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AFFINE-INVARIANT MONOTONE ITERATION METHODS WITH
APPLICATION TO SYSTEMS OF NONLINEAR TWO-POINT
BOUNDARY VALUE PROBLEMS

RupoLF L. VOLLER

Summary. In this paper we present a new theorem for monotone including iteration
methods. The conditions for the operators considered are affine-invariant and no topological
properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-
isotony is demanded. As examples we treat some systems of nonlinear ordinary differential
equations with two-point boundary conditions.

AMS classification: 65J15, 65L10

1. INTRODUCTION

Given the equation
(1) F(u)=0

where F' is an (in general nonlinear) operator acting from a subset D of a partially
ordered space V into a real linear space W, we investigate Newton-like iteration
schemes of the form

S1k(ve4r — vi) = —F(v)
SZk(Uk+1 - Uk) = —F(Uk),

to obtain sequences {uk }reN,, {Vk }reN, such that starting with two elements ug < vo
we have for all £ € No: up < ug41 <+ < ve41 < vk, so that for all £ € N and every
solution u* of F(u) = 0 from [ug,vo]: ur < u* < vg. Here the linearizations S;y,
i =1, 2 depend on ui and/or vi. In earlier papers it was assumed (comp. [12], [13])
that the S;; are inverse-isotone or have at least positive left subinverses B;i. These
assumptions are weakened in Theorem 2 for the methods from [12] and [13] similar
as in [7], [8], so that any monotonicity assumptions are superfluous. Furthermore the
new conditions are affine-invariant, so that they are as in [9] fulfilled for AF, iff they
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are fulfilled for F', where A is a linear, bijective mapping from W into V. Beside the
results in [7] we can not only drop the inverse-isotony of the S;; or the positivity
of their left subinverses, but also the inverse-isotony of the mappings B;;Sik. Since
the theorem will be proved for a partially ordered space V' we also do not use any
property depending on the topology neither of F' nor the S;; nor of V nor W.

In Section 2 we demonstrate how the results can be applied to certain systems of
weakly nonlinear two-point boundary value problems. First a system is considered
where the discretization by finite differences leads to a nonlinear system of equations
whose “natural” linearization is not inverse-isotone, so that the theorems from [1],
[10], [11], [12], [13] and [14] are not applicable. Secondly a predator-prey-model is
considered.

2. AFFINE-INVARIANT MONOTONE ITERATION METHODS
IN PARTIALLY ORDERED LINEAR SPACES

In this section we first present some definitions for operators acting on partially
ordered spaces which are used in the following. For a detailed discussion see [4].

Definition 1. Let V be a linear space over R." Then V is called a partially
ordered linear space (POS), iff there exists a reflexive, antisymmetric and transitive
relation < on V x V with the following properties:

Ve, y,2€V:z<y=>ec+2<y+z
Vz,ye VVIeER;: z<y=> Az < Ay

Definition 1. z2y: ®y<zs,ze<y: @r<yandz#yandz>y: Sy<

Definition 1. Let V be a POS. Then the set Ky := {z € V | 0 < z} is called
the cone of V with respect to <.

Definition 1. Let X be a real Banach space. Then X is called a partially
ordered Banach space (POB), iff X is a POS and Kx is closed with respect to the
norm topology.

Definition 1. Let V be a POS and X a POB.

(i) Let z,y € V. The subset {z € V |z < 2 < y} of V is called an order-interval
and is denoted by [z, y].

(i1) D C V is called o-bounded, iff there exists two elements z,y € V, such that
Vz € D: z £ z < y (analogously o-bounded from above or from below).

(iii) Kv is called (strongly) minthedral, iff every pair of elements of V' (each subset
of V', which is o-bounded from above) has a supremum.

(iv) Kx is called normal, iff 3IC € Ry: Vz,y € Kx : z <y = |||l < Clyll -

(v) Kx is called regular, iff each o-bounded, monotone sequence in X is convergent.
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Remark. Each regular cone is normal.

Definition 1. Let V, W be POS and A: D C V — W an operator. Then A is
called

isolone : & z,y€ D, z < y=> A(z) < A(y)
inverse — isotone : >z, y€ D, A(z) S Aly) =z <y
posilive : <& ¢ € DN Ky = 0 < A(x).

Remark. For linear operators isotone and positive are equivalent properties.
Each inverse-isotone operator is injective.

Furthermore we need the following definitions:

Definition 1. Let F be an operator from a POS V into a real linear space W.
Then any operator F‘,‘1 : W — V having the property

VeeV: F'F(z) <z

is called a left subinverse of F. Analogously a right subinverse, superinverse etc. are
defined.

Definition 1. Let V, W be linear spaces and F: D C V — W an operator. A
mapping S: D x D — L(V, W) is called a divided difference operator (ddo) for F, iff

Ve,y€ D: S(z,y)(x —y) = F(z) — F(y).
If V and W are POS and
() VayeD with <y or y<z: Sy —y) < F(z) - F(3)

holds, then S is called a generalized divided difference operator (gddo). If (2) is only
true for z < y, then S is called a quasi-divided-difference-operator (qddo).

Definition 1. Let V, W be POS, D a convex subset of V. Then an operator
F: D — W is called convez, iff

Ve,y€e D, Vt€(0,1): F(tz+ (1-1t)y) <tF(z)+ (1-t)F(y)

and o-convez, iff this inequality holds only in the case z < y or y < z.

If F has a ddo S and
Ve,y,2€ D with 2 <y <z: S(z,y) < S(=z,2) < S(y, 2),
then F is called ddo-convez.
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For a further discussion see [12]. In the following it is important to know, that
ddo-convex operators and operators with an isotone gddo are o-convex (comp. [12],
1.5 Lemma 3), while operators with a gddo are not necessarily o-convex.

Finally we need the following theorem about solvability of the fixed-point-equation
and successive approximation for isotone operators

Theorem 1 ([4]). Let V be a POS and A: D C V — V an operator. Furthermore
we may have elements zo, yo € D with [zo,yo] C D and zo < A(zo), A(yo) < yo. Let
Al(zo,y0] be isotone and let one of the following three conditions be true:

(1) The cone of V is strongly minihedral.

(ii) V is a POB with a regular cone, and A is continuous.

(iii) V' is a POB with a normal cone, and A is completely continuous.

Then A has at least one fixed point £* € [zo,yo] and for the sequences {z,}neN,,
{Yn }nen, determined by

Tn4l = A(xn)a Yn41 = A(yn)y n € Ny

we have
Ton S Tnp1 € <2< < Yng1 € Une

If (ii) or (iii) holds, both sequences converge against fixed points of A.

Now we are able to prove the main theorem for monotone including iteration-
methods, which we obtain by linearizing the operator equations considered, and
thus we call them “Newton-like”, which also means that they converge faster than
the iteration of Theorem 1.

Theorem 2. Given an equation (1) let F' be a (in general nonlinear) operator
acting from a subset D of a partially ordered space V into a real linear space W, and
let two elements uy < vo be given with [ug, vo) C D. The cone of V is supposed to be
strongly minihedral. Furthermore let linearizations S;: [ug, vo] X [uo, vo] — L(V, W)
be given, such that for all u,v € [ug,vo] with u < v Si(u,v) has a left subinverse
Bi(u,v) € L(W,V) with the property Bij(u,v)u=0=w=0,i=1, 2.

Let at last one of the following groups of inequalities -1V hold:

I. Bi(vo,vo)F(ug) <
By (uo, vo) F(ug) < B3 (uo, vo) F(vg)
Yu,v € [ug,v0], u < v, 2z € {u,v}:
0 < Bi(z,2)[F(u) — F(v) = Si(v,v)(u — v)]
Yu,v,w,z € [up,v], uSWwLz<v:
0 < Bi(z,2)[F(u) — F(w) — Sy(u,v)(u — w)]

Vu,v,w € [ug,vo), u S w < v, z € {w,v}:

0 < Bi(vo, vo)F(vo)
0<
<
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IL.

111

Iv.

0 < Ba(u, )[F(w) = F(2) = Sy(u, v)(u — w)]
Yu,v,w,2 € [ug,v], uSw<z<v:

0 < Bz (w, 2)[F(u) — F(w) — Sz(u, v)(u — w)]
Vu,v,2 € [ug,vo], u< 2 v:

0 < Ba(u, 2)[F(z) — F(v) — S1(v,v)(z — v)]
Bi(uo, v0) F(u) < 0 < Bi(uo, vo) F(vo)

Bs(uo, uo)F(ug) <0 < B3 (ug, ug) F(vo)
Vu, v,z € [uo,vo}, u < 2 < v, we {u,z}:

0 < Bi(u, v)[F(w) — F(v) — S1(u,v)(z — v)]
Yu,v,w, 2z € [ug,v0], uSw<z<v:

0 < Bi(w, 2)[F(2) = F(v) = 81 (u, )(z — v)]
Yu,v,2 € [ug,v0], u< 2< v

0 < Bi(z,v)[F(u) = F(z) = Sz(u, u)(u - 2)]
Yu,v € [ug, v0), u< v, z € {u,v}:

0 < Ba(z, 2)[F(u) — F(v) — Sa(u, u)(u — v)]
Yu,v,w,z € [ug,v], uSw<z<v:

0 < By(w, w)[F(2) = F(v) = Si(u,v)(z — v)]
B;(uo,v0) F(uo) < 0 < Bi(ug, vo)F(vo),i=1,2
Vu,v,w € [ug,vp], u S w K v:

0 < Bi(w, v)[F(w) = F(v) = Si(u, v)(w — v)]
Yu,v,w, 2z € [ug,vo), uSwgz<v:

0 < Bi(w, 2)[F(2) = F(v) = S1(u,v)(z — v)]
Vu,v,w,2 € [ug,vo], uSw<z<v:

0 < By(w, 2)[F(u) — F(w) S, v)(u — w)]
Yu,v,w € [ug,vo], u < w < v, 2z € {w,v}:

0 < Bz(u, v)[F(u) = F(2) — Sa(u, v)(u - w)]
Yu,v,w, 2 € [ug,vo], uSw<z<v:

0 < Ba(w, 2)[F(u) — F(w) — S2(u, v)(u — w)]
Yu, v, w, 2 € [ug,vo], uS w2z v:

0 < Bz(w, 2)[F(z) — F(v) = S1(u, v)(z = v))

B,‘(Z,',Z,')F(Uo) S 0 g Bg(Z,‘,Z,')F(’Uo),i: 1,2, 2] = V9,22 = Ug

Yu,v € [ug,vo], u < v, z € {u,v}:
0 < Bi(z, 2)[F(u) — F(v) — Si(v,v)(u — v))

Yu,v,z € [ug,vo], u <z v:
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0 < By (v, v)[F(u) — F(2) = S2(u, u)(u — 2)]
Vu,v,w € [up,vo), uS WL, 2€ {u,v}:

0 < Ba(z,2)[F(u) — F(v) — S2(u, u)(u — w)]
Vu,v,z € [ug,v0), u < 2K V!

0 < By(u,u)[F(z) — F(v) — Si(v,v)(z — v)]

Then the iteration processes

3) Sik(vesr — vk) = —F(vx)
(4) Sok(uk41 — uk) = —F(ug)

where corresponding to our assumptions we have, respectively

L. Sik := S1(vk,vk), S2k := Sa(uk,vi)
L. S1k = Si(uk,vk), Sax = Sa(uk, ur)
1L Sy := S1(uk,vk), Sak := S2(uk,vk)
IV. Sik := S1(vk, vk), Sk := Sa(uk, ur)

starting with up and vo give us monotone including sequences {uk}reNo, {Vk }keNos
such that for all k € N: ur € ug41 < -+ < vk41 < vk and for all k € N and every
solution u* of F(u) = 0 from [ug, vo]: up < u* < vg.

Proof. We prove our assertions for the case I., all other cases can be shown
analogously, where in case II. first equation (4) and then (3) has to be solved.

The proof is done by induction. Since the first step is proved exactly as the step
from k to k + 1, we restrict ourselves to the latter one.

First we have to define operators T;x: V — V,i=1,2 by

Tikh:=h+ Blk[F(vk) - S]kh]
Torh :=h — ng[F(uk) + Szkh]

where B;j are the left subinverses of the S;;, ¢ = 1, 2. Then we show by Theorem 1
that they have at least one fixed-point.

Because of 1. we have T1;0 = Big[F(vk)] > 0 and Tig(vk — ug) = vg — ug +
B1k[F(vk)—S1k(vk —ur)] = vi —ur — Big[F(ur) — F(vr ) = S1e(uk — vk )]+ Bix F (ur) <
vk — ux and furthermore T1x(v + dv) = Tixv + dv — By S1xdv > T Ko for dv > 0.
Thus Ty fulfils the conditions of Theorem 1 and therefore has at least one fixed-point
in [0, v — ug]. Since the cone of V' is strongly minihedral, the set {z € [0, vk — u] |
Tikz < z}, which is nonempty, since it contains the fixed-point, has an infimum
z1x = 0. Because Tyxz1; < Tixz < z for all 2z from this set, Tixz1x is also a lower
bound of this set, which means T1x21x < 21k, so that z1; lies in this set, but then also
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Tix 21k, because Tip(Tik21k) < Tikz1x and Tix is isotone. So we have z1x < Tixz1
so that zj is the lowest fixed-point of Ty in {0, vk — uk].

By the definiton of Ty it follows that Bix[F(vk) + Sikzik] = 0 and from the
assumption about the kernel of Byy: Sipz;x = —F(vk). Thus we define vpqy =
vr — 21 and obtain by 0 < z1x < v — u:

U € Vg1 S Vk-

Furthermore, because of I. we have Ty;0 = —Bar[F(ux)] = 0 and Tor(veyy — ug) =
Veg1 — Uk — Bog [F (ur) + Sz (k41 — k)] = veg1 — ue — Ba [F(ur) — F(vi) — Sox (ug —
Uk+l)] — szF(Uk) < k41 —uk as well as Ty (v+dv) = Torv+dv— Bogp Sopdv > Topv
for dv > 0. Then also Ty, fulfils the conditions of Theorem 1 and has a fixed-point in
[0, vk41 — ug]. Like Tix also Toi has a lowest fixed-point zo in [0, vg41 — ux] (which
can be proved analogously).

From the definiton of Ty it follows that Bog[F(uk) — S2k22¢]) = 0 and because of
the assumption about the kernel of By : Sogzor = F(ug). We define ug4y := ug + 295
and obtain because of 0 < 22 < Vk41 — Uk:

(5) U < Uk41 S Vk+1 S Uk
From
Bik41F(ukg1) = =Bre1 [F(ui) — Fupgr) = Sor(ur — ue41)] <0

and
Bik+1F(vkt1) = Bies1[F(ves1) — F(vr) = Sik(ves1 — ve)] = 0

as well as
Bok41F(ug+1) = —Bok1[F (ug) = F(up41) — Sak(ur — ug41)] <0
and
Bok41F(vk+1) = Bak41[F(vet1) = F(ve) = Sie(vis1 — ve)] 20
it follows finally that
Bik1 F(ups1) €0 < Bigg Fvggr)
and
Bok 41 F(up+1) €0 < Boggy F(vp41)-
If u* is a solution of F(u) = 0 from [uk, vk}, it yields

Tik(vi — u*) = vg — u* + Bie[F(vi) — Sie(vp — u*))
v — u* = Bi[F(u") — Fvg) — Suk(u* = wi))

<
< v —u',
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so that vy — u* > z1;. But from this yields

U < Vg
Analogously one shows
Up41 S UT,
and all assertions of the theorem are proved. 0O

Remark 1. The condition, that Ky has to be strongly minihedral, can be
replaced by one of the following assumptions

V is a POB and W a real Banach space, Ky is regular. F, B;; and S;; are
for i = 1, 2 and all k¥ € Ny continuous and the composed mappings B;;Six are
inverse-isotone (comp. [8]).

V is a POB and W a real Banach space, Ky is normal. F and S;; are for
t = 1,2 and all k£ € Ny continuous and B;j completely continuous and the composed
mappings BixSik are inverse-isotone (comp. [8]).

Remark 2. From [12] or [13] we have
If V is a POB with a normal cone, then we have the error estimate

Vk € No : max{|ju” — wel], [Ju* = vil]} < Cllug — vell-

If Ky is regular, then the sequences {uy}reN,y, {Vk }ren, are convergent.
If F' is continuous and the S;; are uniformly bounded with respect to k, then the
limits of the sequences are solutions of the equation F(u) = 0.

Remark 3. The order of convergence of our iteration methods is discussed in
(8] and [12].

The results of Remark 1 were obtained by Potra in [7] for a certain class of iteration
methods including the cases 1. for (3), 1I. for (4) and IV. for (3) and (4). Potra
assumes that By = Bs and S; = S5, so that the same linear operator can be used
to compute both iterated sequences. Then some of the conditions in I.-IV. can be
simplified. This is also possible in our case III., which is not contained in [7] and
which is treated in [8] under stronger conditions than in Theorem 2. By this way
the cpu-time used to solve (3) and (4) is minimized in many cases. On a parallel
computer this is of no importance, moreover the convergence can be improved for
case 1. if I. is replaced by

I*. Sar = Sa(ur, vkq1)

and for II. by
H*. Slk = Sl(uk+1,vk).

In these cases one first computes v; or respectively, u;, and afterwards simultaneously
ug and vg41 or, respectively, vy and ug4+1. The assumptions I. and II. have to be
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modified as follows, where the second condition in I. for ug becomes stronger and for
vo 1s weakened as well as the fourth and the fifth condition (similar for 1I.).

Corollary 1. Let F/, D, V, W as well as S; and B;, i = 1, 2 be given as in
Theorem 2. Instead of 1. and 11. we suppose that:

I*. B1(vo,v0)F(uo) <0 < Bi(vo, vo)F(vo)
Vz € [ug,v0] : Ba(uo, z)F(ug) <0
Vu,v € [uo, vo], u < v, z € {u,v}:
0 < Bu(z,2)[P(w) = F(v) = S1(v,0)(u— )]
Vu,v,w € [ug,v], uSw v:
0 < Bu(v, 0)[F(u) — F(w) - Sa(u, v)(u— w)]
Yu,v,w € [ug,v0], uSwg v:
0 < Ba(u, v)[F(u) — F(w) — Sa(u, v)(u — w))
Vu,v,w,2 € [ug,v], uSw<L 2K
0 < Ba(w, 2)[F(u) = F(w) — Sa(u, v)(u — w)]
Vu, v,z € [ug,v], u< 2 < v:
0 < Ba(u, z)[F(z) — F(v) = S1(v,v)(z — v)]
I1*. Vz € [uo, vo] : 0 < Bi(z,v0)F (vo)
B3 (uo, uo)F(uo) < 0 < Ba(uo, uo)F(vo)
Vu,v,w € [ug,v0], uSwg v:
0 < Bi(u,v)[F(u) — F(w) — 51(u v)(u — w))
Yu,v,w, z € [ug,vo], u w2z
0 < Bi(w,2)[F(z) — F(v) - S](u v)(z — v)]
Vu,v,2 € [ug,vo], u< 2z < v:
0 < Bi(z,v)[F(u) — F(2) — So(u, u)(u — z)]
Vu, vE[uo,vo] ugv, z € {uv}:
< B, ()~ () = 50000 0)
Vu, v,z € [ug,vo], u < 2z
< Ba(u, u)[F(2) - (v) — S, )z — )]

Then the assertions of Theorem 2 are valid.

Proof. The proof is done again for case I*. The existence of vi4i follows
as in the proof of Theorem 2. From the second condition in I*. it follows that
BQ(UQ,Ul)F(UO) S 0. For £k > 0 this yields that ngF(uk) = —ng[F(uk_l) -
F(uk) - Sgk(uk_l - uk)] < 0
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Now it follows for k > 0 that Bay F(vk41) = 0 because 0 < By [F(vi41) — F(vi) —
S1k(vk+1 — ve)]. By this way we obtain Tor(vk41 — k) = Vk41 — g — Bop[F(uz) —
F(vi41) — Sok (ur — ve41)] — Bok F(vk41) < Vk41 — U, so that the existence of ug41
with the property (5) can be shown as in the proof of Theorem 2. As in that proof
it follows also that Big41 F(uk+1) < 0 < Bikt1F (vk4+1). The same inequalities for
Bsi41, namely Bog F'(ur) < 0 < Bk F'(vk+1), has been already shown.

Finally, the fact that every solution of F'(u) = 0 from [uo, vo] lies in [uy, vk], k € N
follows as in the proof of Theorem 2 again. O

If the mappings S;; have additional properties in the sense of Def. 8 or Def. 9, we
have one more corollary.

Corollary 2 ([12], [13]). Let F, D, V, uy and vy be given as in Theorem 2, let
W be a POS. Furthermore, let ~

F(uo) <0< F(vp).

and let the mappings S; : [ug, vo] x [uo, vo] — L(V, W) have the following properties:
Yu, v € [uo, vo] with u < v:

(©) Si(u, v)(u —v) < F(u) = F(v),

Si(u,v) is inverse-isotone and the image of V under S;(u,v) contains that of [ug, vo]
under F. Finally

I'. Si(,v) and S2(u,-) are isotone.
II'. =S1(-,v) and —S5(u,-) are isotone.
mr'. =Sy(-,v) and  Sy(u,:) are isotone.
IV, Si(,v) and —=Sy(u,-) are isotone.

Then the assertions of Theorem 2 hold. Furthermore we have for all k € N:
F(uk) <0< F(vk).

Proof. Since the S;; are inverse-isotone, they are also injective and because
F([uo, vo]) C SixV, for each k € N there exist positive inverses S;;' : S1xV NSarV —
V. Setting Bj; := S3' it remains to show that F(z) — F(y) — S(v,w)(u — z) < 0
with ¢, y, v, w, u, z being chosen corresponding to the inequalities in I.-IV. This can
easily be done in case 1. except for the fifth condition for z = v. But only a simple
modification of the proof of Theorem 2 using the inverse-isotony of Sij is necessary
to show the assertion (comp. Satz 2 in Section 2.1 in [12]). O

Remark 1. The conditions I’. and II'. are fulfilled if F is ddo-convez with
S1 =83 =S or S =5 =-5. (6) is fulfilled by a ddo, a gddo as well as by a gddo.

Remark 2. Rem. 1 and 2 after Theorem 2 remain valid for Corollary 2.
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Most of the theorems on monotone iteration methods are special cases of Theorem
2 and its corollaries (comp. [8], [12]) except some methods in [7], [8], [10], [11], [14],
Brown’s method (2] and the interval-iteration methods.

Many examples of nonlinear operator equations which can be treated via Theorem
2 and its corollaries can be found in the cited references on monotone including
iteration methods. Especially in [9] a simple example is given, where Theorem 2 can
be applied, but the S;; are not inverse-isotone. In [1] and [12] examples are given
where S; # S2 and moreover F' is not o-convex. In the next chapter we apply our
theorem to coupled systems of nonlinear two-point boundary value problems.

3. APPLICATION TO NONLINEAR SYSTEMS OF TWO-POINT
BOUNDARY VALUE PROBLEMS

In this section problems of the following kind are solved

y" = f(x Y, Z)
Z// = g() Y, Z)
y(0) = y(b) = 2(0) = z(b) = 0,
where f,g:[0,b] x Rx R — R, b€R, i = 1,2 are continuous functions.
First we consider the following class of nonlinear systems:

(7 V' =y +y+e’—f
(8) M =dyt + 224229
with b = 1, positive real constants ¢, d and nonnegative functions f, g. It is easy to
see that y = 2z = 0 is a subsolution for (7), (8) and ¥ = e1¢(1 —t), Z = cat(1 — 1),
t € [0, 1] are supersolutions, if 2¢; > max_f(¢) and 2c2 > max_g(t).
tefo,1] te[0,1]
It will be shown, that Theorem 2 is applicable to the discrete problem correspond-

ing to (7), (8), while monotonicity results like Corollary 2 are not, if we use the
“natural” ddo

S1{(u, v); (&, 0)] := Sa[(u, v); (&, 9)] := S[(u,v); (&,9)] =

2
aztlt L1 5
A 73 0 c(vy + 91) 0 0
1 =i+ 1 5
-5 e = 0 c(vy + v3) 0
0 . . . )
1 2414 -
0 . 0 —35 +"fn+an 0 c(vn + Un)
- 2 +2+ 1
d(ul +U1) 0 0 El+51 v 0
0 . . . : .
~ 1 42+
0 0 d(un+ i) 0 X .




It is easy to see that S[(u,v), (&, %)] is not an M-matrix, since the n + 1-st diago-
nal consists of positive elements. Moreover, its inverse therefore contains negative
elements and thus it cannot be inverse-isotone. Now we verify the assumptions of
Theorem 2. We do this for the sake of brevity for the simplest case of discretization
by finite differences, 1.e. h = -;—, but it is true even for each h = %, 1< néeN. The
system to solve is
2 + 921 + cxk = £(0.5)

dz? + 10z3 + 25 = ¢(0.5)

with . _
S(z,7) = (.’B] + :f- 9 C(Il!z~+ Z9) )
d(zy+Z,) o+ Z2+10

Now a simple calculation shows that if f, g € [0, 2], then 1. of Theorem 2 is fulfilled for
¢ € (0,3.125) and d € (0,3.2). Similar conditions for ¢, d ensure the applicability of
our theorem if f, g > 2 (see the condition for ¢; and ¢, above) or for smaller h. Since
the cone obtained by the “natural” componentwise partial order of R™ is strongly

minihedral, the assumptions of Theorem 2 are fulfilled for the discrete problem.

As a numerical example we solve (7), (8) with finite differences, h = i for

c=d=3and f(t) =2=«sinnt, g(t) =1 +1¢. o
Tab. 1 Inclusions for Example (7), (8)

t L) £ y(t) T2 z
0.1 [ 0.053324 | 0.054648 | 0.054649 | 0.054650 | 0.055503
0.3 | 0.139083 | 0.142710 | 0.142712 | 0.142714 | 0.145015
0.5 | 0.171529 | 0.176084 | 0.176087 | 0.176088 | 0.178895
0.7 | 0.138893 | 0.142484 | 0.142486 | 0.142488 | 0.144648
0.9 | 0.053217 | 0.054520 | 0.054522 | 0.054522 | 0.055292

t z; z, 2(t) 23 T
0.1 | 0.048027 | 0.049154 | 0.049156 | 0.049157 | 0.049710
0.3 | 0.114723 | 0.117812 | 0.117816 | 0.117818 | 0.119294
0.5 | 0.142660 | 0.146546 | 0.146549 | 0.146551 | 0.148360
0.7 | 0.127939 | 0.131020 | 0.131022 | 0.131024 | 0.132456
0.9 | 0.059509 | 0.060630 | 0.060632 | 0.060632 | 0.061161

In [3] the following predator-prey problem arising from the Volterra-Lotka model
is presented

(9) vt u2-u—v)=0
(10) v + v +u—6v)=0
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where b := n. The existence of a positive solution is proved by Theorem 4 in [3]
by constructing a supersolution and a subsolution, but the particular super- and
subsolution given there are wrong. One obtains correctly

The supersolution does not satisfy the boundary condition, but nevertheless our
method can he applied and using the ¢ddo S;

Sil(w,0); ()] o= (_"1:"“("”)—” o a)

0 — A —346(v+ )
condition I’. from Corollary 2 is fulfilled. Moreover, by [5] the gddo

42 ~ ~
S’i[(u,v);(ﬂ,ﬁ)] = <—m+(u+u)—v y —u ~ >
0 —4;z +6(v+ 1)

is a-priori inverse-isotone and fulfils I'. Here V = C?[0,n] x C?[0, n] with the pointwise
order in each component and D = {(u,v) € V | u(0) = v(0) = u(r) = v(n) = 0}. The
fixed-point result of Theorem 1 applied to Tjk in the proof of Theorem 2 is obtained
by using the equivalent system of integral equations (comp. [4], Section 7.4). We
obtain the improved supersolution

4 24
uy(z) = —I—El—c sh\/—-—x—{—ﬁsmh\/-—x+-cosh\/_x— 5asmh\/—:c+ 7
v1(z) = g [1 —coshx/?x—kasinhﬁz] ,

where

_ cosh Vin—1
" sinh VTn

! (154 —161 - coshfn+ aslnh\/_n—’ ),

smh \/~

which fulfils the boundary conditions and reduces the error in the || -|jco-norm (comp.
Rem. 2 after Theorem 2 with C = 1 for C[0,n]) by more than a half. Further
approximations cannot be computed analytically. For k¥ > 1 numerical methods
must be used.

Since the computation of the supersolutions is independent of the subsolutions, we
first determine the supersolutions up to five correct digits and use the best computed
supersolution instead of U, and T to determine the subsolutions, so we need 24
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Tab. 2 Supersolutions for Example (9), (10)

k| up(0.25n) | uk(0.5%) | x(0.257) | Tx(0.5m)
2.00000 2.00000 0.83334 0.83334
0.94787 1.16806 0.72740 | 0.80722
0.75789 0.98744 0.60115 0.71954
0.65241 0.86873 0.51853 0.64966
0.59106 0.79349 0.46744 0.59827
5 0.55375 0.74616 0.43547 0.56258
6 0.53044 0.71626 0.41505 0.53854
7 0.51567 0.69723 0.40181 0.52259
8 0.50623 0.68506 0.39317 | 0.51206
0.50019 0.67726 0.38750 | 0.50513
10 | 0.49631 0.67226 0.38378 | 0.50048
11 | 0.49383 0.66905 0.38134 | 0.49759
12 | 0.49224 0.66691 0.37974 | 0.49563
13 | 0.49122 0.66569 0.37869 0.49435

W N = O

20 | 0.48957 0.66356 0.37681 0.49209

27 | 0.48952 0.66350 0.37676 | 0.49199

iteration steps, which is less than with the original method. The mesh size is h = 55,
so that the discretization error is smaller than 10~5. Again the iteration stops if five
digits are stable (after rounding) and the inclusion error becomes

[[T27 — ugglloo < 1077, [|T27 — vaylloo < 107°.
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Zusammenfassung

AFFIN-INVARIANTE MONOTONE ITERATIONSVERFAHREN MIT
ANWENDUNG AUF SYSTEME NICHTLINEARER
ZWEIPUNKTRANDWERTPROBLEME

RupoLF L. VOLLER

In der vorliegenden Arbeit wird ein neuer Satz iber monoton einschliefiende [tera-
tionsverfahren bewiesen. Die Voraussetzungen, die an die zu behandelnden Operatoren
gestellt werden, sind affin-invariant, und topologieabhingige Eigenschaften werden weder
von den zugrundegelegten Raumen noch von den behandelten Operatoren verlangt. Ferner
kommen wir ohne Invers-isotonie aus. Als Beispiele werden Systeme schwach nichtlinearer
gewohnlicher Differentialgleichungen mit Zwei-Punkt-Randbedingungen behandelt.
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