j = 0,1,2,..., N} with (Sp f)” = f” at the endpoints and
define

vp = (1 — p) Sp(Ryv))
for
(52) h < C1(6Cy)~ .
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We shall employ the following error estimates (see [2], Chapt. II, Th. 9 and Th. 10)
(53) 1(Sp £ = £llca < Swih, £7),
(54) Sp £ = fONeay < 12- 27202 ey, i=0,1.
Then we may write, making use of (50), (48), (52) and (53)
llvi = (1= w)(Rava)"lleay < (1= p)5w(h, (Ruvr)") < Cop,

(55) [v¥] < (1 = p)|(Ruvx)"| + Capr < Co(1 = N1 = p) + Cop < Cs;

“Uh — (L= w)(Rava)lle) < 6h(1 = wll(Ruva)"llewy < 6hCx,
(56) [vhl < (1= w)|(Reva)'| +6hC2 < (1= p)(1 = N)Cy + CiA < C,

which hold for all s € I, provided u < 1, i.e., if h < ho(X, H).
At the nodal points (for s = jh) we then have

(57) 0<on=(1=p)Rava <(I—p)y <y
on the basis of (47).
Since vy is an odd function, we have
(58) va(0) = (1 — )Ryvr(0) = 0.
From (55)—(58) we obtain that v, € U( it h < ho(A, H) and if (52) is satisfied.
Let us estimate the distance between v, and v as follows
(59) llon = vl < [I(1 = p) Sp(Rava) — (1 — p)Revall + (1 — p)Rava — Ruvall
+ |1RrvA — vall + [Joa — o]
(1 = w)3R*(|(Ravr)” I + pll Rirvall + [|Ravx — vall + CiA
3h2(1 — p)(1 = A)?Cq + py + ||Ruva — va| + C1 A,
where all the norms are those of C(I) and (54), (45), (48) has been used.
Given any positive integer k, we can choose fixed Ay and Hj as follows
A = (4k(~71)“, Hi < Ar and such that (cf. (49))
|Ra, vak — vaell < (4k)7!

<
<

If we choose h such that

(60) h < (12C2k)~% and w(h, (Ra, vax)") < Ca(207k)™!
(cf. (51)), then (59) yields the estimate

llvn = oIl <

?*I

From h, — 0 we deduce that hy = h,, exist, whlch satisfy (52) and (60). Conse-
quently, we obtain

1
on, = vllery € = k — oco.

k
Since the above argument can be repeated for the difference (vj — v') with similar

estimates, we arrive at the convergence in (''([0, 1]). O
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Proof of Theorem 5.2. Since U%; C UY, for any h < hg by Lemma 3.2 and the
set U2, is compact in [C?(1)]?, there exists a subsequence {v£} such that (42) holds
with some ve € U2,. Using Lemma 3.1, we deduce that v, € U,q.

Let us consider an arbitrary v € Uaq. By Lemma 5.3, there exists a subsequence
of {h} (and we shall denote it by the same symbol) such that

vj, € Uahd, v, — v in [C)())? as h— 0.

By definition, we may write

de(vs, o™ (v5)) < Je vy, 0™ (v;)).

Let us pass to the limit with i — 0 and apply Proposition 5.3 to both sides of the
inequality. Thus we obtain

Je(ve, U(UE)) < je(vv U(v))'

Consequently, v, 1s a solution of the problem (22). The convergence of stress fields
follows from Proposition 5.2. a
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Souhrn

MINIMALIZACE VAHY PRUZNYCH TELES, KTERA NEVZDORUJ{
VETSIM TAHOVYM NAPETIM
I1. OBLASTI SE DVEMA ZAKRIVENYMI STRANAMI

IvAN HLAVACEK, MIcHAL KRIZEK

Vysledky ¢lanku [1] jsou rozsifeny na piipad télesa tvaru ,ktivocarého lichobéznika®
se dvéma zakiivenymi proménnymi stranami. Leva ¢ast télesa je zatizena hydrostatickym
tlakem. Hranice télesa je aproximovana hermitovymi kubickymi splajnovymi funkcemi. Pro
aproximaci posunuti jsou pouzity linearni konet¢né prvky. Dokazuje se existence optimalni
hranice a konvergence pftibliznych feseni, definovanych na zikladé metody penalizace.
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