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Summary. We deal with an optimal control problem governed by a pseudoparabolic
variational inequality with controls in coefficients and in convex sets of admissible states.
The existence theorem for an optimal control parameter will be proved. We apply the theory
to the optimal design problem for a deflection of a viscoelastic plate with an obstacle, where
the variable thickness of the plate appears as a control variable.
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1. EXISTENCE AND UNIQUENESS THEOREM
FOR A PSEUDOPARABOLIC VARIATIONAL INEQUALITY

This chapter is devoted to the solution of an initial value problem for a pseu-
doparabolic variational inequality. Such problems are solved in the papers [9] and
[12], where the operators on the left-hand side do not depend on the time variable.
We will use the method of penalization in a similar way as in [13], where a parabolic
problem is considered.

1. Basic Assumptions.

We describe some function spaces. More details can be found in the books [2] or
[6] (Appendices).

If T > 0, X is a reflexive Banach space with a norm || - ||x, then we denote
by C([0,T]; X) the space of all continuous functions f: [0,7] — X. Further,
C*([0,T]; X) denotes the space of all k-times continuously differentiable functions
f:[0,T] — X. We proceed to some spaces of integrable vector-valued functions.
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If 1 < p < oo, we denote by LP(0,T; X) the space of all measurable functions
f:[0,7] — X such that ||f(:)||x € L?(0,T). LP(0,T; X) is a Banach space with the
norm

T 1
Iflles = (/0 IF DI dt)” i 1< p < o0

and

IfllL= = supess || f(t)||x-
tef0,T]

The spaces LP(0,T;X), 1 < p < oo; are reflexive and the dual space [L?(0,T; X))’
can be identified with the space L1(0, T; X'), %+% = 1. The space L*°(0,T; X') can
be identified with the dual space [L1(0,T; X)), i.e. for every F € [L*(0,T; X)]' there
exists a unique function f € L*(0,T; X’) satisfying the relations ||F||« = ||f]|z
and

T
F(y) = /0 (f(t),y(t))dt for every y € LY(0,T; X).

If X is a Hilbert space with an inner product (-,-), then L?(0,T;X) is a Hilbert
space with the inner product

T
(f,0)1s = / (F(&), 9(0)dt, f,g € L*(0, T; X).

Further, we introduce the Sobolev spaces of vector-valued functions. We denote by
W™?(0,T; X) the space of all functions f € LP(0,T;X), m > 1,1 < p < oo such
that there exist functions g; € LP(0,T; X), i = 1, ..., m satisfying the relations

[
0 d

Functions g; are generalized derivatives of the i-th order and we set g; =
t=1,..,m. W™P(0,T; X) is a Banach space with the norm

T
= (—l)i/ o(t)gi(t)dt for every p € C§°(0,T).
0

af
@

) 1<{p< oo

s = (1150 + | 2| oot | G

and

df
| fllwme = [l fllze +“£ +.4

dtm
If X is a Hilbert space then W™2(0,T; X) is a Hilbert space with the inner product
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Due to Proposition A.6 from [6], every function f € W'P(0, T; X) is equal a.e. to an
absoutely continuous function f of the form

df

t
f(t)=f(0)+/0 Z;ds for all t € [0, T).

Conversely, every function f of the form

f(t) = F(0)+ /0‘ g(s)ds, te€[0,T], g € LP(0,T; X);

belongs to the space W™?(0,T;X) and g = —Z{-

Let V be a Hilbert space with an inner product (:,-) and a norm || - ||, V’ its dual
space with the duality pairing (-,-) and the norm || - ||., L(V, V') the space of all
linear bounded operators from V into V' with the norm || - ||..

We consider the initial value problem
(1.1) u(t) € K for ae. t €[0,T),

and for a.e. t € [0, T]:
(1.2) (A@®)u'(t) + B(t)u(t),v — u(t)) = (f(t),v — u(t)) forallveE K,
(1.3) u(0) = uo € K,

where K is a closed convex subset of V, f € W12(0,T; V') n C([0,T],V’) and the
operator functions A(-), B(:): [0,T] — L(V, V') satisfy the assumptions

(1‘4) A(), B() € Cl([o) T]a L(Vv VI)):

(1.5) llull® < e1 {(A(t)u, u),e1 >0,

(1.6) (A, v) = (A0, 4}, (B(O)u,v) = (B(B)v, W),
(1.7) (2B(t) — A'())]u,u) 2 0

forallu,ve V andte[0,T]

2. The Penalized Problem.
We deal with a penalized pseudoparabolic initial value problem corresponding to

(1.1), (1.2), (1.3):

(1.8) A (8) + BOue(t) + 2A(ue) = (1), € >0
(1.9) UC(O) = Ugp.
B:V — V' is the penalty operator defined by

B(u) = J(u — Pg(u)), ueV,
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where
J:V =V (Ju,v) = (u,v),

is the canonical isomorphism from V onto V' and
Pg:V =K

is the projection operator defined by

u,veV

|lu — Pxu|| = min lu—v], ueV

The operator Pk has the following properties arising directly from its definition

(11], 1.2):
i) Pku=u& u€K,
i) (Pku—u,v--Pgu)20 forallueV,veK,
i) ||Pxu— Pgv|| < |[jlu—v| forallu,veV.
The operator 3 then fulfils the conditions

i) B) =0 vEK,

(1.10) i) (B(u) - A(v),u - v) >

0,

i) [18(u) - Bl < 2u— o

for allu,ve V.

Hence, the penalty operator B is monotone and Lipschitz continuous.

Theorem 1.1. Let T > 0, € > 0. Then there exists a unique solution u, €
C*([0,T),V) of the initial value problem (1.8), (1.9), and it satisfies the estimates

T
(1.11) l[ut) = woll? < cresT ] I1£(t) = B(tyuoll? dt,
T
112) @I < 16T [er]|£(0) — BOuol2 + 2 / I @2 di+

T
HATE (ol + cre®T / 1£(8) — B(tyuol? de)]

for alle > 0 and t € [0,T),
where c; is defined in (1.5) and

(1.13) ez = sup [|B(t)|lL,
te[0,T]

(1.14) c3= sup [|A'(t)llz,
te(0,T]

(1.15) ca = sup ||B'(t)||c-
te[0,T]
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Proof. The initial velue problem (1.8), (1.9) can be rewritten in the form

(1.16) (1) + Ce()ue(t) = F(2),

(1'17) u,(O) = U

with

(1.18) C(t): V=V, C.(t)=A@)""[B(t)+ %ﬁ],

FecC(0,T,V), F(t)=A(t)"f().
The assumption (1.5) implies the existence of the inverse operator A(t)~!. Moreover,
A()7! € C¥([0,T], L(V",V)) and [A(t)"!) = —A(t) 1A' (t)A(t)"!. The operators
C,(t) are then uniformly Lipschitz continuous and due to [10] (Ch. V. Th. 1.1)
the initial velue problem (1.17), (1.18) has a unique solution which is also a unique

solution of the problem (1.8), (1.9).
It remains to verify the estimates (1.11), (1.12). Let us denote

(1.19) We = Uy — Uo.

The function w, € C!([0,T], V) is a solution of the initial value problem
1

(1.20) A(t)wl(t) + B(t)w.(t) + Eﬂ(uo + we(t)) = f(t) — B(t)uo,

(1.21) w,(0) = 0.

After duality pairing, using the differentiability and the symmetry of A(t) we obtain
the relation

(1.22) A0, () + (2B — A Owe (), () +
2 (B0 + we(1) we(0) = 240 = B(Ouo, we(0)
We have uo € K and hence B(uo) = 0. Then we obtain
(1.23) (B0 + we(0), we(t) > 0

due to the monotonicity of 3.
Let us introduce a real function ¢, defined by

(1.24) we(t) = (AR)we(t), we(t)), te(0,T].
Using the relations (1.5), (1.13), (1.14), (1.22), (1.23) we obtain the inequality
pelt) < 1F(0) = BE)uol? + crpe(t) for all ¢ € [0,T]
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and after integrating, taking into account (1.21), we arrive at

T t
(1.25) <p;(t)<[) ||f(t)-—B(t)u0||fdt+c1/0 ou(s)ds, te[0,T].

Using the Gronwall-Bellman lemma ([6], Lemma A.4) we obtain the inequality

T
pe(t) < (/0 £ (@) -B(t)u0||3dt)e°“ for all t € [0,T]

and the estimate (1.11) follows from (1.5), (1.24).
In order to obtain (1.12) we differentiate the equation (1.20) and arrive at

(1.26) [A@)we ()] + [B(t)we (1)) + é[ﬂ("o +we ()] =
= f'(t) — B'(t)uo for a.e.t €[0,T).

The function B{ug +w(-)): [0,T] — V' is Lipschitz continuous due to (1.10 iii). As
the space V' is reflexive the function B(ug + w(-)) belongs to the space
Wte2(0,T; V') ([6], pages 143, 145). Further, the functions C,(-)u(-), F(-) from the
equation (1.16) belong to the spaces W1*°(0,T; V) and W'2(0,T; V), respectively.
Then u, € W22(0,T;V) and from (1.19), (1.26) we obtain the equality

(1.27)  (A()ud (1), ue(t)) + ([A'(t) + B@)]u, (2), ue()) + é ([Bue(®))', ue(1))
= (f'(t) — B’ (t)uc(t),ul(t)) forae.t€[0,T]
We introduce a real functin i, defined by
(1.28) Pe(t) = (A(@D)ul(t),ul(t)), te€[0,T]
Then the equality (1.27) can be rewritten in form
(1.29)  e(t) + ([4'(1) + 2B(B)]u (1), u () + g([ﬂ(ue(t)]',%(t)
= 2(f'(t) — B'(t)uc(t),ul(t)).
From the monotonicity of # we obtain the inequality
(1.30) ([B(ue(®)), ul(t)) >0 for ae. t €[0,T].

Using (1.5), (1.11), (1.13)-(1.15), (1.29), (1.30) we arrive at the inequality

T
w0) < 2O + 465 (ol + exe”™ [ 17(0) = BOwol at) + exye(t)
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for a.e. t € [0,T7], and integrating we conclude

T
be(t) < (A O, O) +2 [ IS I e
T
(1.31) 47 (ol + crew™ [ 170) = Beyuoll? de) +
0
t
+c / Ye(s)ds forallt €[0,T].
0
From (1.5), (1.8), (1,9), (1.10i) we obtain the relations
(1.32) (A(0)ug(0), u¢(0)) = (£(0) — B(0)uo, ug(0)) < e1|f(0) — B(0)uol[2.
The Gronwall-Bellman lemma implies the inequality
T
(1.33) Ye(t) < eT (COIIJ'(O) — B(0)uol[2 + 2/0 £/ @112 dt
T
T 2 2 aT - B 2d )
447 (fuoll + coe [ 117(0) = Btyuol? o)

for all ¢ € [0,T], and the estimate (1.12) follows directly from (1.5), (1.28), (1.33).
O

3. Solution of a Pseudoparabolic Variational Inequality.
Using Theorem 1.1 we obtain existence, uniqueness and estimates for a solution
of the unilateral problem (1.1), (1.2), (1.3). :

Theorem 1.2. There exists a unique solution u € W1*(0,T; V)N C([0,T],V)
of the initial value problem (1.1), (1.2), (1.3) fulfilling the estimates

T
(1.34) llu(t) — uo||2 < clec‘T/ I£(t) = Bt)uo|2dt for all t € [0, T},
0

T
(1.35) nu'(ou?scleﬁT(couf(m—B(O)uouf+2 [ e a
R
47 (ol + ere”” [ 170 - Bl at) )

for a.e. t € [0,T)], where cy, ..., c4 are the constants from (1.5), (1.13), (1.14),
(1.15).
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Proof. a) Existence. Let ¢ — 0, ¢ > 0. Due to (1.11), (1.12) the system {u.},
from Theorem 1.1 is bounded in all spaces W?(0,T;V), 1 < p < co. Hence there
exist a sequence {€,}, €, > 0; and a function & € W'2(0,T; V) such that

(1.36) lim ¢, =0,
n—+00
(1.37) ue, — 4 weakly in WH%(0,T; V).

Further, due to (1.9) we have the relation
(1.38) (ue, (2),v) = (/ u, (8) ds,v) + (uo,v) foreachn € N andv e V.
0

The expression (fot w'(s)ds,v), w € WH2(0,T; V) represents for each fixed ¢ € [0, T
and v € V a linear continuous functional over W':2(0,T;V) and therefore the se-
quence {(uc,(t),v} is, due to (1.37), convergent for every t € [0,T] and v € V.
Consequently, there exists a function u: [0, 7] — V such that

(1.39) ue, (t) — u(t) (weakly) in V for each t € [0, T].
Using the Fatou lemma and the Lebesgue theorem ([6], App. 1) we obtain that

ve L0, T;V) and wu,, —u€LY0,T;V).
Comparing it with (1.37) we conclude that u(t) = 4(t) for a.e. t € [0,T] and
(1.40) ue, — u (weakly) in W40, T; V).
Moreover, the estimates (1.11), (1.12) imply that the sequences {u. }, {u; } are
bounded in the space L (0,T; V) which is the adjoint space to L!(0,T;V). Hence
with respect to (1.40) and due to a theorem of Banach-Alaoglu-Bourbaki ([7],
Th. II1.15) we have

(1.41) u,, — u (weakly star) in L®(0,T; V),

(1.42) u, — u’ (weakly star) in L*(0,T; V).

Using Prposition I11.12 from [7] and (1.41), (1.42) we obtain the inequalities
llu — ol < liminf [|uc, — vollze, [[W[lz= < lim inf It lizes,

which imply the estimates (1.34), (1.35).
It remains to verify the relations (1.1), (1.2), (1.3). From (1.8) we have the equality

B(ue, (1)) = ealf(t) — At)ul (1) — B)ue, (2)] for every t € [0,T).
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The sequences {uc,(t)}, {u;_(t)} are bounded in V for every t € [0,7] and (1.36)
implies

(1.43) nlirrgo B(ue, () = 0 (strongly) in V' for every t € [0, T].
Monotonicity of 8 and the relation (1.39) then imply
(1.44) (B(v),u(t) —v) <0 foreveryte[0,T],veEV.
Inserting v = u(t) + sw, s > 0, w € V into (1.44) we obtain
(B(u)(t) + sw),w) <0 forallweV
and due to the Lipschitz continuity of 8 the limiting process s — 0 yields
(B(u(t)),w) >0 forallweV
and hence
(1.45) B(u(t))y =0 for all t €[0,T],

which due to (1.10 i) implies the relation (1.1).
We shall now verify the initial condition (1.3). After changing n on a set of zero
measure we obtain

(1.46) u € Wh(0,T; V)N C([0,T], V)

and

(1.47) u(t) = u(0) + /t u'(s)ds for every t € [0,T].
0

Simultaneously we have the relation
. -
(1.48) U, (1) = uo +/ u, (s)ds foreveryt € [0,7],n€ N.
0

The initial condition (1.3) then follows from the convergences (1.39) and (1.40).
Let w € L*(0,T;V) be an arbitrary function such that

(1.49) w(t) € K forae. t€0,T)
We then have the inequalities

for a.e. t € [0,T]
(1.50) (B(ue, (1)), w(t) — ue, (t)) <O forevery n € N
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Integrating we arrive at the inequalities
(AT) e, (T), uen (D) + [ " (2B — A (8), vea 1) it <
(152 < (A, (0) uea(0) +2 [ " (AW 0 + B (0, w(t) di+
+ 2/0T (f(t), e, (t) — w(t)) dt foralln € N.

The functionals on the left-hand side of (1.52) are weakly lower semicontinuous on
the spaces V and L?(0, T; V), respectively, which follows from the assumptions (1.5)-
(1.7). The relations (1.39), (1.40) and the initial conditions (1.9), (1.3) then imply
the inequalities

T
(AT) w(T), (D) + [ (280 - 4@, u0) <
T
<timinf ((ACT)er () wen(T) + [ (2B = A'Olues ), 0) ) <
T
< (A(0)u(0), u(0)) + 2 /0 (A()W () + B(t)u(t), w(t)) dt
T
+2 [ (70,u0 - u) &
which can be rewritten in the form
T
(1.53) /0 (A@)w'(t) + B(t)u(t) — f(t),w(t) —u(t)) dt > 0
for all w € L}(0, T; V) such that w(t) € K for a.e. t € [0,T].
Using Proposition 3 from [5] (App. I) we obtain for a.e. t € [0, T] the inequality
(A@)u'(t) + B(t)u(t) — f(t),v—u(t)) 20 forallveE K,
which proves the inequality (1.2). Hence u is a solution of the problem (1.1), (1.2),

(1.3).

a) Uniqueness. Let u; and uz be two solutions of the problem (1.1), (1.2), (1.3).
Inserting successively u(t) = u1(s), v = u2(s); u(t) = ua(s), v = u;(s) into (1.2) we
obtain after summing and integrating the inequality

t
(159 [ (AE) = 1) (6) + Bls)(u — ua)(e) (1 — ua)(e)) ds <O
0
for every t € [0, T].
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Let us denote w = u; — uz. The function w fulfils the initial condition
(1.55) w(0) = 0.
The inequality (1.54) then implies

(1.56) (A(t)w(t), w(t)) +/; ([2B(s) — A'(s)]w(s),w(s)) ds <0
for all t € [0, T).
The assumptions (1.5), (1.7) imply
w(t) = u(t) - uz(t) = 0

and
uy(t) = up(t) for allt € [0,T],

which proves uniqueness of the solution of the problem (1.1), (1.2), (1.3). ]

2. OPTIMAL CONTROL PROBLEM

1. Formulation of the Problem.

We assume that the data in the prblem (1.1), (1.2), (1.3) depend on a control
parameter e. Control problems for pseudoparabolic equations were studied in the
papers [3], [16], [17]. We assume that the convex set of admissible states depends
also on a control parameter e. Such problem in the elliptic case was investigated in

3.

We consider the following state problem:
(2.1) u(t,e) € K(e) for ae.t€[0,T]
and for a.e. t € [0,T7:
(2.2) (A(t,e)u'(t,e) + B(t,e)u(t,e),v — u(t,e)) >
> (f(t,e),v—u(t,e)) forallv € K(e),
(2.3) u(0,e) = ug(e) € K(e),

where K (e) is a closed convex subset of a Hilbert space V. With the problem (2.1)-
(2.3) we link a minimum problem

(2.4) j(u(e),e) = fé‘é{‘, j(u(e),e),

where U,q is a compact subset of a Banach space U and the functional
j: WY2(0,T; V) x U — R is lower bounded and fulfils the assumption

(2.5) up —uin WH%(0,T;V) and e, — e in U = j(u,e) < liminf j(un, e,).

In order to characterize the dependence e — K(e) we recall a special type of conver-
gence of set sequences introduced in [14].
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Definition 2.1. A sequence {K,} of subsets of a normed space V' converges
toaset K C Vif
i) K contains all weak limits of sequences {ur}, ux € Kp,, where {Kqa,} is an
arbitrary subsequence of {K,};
ii) every element v € K is the strong limit of a sequence {v,.}, vn € Kn, n €N.

Notation: K = Lim K,,.

n-— 00
We assume that
(2.6) en —einU = K(e) = nL_lglg K(en).

Further, we introduce assumptions expressing the dependence of all data in (1.2),
(1.3) on the control parameter e:

(2.7) lul|? < es (A(t, €)u,u), c5>0,
(2.8) (A(t, e)u,v) = (A(t,e)v,u),
(2.9) (B(t,e)u,v) = (B(t,e)v,u),
(2.10) ([2B(t,€) — Aj(t, €)]u,u) > 0
(2.11) 1AL (t, Iz < o,

(2.12) 1B, e)llz < 7,

(2.13) 1B:(t, )llz < cs,

(2.14) 1o e)llwas < co

for all u,v € V,t € [0,T),€ € Uyg;

i) A(-,en) — A(-, €) in C*([0, T, L(V, V")),
ii) B(:,es) — B(:,¢€) in C([0,T], L(V, V'),
iii) f(-,en) — f(:,€) in C([0,T], V"),

1) ug(en) — up(e) in V.

(2.15) en —einlU =

2. Existence Theorem.

We will formulate and verify the existence theorem for the optimal control problem
(2.1)-(2.4).

Theorem 2.1. Let the assumptions (2.5)-(2.15) hold. Then there exists at least
one solution & € U,q of the optimal control problem (2.1)-(2.4).

Proof. Due to Theorem 1.2 for every e € Uzq there exists a unique solution
u(e) € WH(0,T;V) N C([0,T],V) of the state initial value problem (2.1), (2.2),
(2.3). Hence we can define the functional

J:Uaq — R, J(€) = j(u(e),e).
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Let {en} C Uaq be a minimizing sequence for J:
. li = i .
(2.16) Jm J(en) cérclli:‘ J(e)

Since the set U,q is compact in U, there exist an element € € Ua4 and a subsequence
of {e,} (denoted again by {es}) such that

(2.17) lim e, =&in U.

n—o00
Denoting u(en) = un, we rewrite the state problem (2.1), (2.2), (2.3) in the form
(2.18) uq(t) € K(e,) for ae.t €(0,T),

and for a.e. t € [0, T]:

(2.19) (A(t, en)up (t) + B(t, en)un(t) — f(t,en),v—ua(t)) > 0
for all v € K(ey),
(2.20) un(0) = uo(en) € K(en).

Using the estimates (1.34), (1.35) and the assumptions (2.7)-(2.15) we obtain the
estimate

(221) “U"”Wl,oo < ¢ for alln €N,

where the constant ¢y involves only cs, . . ., cg from (2,7)—-(2.14) and the upper bound
for the sequence ug(e,). Comparing the estimates (1.11), (1.12) and (1.34), (1.35)
we can see that cjo does not depend on the sequence {K(e,)}.

It results from (2.21) that there esist a function @ € W(0,T; V) n C([0,T),V)
and a subsequence of {un} (denote again by {un}) such that

(2.22) u, — @ in WH2(0,T; V),
(2.23) un(t) — @(t)in V forae.te[0,T],
(2.24) up — @ in L®(0,T; V),
(2.25) u, =@ in L®(0,T; V).

Relations (2.18), (2.23) and the assumption (2.6) imply
(2.26) u(t) € K(é) forae.t€0,T).

From the relations
t
un(t) = wa(en) + [ w(e) s,
0
t
ﬁ(t):ﬁ(0)+/ w'(s)ds, te[0,T)
0
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we cobtain due to (2.22), (2.23), (2.15 iv) the initial condition

(2.27) #(0) = uo(é) € K(é).
Let w € L'(0,T; V) be an arbitrary function such that
(2.28) w(t) € K(&) forae.t€(0,T].

Since the set K(€) is closed in the space V, we can use Lemma A.O. from [6] (App.)
according to which for every € > 0 there exists a measurable function v: [0,7] —
K (&) with only a finite number of values and such that

T
[ ot - vl ae <

The assumption (2.6) and Definition 2.1 then imply the existence of a subsequence
of {en} (denoted again by {es}) and of a sequence {v,} C L!(0, T; V) such that

(2.29) vn(t) € K(en) forallt€(0,T],neN
and
T
(2.30) nlin; lvn — w||L2 = "llrrgo./o [lva(t) — w(t)|| dt = 0.

The inequality (2.19) then implies

T
(2.31) /0 (A(t, en)upn(t) + B(t, en)un(t) — f(t,en), vn(t) — un(t)) dt > 0.
The last inequality can be rewitten in the form

T
(A(T, en)un(T), un(T)) + / ([2B(t, €n) — A'(t, en)]tin(t), un(t)) dt <
T
< (A(0, en)un(0), un(0)) + 2 /o (A(t, en)un(t) + B(t, en)un(t), va(t)) dt+

T
+2 /0 (F(t, en), un(t) — va(®)) dt,
and further,
T
(AT, &)un(T), un(T)) + /0 ([2B(t,8) — A'(t, &)Jun(t), un(t)) dt <
< ([A(T» €)— A(T,en )] un(T), “n(T»
T T
+[) <2[B(t’ é) - B(t’ e")]un(t): u"(t)) dt +/(; ([A’(t: en) - A'(t, é)lun(t), un(t)) dt
+ ([A(0, en) — A(0, €)]uo(en), uo(en)) + (A(0, €)uo(en), uo(en))

T
+ 2/0 (A(t, en)upn(t) + B(t, en)un(t), va(t)) di+

T
+ / (F(t, €n), Un(t) = va(t)) dt.
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The functionals on the left-hand side of this inequality are weakly lower semicontinu-
ous on the spaces V and L%(0, T; V) respectively which follows from the assumptions
(2.7)-(2.10). Using the assumption (2.15) and the relations (2.17), (2.22)-(2.25),
(2.30) we arrive at the inequality

T
(A(T, &)a(T), &(T)) + / ([2B(t, &) - A'[(t, O}a(t), a(t)) dt <
T
< (A(0, )uo(&), uo(#)) +2 / (A(t, &) (1) + B(t, eya(t), w(t)) dt+
T
+2 / ((t,8), u(t) — w(t)) dt
0

for all w € L*(0,T;V) such that w(t) € K(€) for a.e. t € [0,T]. Using the initial
condition (2.27), the differentiability and symmetry of the operator function A(-, ),
we obtain the inequality

T
(2.32) /0 (A(t,e)d'(t) + B(t,e)ua(t) — f(t,€), w(t) —u(t)) dt > 0
for all w € L}(0,T; V) such that w(t) € K(¢) for a.e. t € [0,T].

Again, using Proposition 3 from [5] (App. I) we arrive at

(2.33) (A(t,e)@'(t) + B(t,e)a(t) — f(t,€),v—1u(t)) >0
for a.e. t € [0,7], for all v € K(é).

The last inequality together with (2.22), (2.26), (2.27) and the uniqueness of a solu-
tion of (2.1)-(2.3) imply the relations

(2.34) u = u(e),
(2.35) u(en) — u(€) in W30, T; V).

Finally, using (2.5), (2.16) wi obtain the inequalities

j(u(e),€) < lim ingoj(u(e,.),en) = lim J(e,) =
n— n—00
= inf J(e)= inf i(u(e)e)

and hence (2.4) follows, which completes the proof of the theorem. (m]
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3. OPTIMAL CONTROL OF A VISCOELASTIC PLATE BENDING WITH AN OBSTACLE

Let us condider a thin viscoelastic plate whose middle surface is identified with an
open bounded domain Q C R? with a Lipschitz boundary 8. A function e: Q — R
expresses its varying thickness. We assume that the plate is deflected under the
perpendicular load p: Q@ — R, concentrated loads p; at the points X;, ¢ = 1, ...,
m, and under its own weight. Further, we assume that the plate is clamped on its
boundary and that an obstacle is expressed via a function ®: Q — R.

The deflection u = u(z,t, €) is then a solution of the inital value problem for the
pseudoparabolic variational inequality:

3.1) u(t,e) € K(e)  fora.e. t €[0,T],

62 [[ @) (AGUO gt o) + AR wi.0)) o = u(t, N do
e)

2 (f(t,e)v —u(t,e)) forae te[0,T], forallve K(e),

(3.3) u(0,¢e) = ug(e) € K(e),
where
(3.4) K(e) = {v e HZ(Q): v(z) > &(z) + -;-e(:c) for all z € Q},
2
i = W and the summation convention the indices i, j, k,[ € {1,2} is consid-
ered.

_ We assume the Zener model of the plate ([8], [15]), which means that the functional
f(t,e) € V', V = H3(Q) has the form

35 (o) = [[ka®pt,2) + pilt.2) - p)e@lo(@)iz+
fy)
+ ) _[k(®pi(t) + P O](X:), veV,
i=1
where X; € Q, the real functions k; are continuous and positive for
i=0,1,..,m;p,-) € C(Q) for every t > 0, p(-,z) C[0,00) for every z € Q,

p € C(Q) is the plane density of the plate.
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The initial function ug(e) € K(e) is a solution of the elliptic variational inequality
/ / (@) AU 0o 5(0)lo = uo(e)mdz >

(3.6) > [[1900.2) - k© " pla)e(e o — ua( e+
Q

+ zp;(O)[v — ug(e))(X;) for all v € K(e).

i=1

Further, we impose the conditions on the functions e, ®, AE;,)”

(3.7) Usa = {e € HS(Q)I 0 < emin < 6(1‘) < emax forall z € Q,
7]
llellzrs < Cl,// e(z)dz = Ca, e|aq = po, 0_2180 = o1},
Q

where ¢,, ¢, are sufficiently smooth real functions defined on 9. The set U,q is
compact in U = H?(Q2), because it is bounded and weakly closed in H3(Q) and
H3(Q) is compactly imbedded in H?().

The functions P, Ag,)c, are supposed to satisfy the following conditions:

(3.8) decC(), @(s)< —Lpo(s) for all s € 09,
(3.9) Ay e o, Af;i, = A = A%

AS;I);I(t)gijfkl 2 Co€ij€ij, Co > 0,
(3.10) (24400 — SAGLO) esien > 0,
forallt €[0,7], {ei;}€ R?, £ij = €ji

If we define the operator functions A(t,e), B(t,e): HE(Q) — [HE(Q)] by

(A(t, e)u, v) = / / &(2) AL), (i vade,

(3.11) (B(t,e)u,v) = // a(z)AUH Dwijvgde,

te[0,T], e€U; wu,ve HIN)

then all assumptions of Chapters 1, 2 are fulfilled ((2.6) is verified in [4]).
A cost functional j can have the form

(3.12) j(u,e) = ||Du — 24|k + F(e), ue€ W"*0,T;V),e€ U,
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where X is any Hilbert space, D € L(WY2((0,T;V),X), 24 € X and F: U — R is
any lower continuous functional. Then there exists an optimal thickness function &
fulfilling

i(u(€),€) = min j(u(e),e),
where u(e) is a solution of the initial value problem (3.1)-(3.6).
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Sihrn

ULOHA OPTIMALNEHO RIADENIA PRE PSEUDOPARABOLICKU
VARIACNU NEROVNICU

Icor Bock, JAN LoviSEk

Je rieSend tloha optimailneho riadenia pre pseudoparabolickd variaénu nerovnicu s ria-
diacimi parametrami v koeficientoch a v konvexnych mnozinich pripustnych stavov. Je
dokdzani existencia optimalneho riadenia. Tedria je aplikovana na ilohu optimalneho navr-
hu vazkopruznej tenkej dosky s prekizkou, pri¢om premennd hribka dosky vystupuje ako
riadiaci parameter.
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