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Summary. The MINQUE of the linear function f’# of the unknown variance-components
parameter ¥ in mixed linear model under linear restrictions of the type RY = c is defined
and derived. As an illustration of this estimator the example of the one-way classification
model with the restrictions ¥, = k¥, where k > 0, is given.
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1. QUADRATIC ESTIMATORS OF LINEAR FUNCTION OF ¢

The mixed linear model is given as follows:
(1) Y=Xp+¢

where the mean of the vector £ is given by E(¢) = 0 and the covariance matrix is
P

V(¥) = Y ¥;Vi. The matrices X and V;,i =1, ..., p are known of dimensions n x k
i=1

and symmetric n x n, respectively, and the vector parameters § and 9 = (91,...,7,)
are unknown, 3 € R¥, 9 € © C RP, O contains an open set. The estimation problem
of f'Y has been considered by many authores. The entire theory is found e.g. in Rao,
Kleffe (1988), where the locally optimal unbiased and invariant quadratic estimators
of f'9 are given and the MINQUE theory based by Rao in 1971 is described.

The usual way of estimating the variance components is to consider a quadratic
or linear-quadratic estimator with the additional property of invariance, unbiased-
ness, or invariance and unbiasedness. The class of estimators considered is @ =
{Y'AY: A = A'}. The class of quadratic invariant estimators is given as Q =
{Y'AY = (Y = Xa)'A(Y — Xa) forall « € RF} = {Y'AY: A= A’ AX = 0}. The
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class of quadratic unbiased invariant estimators of the function f'4 is denoted by
Qu ={Y'AY: A= A", AX =0,tr AV; = f;,;i = 1,...,p}. Denote the prior value
of the chosen vector parameter by ¥° and the corresponding matrix by V (9°) = Vj.
For convenience let us suppose that Vp is p.d.. In 1970 and 1971 Rao investigated the
MINQUE as the invariant unbiased estimator Y'AY € Q;y of f'9 which minimizes
the expression tr AV (9°) AV (9°) for prior ¥° chosen from the parametric space. It is
clear that if the vector Y is normally distributed then the variance of the quadratic
form Y'AY € Qru is 2tr AV (9) AV (9). Consequently, the minimization of this vari-
ance locally at 9° under normality of the vector Y is the same as the minimization
of the given norm ||AH€,(',°) = tr AV(9°) AV (9°). The MINQUE of f'9 is then given
as f'9 = 3 Aigi, where X is the solution of the consistent matrix equation Q'QA = f
for @'Q with elements

(2) {Q'Q})ij = tr(MVoM)YVi(MVoM)*V;,
and the vector ¢ = (q1,...,¢p)" equals
3) g=[Y'(MVoM)*Vi(MVoM)tY,....Y' (MVoM)*V,(MVoM)tYY,

where the matrix M =1 — X Xt.

2. LINEAR MODEL IN THE VECTOR PARAMETER 9

Following the same technique as used in Seely (1970) and Verdooren (1979) we
get: The vector V0—1/2Y has the identity covariance matrix at the value 9°. Then the
original model transformed by the matrix VO_I/2 is VO—I/ZY = VO_I/ZXﬂ + Vo_l/ze.
The maximal invariant in the model is then the vector Z = M, Vo-l/zY, where the
matrix My of the form My = I — V; "2 X(X'V; ' X)~ X'V /2 is the projection
matrix onto the orthogonal complement of the column space of the matrix VO_I/ZX‘

Consider the vector vec MQVO—I/ZYY’V0—1/2M0. Its expectation is

Eg(vec MoVy 2y Y VT 2 My)
= (vec MoV PV P Mo, . . vee MV 2V V2 M)
For simplification we use the notation
(4) Ey(vec ZZ") = QV.

Let us consider the linear function of the vector vec ZZ' of the form L' vec ZZ'
where L is the n? dimensional vector. It can be shown that L' vec ZZ' € Qy for all
L e RY (in further considerations the invariance of the estimator is used in this
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sense), and moreover if f'¥ is the parametric function then L' vec ZZ' € Qu for f'9
if and only if Q'L = f.

The covariance matrix of the vector vec ZZ' is in general dependent on the 4th
moments of the vector Y and is denoted by X(¥). The ordinary least squares esti-
mator of the linear function f'd with f € R(Q'Q) based on the vector vec ZZ' is
the MINQUE of f'9, since f'd = F Q@) Q' vecZZ' =3 Aiqi, where the vector ¢
is given by (3) and the vector A is the solution of the system Q'QA = f.

Let us have another look at the MINQUE. Working within this linear model we
know from the linear theory that the BLUE (best linear unbiased estimator, here
the term linear means a linear function of the vector vec ZZ') depends only on the
variance matrix X(J) of the vector vec ZZ'. We shall show that the ordinary least
squares estimator of the linear function f'd with f € R(Q'Q) is the BLUE if the
vector vec ZZ' is transformed from a normally distributed vector Y with a variance
matrix V. It means that the variance of such an estimator is minimal. Since this
estimator belongs to the class @y (as we have shown) and has the minimal variance
locally at 9° for a normally distributed vector Y, it fulfils all conditions required
by the MINQUE. Below we will give the definition of the MINQUE based on the
properties mentioned.

Lemma 1. Let us consider the model Eg(vec ZZ') = QV, let a vector Y be
normally distributed and varY = V,. Then the ordinary least squares estimator of
a linear function f'9 with f € R(Q'Q) is the BLUE.

Proof. The general form of the variance matrix £(J) = varg(vec ZZ') is
known. Let ® and ¥ denote the matrices of the 3rd and 4th moments of the vector
Y, respectively. Then the variance matrix at 9° is

B(9°) = vargo(vec ZZ') = vargo(vec MoVy Y YV 1 ?)
= vargo [(MoVy ? ® MoVy /%) vec YY'}
= (MoV ' 1? @ MoV *) vargo (vee YY) (MoVy /% @ MoVy ' /?Y.
Let F,, be the unique matrix such that F,, vec A = vec A’ for all n x n matrices A,

see Rao, Kleffe (1988). Note that for symmetric matrices A we have (I+Fnn) vec A =
2 vec A. Hence the covariance matrix of the vector vecYY' = Y @ Y at 9° is

vargo(vec YY') = W — vec Vo(vee Vo) + (XB ®@ @' )(I + Fpn) + (I + Fan)(F' X' @ ®)
+ ([ + an)(XﬂBlX’ ® VO)(] + an)-

In particular, for a normal vector Y we have
vargo(vec YY') = (I + Fpn)(Vo ® Vo) + (I + Fn)(XBB' X' @ Vo)(I + Fyp).
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From the theory of linear models, see Zyskind (1967), it is known that the ordinary
least squares estimator of f'9 coincides with the BLUE at 9° iff R(2(¥°)Q) C R(Q).
We have

S(0)Q = (MoVy /% @ MoV /%) varge(vec YY) (Mo Vg % @ Moy %) Q
- (MOVO—I/2®MOVO—1/2)
X [(1 + Fan)(Vo ® Vo) + (I + Fan)(XBB' X' ® Vo)(I + Fpn)]
x (M0V0_1/2® MOVO_I/Z)I
x (vec MoVy 2Viv P My, . . vee MoV 2V, Vi Mo).

The second term in the sum vanishes because of the orthogonality of the matrices X
and Vo_l/zMo. Further,

£(0°)Q = (MoVy /* @ MoV '*)(I + Fan)
x (vee Vo 2 Mo Vg PV 2 MoV 2, vee Vi 2 Mo Vv, v Mo vy 1)
= 2MoVy 2 @ MoV %)
x (vee Vo 2 MoV PPViV MoV 12, L vee Vi MoV Y20, Vg P M V) 1)
= 2(vec MoV PViVy M, . . vee MoVy Y2V, V2 My)
=2Q.

Hence R(E(¥°)Q) = R(Q) and Zyskind’s condition is fulfilled which means that the
ordinary least squares estimator coincides with the BLUE at 9°. a

Definition 1. Let us consider the model Ey(vec ZZ') = QU. The MINQUE of
f'9 is the ordinary least squares estimator of the estimable function f'9.

Remark 1. We note that in case of a singular V we can use the transformation
Vi 2y where V;t'/? is the matrix for which (V;F'/2)y V"% = Vit with Vgt the
Moore-Penrose inverse of the matrix V. Further, we can express the projection
matrix onto the orthogonal complement of the column space of the matrix V0+1/2X
as

Mo = VP AoVt 2y — v P X (X X)X (Ve

All results which are valid for a regular matrix V; are also valid if Vj is singular.
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3. ESTIMATION IN MODEL WITH RESTRICTIONS

In this section we start to investigate the estimation of a linear function f'¥J in
the model with linear restrictions on the parameter ¥ of the form R = ¢, where the
matrix R and the vector ¢ are given.

Lemma 2. The linear function f'Y is unbiasedly invariantly estimable in the
linearized model (vec ZZ',Q¥, X(9)) under restrictions RY = c iff f € R(Q', R').

For the proof see Rao, Mitra (1971), Chap. 7.

Lemma 3. Let the vector f satisfy f € R(Q', R'). Let the vector Y be normally
distributed. The locally best linear unbiased invariant estimator of f'd at 9° in
the model (vec ZZ',Q9,%(9)) under RY = ¢ coincides with the locally best linear
unbiased invariant estimator at ¥° in model (vec ZZ',Q9,I) under RY = ¢ (which
means the ordinary least squares estimator).

Proof. The condition f € R(Q’, R') implies the existence of vectors L, M for
which f = Q'L + R'M. The vector L satisfies L € R™ and therefore there exist
vectors u, k € ker Q’ such that L = Qu+ k. The unbiased invariant estimator of f'¢
is of the form f’z9 = L'vecZZ' + M'c. Considering the model (vec ZZ', @9, X())
the variance of f’19 is L'S(J)L. From £(¥°)Q = 2Q it follows that vargo f’19
L'S(WO)L = 2¢'Q'Qu + k'S(9%)k > 24'Q'Qu, which means that the vector L is
to be taken from R(Q). In that case 2L'L coincides with 2vargo f'9 in the model
(vec ZZ',Q9,I). To find an optimal estimator means to find the vector (L', M) for
which L'S(9°)L = 2L'L is minimal under the restriction Q'L + R'M = f, which
completes the proof of the lemma. O

The next definition of the MINQUE with linear restrictions is a natural extension
of the one without restrictions, given in the previous section.

Definition 2. Let us consider the model Ey(vec ZZ') = QU with linear restric-
tions RY = ¢. The ordinary least squares estimator of an estimable function f'¥J in
this model is defined as the MINQUE with linear restrictions and in general is of the
form Y'AY + d, d being a constant.

Remark 2. It is possible to define the MINQUE of an estimable function f'9
in the model (1) under given restrictions as the ¥o-locally best unbiased invariant
estimator under the normality assumption. Considering the reparametrization 9 =
R™c+ Un with RU = 0 it can be shown that these two approaches coincide.

Remark 3. In Definition 2 we can see some inconsistency with the conditions
which are required by MINQUE. In particular, the estimator of the form Y'AY +d
is not an element of the class Qjy. However, we note that this problem is connected
with the constant vector ¢. If ¢ = 0, the linear restrictions RY = ¢ form a linear
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subspace in the parametric space, and the MINQUE with restrictions belongs then
to the class Qu.

Theorem 1. The linear function f'Y is MINQUE-estimable under the model (1)
with linear restrictions RY = c if and only if f € ’R(Q Q+ R'R). The MINQUE of a
MINQUE-estimable function 'V is then f'9, where ¥ is the solution of the equation

Q'QV+Rv=yq,
(5) _
RY =c.

The matrix Q'Q and the vector q are given by (2) and (3), v is the nuisance vector
of Lagrangian multipliers.

Proof. Lemma 2 implies f € R(Q', R') = R(Q'Q+ R'R) as stated in the theo-
rem. It follows from the linear theory (see Rao, Mitra (1971)) that the minimization
of L'L under RY = ¢ from Lemma 3 leads to f’19 and it is the same as f'9 which
minimizes the quadratic form (vec ZZ' — Q9) (vec ZZ' — Q9) under the constrains
RY = ¢ by the method of Langrangian multipliers that leads to the system of matrix
equations from the theorem which are called normal equations. O

Theorem 2. One special choice of the MINQUE with restrictions of a MINQUE-

estimable function f'V is
r r
f9=3 rigi+ Yy v,
i=1 i=1

where k Is the solution of the equation (MpWMp/)tf = k, where Mg = I —
R'(RR')"R and W = Q'Q + R'R. The vector v is given as y = (RW~R')"RW~f,
c¢=(c1,...,¢). The matrix Q'Q and the vector q are given by (2) and (3).

Proof. One solution of the equation (5) is given by
QQ R\ (4
R 0 c)’

We observe that the equations (5) are solvable. If we denote

QQ R\ _[(Ci G
R 0 “\Cs Cy )
the solution ¥ of the equations (5) is given by Cy¢+ Cac. One possible choice of the
matrices C, Ca, C3 and Cy is (see Rao, Mitra 1971)

C) = [1 —(Q'Q+ RR)*R [RQ'Q + R/R)JFR,]J, R] QO+ RR)*,
=(QQ+RR*YR [RQQ+RR"R]",

Cs= [R(Q'Q+ R'R)JrR']Jr R(Q'Q+ R'R)*,

Ci=1-[RQQ+ KRR R]*
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The matrix C; can be expressed as

=(QQ+RR*—(QQ+RRR [RQQ+RR*R]"RQQ+RR)*
= (MpW Mgt

for W =Q'Q+ RR and Mg = I — R’(RR) R. Substituting for Cy and for Cy
in the expression for ¥ and observing that f/19 = f’ﬂ we complete the proof of the
theorem. O

As we mentioned in Remark 2 we can calculate the MINQUE of the function f'd
under given restrictions RY = ¢ by the classical method of reparametrization of the
model. However, for every set of restrictions we have to recalculate the vector ¢ as
well as the criterion matrix Q'Q. The definition of the MINQUE given here enables
us to calculate estimates with different sets of linear restrictions and to use the same
vector q and the same criterion matrix Q'Q.

Testing of linear hypotheses of the type Ho: RY = ¢ against K: RV # c is another
area where estimators which meet the condition can be employed. However, this
problem is still the subject of study. It seems to be a good idea to base a testing
criterion on the vector of residuals calculated with respect to the conditions given by
the hypothesis. There is a lot of work needed to get reasonable results in that field.

Example. The unbalanced one-way ANOVA (analysis of variance) model can
be regarded as a special case of the general mixed linear model (1). Rao, Kleffe
(1988) gave the expressions for the MINQUE in this model. We give the MINQUEs
with a special type of restrictions of the form ¥, = k¥, which can be written as

(6) RY =c,
where R = (1,—k) and ¢ = 0.

The unbalanced one-way model is defined as
(7) vij =B+&+&, i=1,...m j=1."n,

where E(€2) = ¥y, E(€}) = 92, E(&é&;j) = 0.

We can see that the matrix form of the model (7) is a special case of the model
(1) where Y = (y11, .-, ¥Umn,.)’, the matrix X = L, = (1,...,1)" and the vector
£ = (511)-4~75mnm)’ with Eij = 5,’ +E,] Here E(&‘&’) = 191V1 + 1921 with Vl =
Diag(11;, ,..., 115 ). The expressions needed for computing the MINQUE without
restrictions with prior values «a; for ¥, and 1 for 9, are

:ZL?(Qz _B)2y B:S;IZL,@Z‘,,
Zzyt]"y1)+2" IL ))

i=1j=1



. n
where L; = n;/(1 + a1ni), %i. = ny! '21 Yij and the elements of the matrix Q'Q are
]:

{Q' Q1 = S2 —253/81 +(S2/5:)%,
{Q' Qb2 =51 - 52/51 — 1 {Q'Q}n,
{Q'Q}2=n—1-0a1(S; - 55/5 +{Q'Q}12)

with n = fjn,» and S = ijf.

The MINQUE of the estimable linear function f'd is Z Aiqi, where X is the
solution of the equation Q'QX = f. The MINQUE w1th restnctlons (6) on the

vector ¥ of the estimable linear function f'J is Z K:q;, where k fulfils the equation
=1

k = (MpW Mpg:)* f, where the elements of the matrix Mg/ W Mg/ are expressed in

terms of the elements of the matrix Q'Q:

{MpWMp = 1/(1+ 8)* [f{Q'Q}n + 26°{Q' Q)12 + k*{Q'Q) 2],
{MrWMpg s =1/(1+ k%2 [F*{Q'Q}11 + 2k*{Q'Q}12 + H{Q'Q)}22] ,
{MrWMpi}ay = 1/(14 k%)? (£ {Q'Q}11 + 2k{Q'Q}12 + {Q'Q}2o] .

We note only that the second term from the expression for the MINQUE with
restrictions from Theorem 2 vanishes because ¢ = 0, as given by the condition (6).

The figure shows the scatterplot of 25 realizations of the MINQUE and MINQUE
under restrictions of the parameters ¥; vs. ¥3. Here m =3, ny =4, ny =6, n3 = 14
and for simulation we have used § = 5.0 and ¢ = (0.81,3.24)'. As a prior value
of ¥ for computing MINQUEs and MINQUEs under the condition we have used
9% = (1,4)’. The parametric space is restricted by the condition ¥; = 0.259,.

Note. We note that the model considered in the example and the restrictions
given could be investigated as the reparametrized model, which would lead in that
case to the model with just one unknown variance parameter. The results in both
cases coincide; the example is included just for illustration.

Acknowledgment. The authors thank to the referee Dr. G. Wimmer and to
Dr. L. Kubdgek for helpful comments which substantially improved the paper.
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Sihrn

ODHAD VARIANCNYCH KOMPONENTOV V ZMIESANOM LINEARNOM
MODELI S LINEARNYMI PODMIENKAMI

JULIA VOLAUFOVA A VIKTOR WITKOVSKY

V ¢lanku je odvodeny MINQUE odhad linedrnej funkcie neznamych varianénych kom-
ponentov ¥ v zmiesanom linedrnom modeli s linedrnymi podmienkami typu RY = c. Ako
ilustra¢ny priklad je uvedeny model analyzy rozptylu s jednoduchym triedenim a s pod-
mienkami typu ¥y = k9, kde k > 0.
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