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Summary. In the paper the comparison method is used to prove the convergence of
the Picard iterations, the Seidel iterations, as well as some modifications of these methods
applied to approximate solution of systems of differential algebraic equations. The both
linear and nonlinear comparison equations are employed.
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1. In the paper [2] it was shown that the solution of the system

(1) g'(t) = f(t,z(t),y(t)),  =z(0)=0,

(2) y(t) = g(t, z(2), (1))

can be found by the Picard iterations

®) 2ra(®) = [ F(o,22(0), el

(4) Ye+1(t) = g(t, zr(t), ye(t)), k=0,1,...,

with o and yo arbitrarily chosen, if the functions f and g satisfy the Lipschitz
condition with respect to the last two variables and the Lipschitz constant of ¢ with
respect to y is less than one.

The aim of the present paper is to present another approach to the problem of
solving the system mentioned. We will use the well known comparison method to
prove the convergence of the Picard iterations, the Seidel iterations, as well as some

modified Picard iterations.
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There is a great number of papers devoted to the comparison method and its
relation to the Banach contraction principle. The reader interested in the subject
can consult the papers [1], [3], [4-8], [10] and the references mentioned there.

2. Assume that B; and B; are given Banach spaces with norms || - ||; and || - ||2
(further on we will drop the indexes provided it is clear which one is meant). Let
f€C(JxByxBy,By)and g € C(J x By x B, B), J = [0,T) (here C(X,Y) means
the space of all continuous functions from the spaces X to V).

We consider the system

1
(5) z(t) :/ f(s,z(s), y(s))ds,
0
(6) y(t) = g(t,z(1),y(t)), t€J,
which is equivalent to the system (1)-(2) (observe that a simple change of the vari-
able reduces the general initial condition to that considered here). We will use the

following
Assumption H. There are functions w, 2 € C(J x R}, R;), such that:

a) they are nondecreasing with respect to the last two variables,
b) w(t,0,0) =0, (,0,0) =0, t € J,
c)

(7) f(t,z,y) - f(t,2.9)|

I s Q(tv ”Z - i“) “y - g“)v
(8) llg(t,z,y) — g(t, 2, 9)|| <

w(t, |lz — 2}, lly - 9ll)

foranyt€ J, z,£€ By and y, § € By,

d) for every p,¢ € C(J,Ry) there exists a maximal solution (u*,v"), u* €
C(J.Ry), v* € C(J, Ry), of the comparison system

t
©) u(t) = [0, u(s), o(s))ds + 100,
(10) o(t) =w(t, u(t),v(t)) +q(t), e
e) ut(t) = v*(t) = 0 is the only upper semicontinuous solution of the system

(9)-(10) when p(t) =q(t)=0forte J.
Now, for given o € C(J, By) and yo € C(J, B2) we take

. _ t . | s |
) o) = || [ 1o, 20(6),wo(s))ds - zo(o)|
(12) qO(t) = ||!I(t»to(t):yo(t)) - yD(t)“
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and define the sequences {ut}, {ve}:

t
(13) uk41(t) = / Q(s, uk(s), vi(s))ds,
0
(14) ve(t) = ot w(), (), k=01,
with (uo,vg) being the solution of the system (9)-(10) with p and g replaced by po
and go. Under Assumption H one can easily show that the sequences {ux}, {vr} are

nonincreasing and converge almost uniformly (uniformly on any compact subset of
J) to zero. Further, by a standard argument (see [4-7], [10]) one finds the estimates

(15) lzei(t) = zr(Ol] < we(t),
(16) Nye+1(®) —ye @)l S ve(t), teJd, kl1=0,1,....

Now we can formulate the following

Theorem 1. Under Assumption H there exists a unique solution (z*,y*) of the

system (1)—(2). The solution can be found by the Picard successive approximation
method (3)—(4). Moreover, the following error estimates

(17) llz"(t) — ze (Ol < u(t),
(18) lly" () —we (@Il S ve(t), teJ, k=0.1,...,
hold.

Proof. The existence of a solution and the error estimate follow from (15)-(16).
The uniquenees of the solution is a consequence of the fact that under Assumption
H the only non negative and continuous solution of the system of inequalities

(19) u(t) S/ Q(s, u(s), v(s))ds,
0
(20) v(t) < w(t,u(t),v(t)), teJ,
isu(t)=0and v(t) =0fort e J. ]

3. Let us now consider a very important special case when the functions Q and w
are both linear with respect to the last two variables, i.e. the case

(21) Q(t,u,v) = a(t)u + b(t)v, w(t,u,v) = c(t)u + d(t)v

for some a,b,c,d € C(J, Ry). In this case the system (9)-(10) assumes the form
(22) ()= [ la(e)uts) + b(s)u(e)lds + o0,

(23) v(t) = c(t)u(t) + d(t)v(t) + q(t).
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It is easy to see that now Assumption H holds if d(t) < 1 for ¢t € J. Indeed, one
can solve the equation (23) with respect to v and then v can be eliminated from (22).
As a result one gets a linear integral equation which has properties good enough to
guarantee that H holds. We can establish the following generalization of the result
of the paper [2].

Theorem 2. If the functions f and g satisfy the Lipschitz conditions with respect
to the last two variables with the coefficients a, b, ¢, d, respectively, and d(t) < 1 for
t € J, then there is a unique solution of the system (1)—(2) and it can be found by
the Picard method (3)—(4).

However, there are many other special cases in which the functions Q and w are
partially linear, for instance: Q has the general form and w(t, u, v) = ¢(t)u + d(t)v,

Qt, u,v) = Q(t, u) + b(t)v, w(t,u,v) = wi(t,u) + d(t)v,

and so on. It is not our intent to formulate further consequences of the main result
of Theorem 1. Nonetheless we want to note that the solution (u*,v*) appearing in
condition d) of Assumption H can be taken as a solution of the system obtained from
the system (9)-(10) by replacing the symbols of equality by symbols of inequality

“>”
zZ .

4. Let us now consider the Seidel iterations for finding the solution of the system

(1)-(2)
(24) Frai(t) = / £ (s e(s), 5 (5))ds,
(25) Tean(0) = 96 Fenn(0),5:(0), k=0,1,...,

with £y = z¢ and g, = yo.
It is easy to see that these iterations are nothing else than the Picard iterations
for the system

(26) ac(t):/O f(s,z(s),y(s))ds,
27) u(t) = g1, /0 £(s2(s), u(s))ds, u(1)).

which is obviously equivalent to the system (1)-(2).
Under Assumption H we now have the comparison system

(28) u(t) = [ 0s,u(s),o(s))ds + p(e),

0
29 v(t) = wlt, Q(s, u(s),v(s))ds, )
(29) (0 = w(t, [ 2o, u(s), () 10)) + )
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Let (i, 90) be a solution of the system (9)-(10) with p and ¢ replaced by

(30) Po(t) = po(t),

t
(31) in(®) = e, [ 76612005 w0(s)ds, 0(0) - (0],
respectively. Define sequences {ix} and {v;} :
t

(32) dk41(t) = / Q(s, Gk (s), ok(s))ds

0
(33) e41(t) = w(t, Ge41(t), 9e(2)), k=0,1,....
It is clear that these sequences converge to zero almost uniformly in J, moreover we
have
(34) lz*(t) — 2e (DIl < ﬁk(t)
(35) ly™ () =gl < 0 k=0,1,....

Observe that (o, 7o) can be taken as a solution of the system (28)—(29) to get better
error estimates. It is worth noticing that starting with initial approximations which
give ug = 1 and vg = o we will get error sequences {ux}, {ve}, {@}, {0r} satisfying
the relations

(36) i < Uk, Uk < Vg, k=0,1,....

To see better the difference in the rate of convergence of these sequences we con-
sider the simple case when both Q and w are linear, namely

(37) Q(t, u,v) = au + by, w(t,u,v)=cu+dv, d<1,

with a, b, ¢, d real constants. We also assume that the interval J = [0, T is compact.
Using the weighted norm

(38) llullx = sup[||u(t)||exp(-At), t€J], A>0,
we easily find

A~ (aljurllx + bllvelln),
clluella + dllvellx,  k=0,1,....

(39) luk41]la
(40) [lvk41lla

N N

The rate of convergence of the sequences {||u|lx}, {||vellr} is determined by the
spectral radius g of the matrix (see [9])

a, b
(41) ( ' d)’ ad=X2""e, ¥ =2A71p

¢,
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(42) o=2"1 <a' +d+ \/ (a' +d)* - 4(a’d - b’c)).

It is clear that g is smaller than one if d < 1 and X is sufficiently large. On the
other hand, for the sequences {||@t||x}, {||/5k]lx} we get a similar relation with a
matrix of the form

a 3
(43) (a’c, be+ d) ’

It is easy to check that the spectral radius @ of this matrix is again less than one
if d < 1 and X is sufficiently large. Moreover, ¢ < 1 implies § < ¢ which means
that the rate of convergence of the Seidel iterations is higher than that of the Picard
iterations. Observe that one can arrive at the same conclusion by the corresponding
metrization of the space C(J, By) x C(J, B2) (see [2], [8]).

In a similar way one can consider another form of the Seidel iterations

(44) U1 (t) = 9(t, Ze (), e (1)),

t
(45) Fe()) =/ £(5,5x(s), osr(s))ds,  k=0,1,....
0
5. Finally, we consider the iterations

(46) Uk (t) = g(t, Ze (), Y (1)),

t
(47) Bi®) = [ S, Bun(o) Ben(o)ds, k=01,
0
with Zo = zo and §o = yo . Now we define sequences {tr}, {Uk} in the following way:
(48) Ur41(t) = w(t, ue(t), ve(t)),

Uk41 is the maximal solution of the equation

(49) u(t):/0 Q(s, u(s),w(s, U(s), ve(s)))ds

and Uy = ug, Uy = vg. We assume that py appearing in the definition is strictly
positive. Using the results concerning integral inequalities we find that the sequences
{tur}, {9} converge almost uniformly and monotonically to zero.

From Theorem 1 we have

(50) IZo(t) — =" (Ol < Uo(t),  [1Z0(t) — y" ()] < To(2)-
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On the other hand, from the definition of zx, yi, z*, y* and from the condition a)
of Assumption H we find

1Fe+1(8) — y* (O < w(t, [|Ze(t) — =" (O], 1z (t) — y™ @)I]),
IZk+1(2) — =" @] < /0 Q(s, IZe+1(s) — 2" ()], NBr+1(5) — 9™ (s)l)ds

This together with mathematical induction and results on integral inequalities implies
the estimates

(51) IZe() — =" (O < Te(®),  NlBe(®) — y" (Ol < Bk(?)

forall k=0, 1,...and ¢t € J. In this way the convergence of the sequence {Z, i}
to the solution (z*,y*) is established.

Observe that the iterations discussed in this section can be employed for numerical
approximate solution of the system (1) —(2). In fact, from (47) it is seen that for
given T, and yi the next approximation Y41 is found from (46) and then ZTp4, is
calculated as the solution of the initial problem

(52) #'(t) = f(t,z(1), Gea1 (1), 2(0) =0;

to this end any numerical method can be employed.

6. We conclude the paper with the following comments: the results mentioned
above can be easily extended to the general Volterra systems of the form

(53) 2'(t) = f(z,y)(t),  =z(0)=0,
(54) y(t) = g(z, y)(t)

with operators f,g € C(J x C(J, B) x C(J, B), B) having the Volterra property and
compared with the given functions Q and w by the relations

(55) If(2, 9)(®) — f(2,9) (O] < QL llz = 2[}e, ly — Flle),

(56) llg(z, v)(t) — 9(2, HOI < w(t, llz = e, llv — glle),

where ||z||¢ = sup[||z(s)|],s € [0,¢]]. Other comparison operators can be considered
and the corresponding convergence results can be established.

The case when the operators f and g are not of the Volterra type can be also
treated by the comparison method. However, in this case the existence of a solu-
tion of the comparison system requires rather strong conditions on the comparison
operators. The discussion of this problem is left to another paper.

263



References

[1] E. Bohl: Monotonie: Losbarkeit und Numerik bei Operatoren-gleichungen, Springer
Verlag, Berlin, 1974.

[2] I. Bremer, K.R. Schneider: A remark on solving large systems of equations in function
spaces, Aplikace Matematiky 35 (1990), 494-498.

[3] L. Kantorovich: The method of successive approximations for functional eqations, Acta
Math. 71 (1939), 63-97.

[4] M. Kwapisz: On the approximate solutions of an abstract equation, Ann. Polon. Math.
19 (1967), 47-60.

[5] M. Kwapisz: On the convergence of approximate iterations for an abstract equation,
Ann. Polon. Math. 22 (1969), 73-87.

[6] M. Kwapisz: A comparison theorem on the existence and uniqueness of the solution of an
integral-functional equation, VII Internationale Konferenz iber nichtlineare Schwingun-
gen, Band 1,1, Abhandlungen der AdW, Akademie-Verlag, Berlin, 1977, pp. 481-487.

[7] M. Kwapisz: Some remarks on abstract form of iterative methods in functional equation
theory, Commentationes Mathematicae 24 (1984), 281-294.

[8] M. Kwapisz: Some remarks on nonlinear A-contractions, Analele Stiintifice Ale Univer-
sitatii “Al. 1. Cuza” - lasi, 32, s. | a, Mathematici 2 (1986), 17-22.

[9] J.M. Ortega , W.C. Rheinboldt: Iterative solutions of nonlinear equations in several
variables, Academic Press, New York, 1970.

[10] T. Wazewski: Sur un procédé de prouver la convergence des approximations successives
sans utilisation des séries de comparison, Bull. Acad. Sci., sér. sci. math. astr. et phys.
8,1 (1960), 45-52.

Author’s address: Prof. Marian Kwapisz, Uniwersytet Gdarnski, Instytut Matematyki,
ul. Wita Stwosza 57, 80-952 Gdansk, Poland.

264



		webmaster@dml.cz
	2020-07-02T07:59:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




