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Summary. We introduce the sum of observables in fuzzy quantum spaces which generalize
the Kolmogorov probability space using the ideas of fuzzy set theory.
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1. INTRODUCTION

The main notion of the Kolmogorov classical model of probability theory [5] is a
o-algebra of subsets of a set. This model has been very useful, however, it does not
describe situation in quantum mechanical measurements. There are many axiomatic
models of quantum mechanics, and today there is a widespread model of quantum
logics, see for example [12]. Two of the most important examples of non-Boolean
quantum logic models are the system of all closed subspaces of a Hilbert space [6]
and the quantum probability spaces introduced by Suppes [11].

The Kolmogorov probability model may be uniquely represented by a system of
characteristic functions of subsets of a set X from the given o-algebra &, which
have values in the closed interval [0,1]. When a quantum mechanical event a, say, is
described vaguely, then by a fuzzy set a, that is a fuzzy event a, we shall understand
a real-valued function a: X — [0, 1] which describes the quantum machanical event
a: this is a basic idea of Zadeh’s theory [13].
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The intersection N and the union U of fuzzy sets {a;}, the complement L of a
fuzzy set a are defined as

l |a.~ = inf a;,
. 1]
%

Ua; i=supa;,
- i
3

at =1-a.

If f and g are two #-measurable functions, then the measurability of the sum
f + g may be proved using the following simple relation

(11) {zeX: (f+o)@) <t}=J{zeX: flx)<r}n{z e X:g(x) <t-r},
reQ

where @ is the set of all rationals.

Using this fact in the present note, we will define the sum of any pair of F-observables
of a fuzzy quantum space.

2. FUZZY QUANTUM SPACES

Definition 2.1. A fuzzy quantum space is a couple (X, M), where X is a
nonempy set and M C [0,1]¥ satisfies the following conditions:
(1) if 1(z) = 1 for any = € X, then 1 € M;
(i) if a € M, then at :=1—-a € M,
(1) if 3(z) = } for any z € X, then } ¢ M;
(iv) G a, :=sup, a, € M for any {a,}3%, C M.
n=1

In the fuzzy sets theory the system M is called a soft o-algebra [7].

This structure has been suggested by Rie¢an [9] as an alternative axiomatic model
for quantum mechanics. More general structure assuming that M is closed with
respect to the union of any sequence of mutually orthogonal fuzzy sets has been
proposed by Pykacz [8] and studied by Dvureéenskij and Chovanec [1]. Some fuzzy
sets ideas have been studied also by Guz [4], but his approach is different from ours.

The analogue of a random variable is an F-quantum observable: An f-observable
on a fuzzy quantum space(X, M) is a mapping z: B(R!) — M with the following
properties:

(i) z(E°) =1 - z(E) for every E € B(R');

(i) if {En}3, C B(R'), then :L'(G Ey) = (.j z(E,), where B(R!) is the Borel
n=1 1

n=
o-algebra of the real line R! andE° denotes the complement of E in R!.
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In particular, for a € M, the mapping z,: B(R!) -+ M defined by

ana* 0,1¢ E
at 0O€EE,1¢E
o(E) = ’ E € B(R!
za(E) vgpicp (EEBE
aUat 0,1e £

is an F-observable of (X, M) called the indicator of the fuzzy set a € M.

If f: R — R! is a Borel measurable function and z is an F-observable, then
foz: E— z(f~1(E)), E € B(R"), is an F-observable, too. In particular, if o € R?,
then az: E — z({t € R!: at € E}) for any E € B(R").

Let (X, M) be a fuzzy quantum space. The set M may be regarded as a partually
ordered set in which we define a < b iff a(z) < b(z) for any z € X. Using the
complementation 1L : @ — al = 1 — a for any fuzzy set a € M, we see that L
satisfies two conditions

(i) (at)*t = a for any a € M;
(ii) if @ < b, then b+ < at. It is evident that a U at = 1 iff a is a crisp set. Hence
M is a distributive o-lattice with the complementation L, for which de Morgan

laws

(2.1) (Ua;)L = Oai*,

(2.2) (ﬂ a.-) = LJa,-l

hold whenever {a;} C M.
A nonempty subset A C M is called a Boolean algebra (o-algebra) of a fuzzy
quantum space (X, M) if
(i) there are minimal and maximal elements 04 and 14 from A such that for any
a€ A 04 <a<lyandaUat =1, (we recall that 04 and 14 are not crisp
sets, in general);
(ii) A is boolean algebra (o-algebra).

It is clear that 04 # 14. For example, if a is a fuzzy set from M, then A, =
{anat,at,a,aUat} is a Boolean algebra with the minimal and maximal elements
04, =anNat and 14, = aUa?, respectively.

In particular, if z is an f-observable of (X, M), then the range R(z) = {z(E): E €
B(R')} is a Boolean o-algebra of (X, M) with the minimal and maximal elements
Or(z) = z(0) and 1gz) = z(R?).

In accordance with the theory of quantum logics, we say that two elements a,b € M
are:
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(i) orthogonal if a € 1 — b, and we write a L b;
(ii) compatible ifa=anbUandt b=>bNaUbNal, and we write a « b;
(iii) strongly compatible if a « b « at « bt — a, and we write a < b. Two
observables z and y are compatible if z(E) « y(F) for any E, F € B(R!).
The following result has been proved by Dvureéenskij and Riecan [2]:

Theorem 2.2. Let {a;:t € T'} be a system of fuzzy sets from M. The following
assertions are equivalent:

(i) {a:: t € T} is a system of mutually strongly compatible elements;

(ii) a;Ua} = a, Uai for any s,t € T;

(iii) there is a Boolean o-algebra of M containing all {a;:t € T}.

Now we characterize F-observables of a fuzzy quantum space (X, M).

Theorem 2.3. Let z be an F-observable of a fuzzy quantum space (X, M) and let
B, (t) = z((—00,t)), t € R'. Then the system {B(t): t € R} fulfils the following
conditions:

(i) Bz(s) € B:(t) if s < t;
(i) | JB:(t) = q;
t

(iii) () B (t) = a*;
(iv) | B:=(t) = Bu(s);

t<s
(v) Bz(t)U BX(t) = a, where a = X(R') and a* = z(0).

Conversely, if a system {B(t): t € R'} of fuzzy sets of a fuzzy quantum space (X, M)
fulfils the conditions (i)-(v) for some a € M, then there is a unique F-observable z
such that B,(t) = B(t) for any t, and z(R!) = a.

Proof. (i) is trivial.
(i1) Let a = z(R?!), then z((—o0,t)) < a. For every integer n we have

z((~00,n)) < @ and 2(RY) = (| (—00,m)) = | 2((~o0,m)).
. n=1 n=1

Similarly we prove (iii).
(iv) the condition (i) implies B, (t) < Bz(s) for every t < s, so that

B,(s) = gl B: (s - %) .
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(v) It may be proved as follows: B;(t)U BE(t) = z((—00,t) U (—00,1)) = z(R!).
For the fuzzy quantum space (X, M) let now a system {B(t): t € R'} satisfying
(1)-(v) be given. Due to (v), the system {B(t): T € R'} consists of mutually strongly
compatible elements of M so that, according to Theorem 2.2, there is a minimal
Boolean o-algebra & of M containing all B(t)’s. By the Loomis-Sikorski theorem
[10], there is a measurable space (2, %) and a homomorphism h from & onto &/. Let
r1, T2, T3, ... be any distinct enumeration of the rationals. We claim to construct,
by induction, sets A;, As, ... from % such that
(a) h(Ai) = B(r:);
(b) A; C Aj ifr; < i
(o]
(c) ﬂl Ai=0.
1=
We note that if A C B, A € % and if there is a ¢ € & such that h(A) < ¢ < h(B).
then there is a C' € % such that A C C C B, h(C) = c. Indeed, since h maps ¥
onto &, there is a C; € & such that h(Cy) = c. If we define C = (CiNB)UA
then C has the given property. Let A; be any set in & such that h(A;) = B(r1)
Suppose A;, Aa, ..., A, € & have been constructed so that (a) and (b) hold. Wi

shall construct An 41 as follows. Let (i1,...,%n) be the permutation of (1, ..., n) sucl
that r;, < ... < r;,. Then only one of the following conditions holds:

(‘) Tnt1 < T4y,
(2.3) (ii) Tag1 > rin;
(iii) there is a unique k =1, ..., n — 1 such that r;, <rn41 <ri,,,

and by the above observation we can select An4+1 such that A(An41) = B(rn41) and
() Any1 C A5

(i) Ant1 2 4s;

(“1) Al'k c Aﬂ+1 Cc Aih+1y

according to (2.3). Then the system {A;,..., Ap41} fulfils (a) and (b). Thus, by

induction, it follows that there is a sequence {4;} of sets in % with the properties

(a) and (b). As

h(() 45) = () h(45) = [ B(r) = 0,

ji=1 ji=1 j=1
we may replacing A; by A; — () A; if necessary, assume that () A; = 0. We define
i J

an %-measurable function f as follows:

(o]
0 if wg U4
j=1

fw) = ’ oo
inf{rj weE Aj} if we U Aj.
i=1
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The function f is everywhere well-defined and finite. Moreover,

U 4 ifr <0
-10(_ = ri<ri
f ((zo0ims)) U 40@-Ud) if >0,

rj<ry

hence f is #-measurabale and h(f~1((—c0,r))) = B(ri). If define an observable
by z(E) = h(f~'(E)), E € B(R!), then z((—o0,t)) = B(t) for every t € R*. The
equality z;((—o0,t)) = z2((—00,t)) for every t € R! implies z; = z,, hence, the
uniqueness of z is shown and the proof is complete. O

3. EXISTENCE OF A SUM

In accordance with (1.1), we define the sum of two observables as follows.
Definition 3.1. Let z and y be two F-observables of a fuzzy quantum space
(X, M). If the system {B,4y(t): t € R'},
(3.1) Bory () = |J(Bo(r) N Byt = 7)), tE R,
reQ

where @ is the set of all rationals, determines an F-observable z of (X, M), then we
call it the sum of z and y, and we write 2 = z + y.

It is clear that if the sum exists, then it is unique. For the proof of Theorem 3.3

the followings lemma is useful.

Lemma 3.2. Let S be a countable set in R'. For observables z and y let us
denote

(3.2) B, ) = (J(B:z(s) N By(t - 8)),

€S
“then
BZ,,(t) = Beyy(t) foreveryte R

Proof. Wecanshow thatift, 11,1, €S, then By, (t) = UB=+y (tn). Indeed,
UB +y(t") = U U (Bz(s) N By(tn — 8)) =
U (Bz(s)N UBy(tn —-3)) = U (Bz(s) N By(t — 5)).

Let. now n be any integer, then for each s € S there is r = r(s) € Q such that we
have s < r < s+ L. Therefore, B;(s) N By(t - n" —5) < B:(r)NBy(t —r) and
B3, (t—n"1) < zﬂ, (t), B, (1) = UB Sy (t—n71) < Boyy (1) Slmllarly we show

that Byay (1) < B3, (0). o
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Theorem 3.3. For every two F-observables z and y of a fuzzy quantum space
(X, M) their sum exists.

Proof. We show that the system {B;4,(t): t € R'} fulfils the conditions of
Theorem 2.3. The proof of (i), (ii) and (iv) is simple, due to the o-continuity of M,
that is,if a1 < a2 < ... € M, then forany be M, bN(UJa;) =JbNa;.

i i

Calculate:
a=Bz4y(t)UB +y(t) =
= |JB:(r)NBy(t = 1)U [ (B3 (s)UB;(t—5)) =

reQ s€Q

= (UJ(B:(r) N By(t — r)) U(Bs (s) U By (t - 5)) =
= (UJ((B:=(r) U BS (s) U B (t — 8)) N (By(t —r) U By (s) U By (t — 5))).

Since B.(r)U Bi(r) = z(R') and B,(r) U BZ(s) = z(R!) for s < r, and
a= m(U(Bz(r) U By (s) U B (t — 1)) N (By(t — r) U B (s) U By (t — s))U

s r2s
U | (Bz(r) U B () U By (t — 5)) N (By(t — r) U By (s) U B (t — 8))) =
r<s

= ﬂ((m(nl)uzal Lt-s)n(By(t-ru

r2s

UB;(s)UBy L (t—s)N(|J Bz(r)U By (s)UB}(t — 5)) N (y(R') U BX(s))),
r<s
we conclude that

r | simpliest —r 1t —s and UBy(t—r)sz(t-—s).
r2s
Then

a=) ((:(Rl) UBJ(t—s)N ( |J By(t—r)UBF(s)UB}(t— s))

] r2s

. ( U (Bo(r) U BE(s) U BE(t = 8)) 1 (o(R) U B;L(s)))) _

r<s
ﬂ ( (2(R") U BL(t - 5)) N (y(R') U BX(s)) Nz(RY) U BX(t — s)>
N (W(R") U B (s)) =
= ((=(®) UBE(t - ) N (R U BE(s))) =

= (R U By(t = ) N (R U[ ) B:(s)))
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In other words, we have proved
a = (z(R') Uy(®) N (y(R')Uz(9)) = z(R") ny(R'),
which means the strong compatibility of {Bs4y(t): t € R'}, too. To prove
(3.3) () Bety(t) = 2(M)U3(0) = a*,
réR?!

we take into account that, by virtue of the property (v) of Theorem 2.3, { Bz4y(t): t €
R} is a system of mutually strongly compatible elements of a fuzzy quantum space
(X, M). By Lemma 3.2, it suffices to prove (3.3) for t € T, where T is a countable
dense subset of R!. By Theorem 2.2, there exists a Boolean o-algebra A C M
containing all Bg4y(t) for any t € R'. Every Boolean o-algebra A of M is o-
distributive, that is, if T and S are countable sets, then

U ﬂ ags = n U are(t)

teT s€S €eST teT

for any two indexed sequences {ai,:t €T, s € S} C M.
In particular, by Sikorski [10] a Boolean o-algebra A is o-distributive iff for any
a € A, a# 04, and any sequence {a,} C A there exists {e(n)}3%; € {0, 1} such that
o]
an N as™ # 04, where a® = at, al = a,, which is easily verifiable in our case.

n =
n=1

Then
(3:4) N UB:mnBt-m)= |J () (Bz(€(1)) N By (t - €(2))) .

teT reQ €€QT teT

it is clear that

(3.5) N Bets (t) > () Un(B) = 2(R) N y(0) Uz() N y(RY).

Let € € QT, then
(N (B=(€(0) N By(t = €(1)) = (B (€)N [ ) Bu(t — €(2))).

teT teT teT
‘There are two possible cases:
(a) inf €(t) = k > ~oo, then () Bo(e() N () Byt — (1) =
teT teT
=N (B,(‘ﬁ(t))ﬂ N B,(t - ‘K(t))) =
teT teT

= B.(k) N () (By(t - %(1))) =
teT

= Bz (k) Ny(0) < 2(R') 1 () < z(B) U y(0).

(b) inf €(t) = —co, then () B:(%(t)n () By(t—%1) =
€ teT teT
=2(0) Ny(R") < =(0) U y(p).
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For every € € QT, we have

() (B=(€(®) N By(t — €(2))) < 2(0) Uy(),

teT

and taking into account (3.4) and (3.5), the following inequalities hold:

z(8) Uy(0) < () Bz+y (1) < 2(B) Uy(9).

4. PROPERTIES OF THE SUM

In the present part, we establish some of the basic properties of the sum. We
recall that if £ « y, then, according to Dvuregenskij and Rie¢an [3], there exists an
F-observable z and two Borel measurable functions f and g such that ¢ = fo 2,
y=goz.

Theorem 4.1.

(i) ¢ +y =y + z for any two F-observables z and y;

(ii) (t +y) + 2 =z + (y + 2) for any three F-observables z, y and z;
(iii) ifx — y, thenz + y = (f + g) oz provided z = foz,y=goz;
(iv) Let u € R! and put

1 uekE

I,(E) = { v
0 ugkE,
then z + I, = f, oz, where fu(t) =t + u;
(v) a(z + y) = az + ay for any a € R! and all F-observables z and y.

(E € B(RY))

Proof. (i) Lett € R! and denote S; = {t —r: r € Q}. Then S is dense in R!
and using Lemma 3.2, we have

Boyy(t) = | J(Bz(r) N By(t =) = | (By(s) N Ba(t - 5)) = By, (t) = Bys(2).
reQ 3€ES:

(ii) B(='+v)+z (t) = U (Bz'+y (r)nB, (t - ")) =

reQ
=U (U (Bz(s) N By(r — s)) N B, (t — r)) =
reQ s€Q
= J B(s)n (| By(r—s)NB.(t— 1)) =
S€EQ reQ
= J B:(s)n (U B,(r—s)nB,(t-s—(r-s))).
s€EQ reQ
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We denote C, = {r—s: s € Q}, then C, is a countable dense set in R!. Hence, by
Lemma 3.2, we have

U B:(s)N (U By(r—s)NB,((t—s)— (r— s))) =

3€Q reqQ

= U (B=(s) N Byts(r = ) = Buayan(®).
s€Q

(iii) Calculate:

B:l:-}-y (t) = U (.’B((—OO, 1')) n y((—'oovt - 1'))) =

reqQ

= U U (=00, ) N 2(g7 ((—00,t = 7)) =
reqQ

U GEnz(F) =] «(EnF)=

reQ reqQ

=2(J (=00, N g7 (00, t = 7)) =

reqQ
= 2((f +9) 7' ((—00,1))) = (f + 9) 0 z((—00,1)) =
= B(f+g)oz (t)

(iv) Since By, (t —r) =0ift —u < r and By, (t — r) = 1 otherwise, we have

Boyr,®)= |J (0nB(m)u |J (INB.(r) =

r2t—u r{t—u
= |J Bu(r) = Bo(t — u) = fu 0 z((—00,1)).
r{t—u
(v) is evident. O

Remark 4.2. If M consist of crisp subsets, that is, M is a o-algebra of subsets
of M (more precisely, M is a set of all characteristic functions of sets from the given
o-algebra), then the sum of F-observables coincides with the pointwise defined sum.
Indeed, in this case for z and y there are unique mappings u,v: X — R! such that
z(E) = u~Y(E) and y(F) = v=}(F), E,F € B(R!), and (z + y)(E) = (u +v)"}(E)
for any E € B(R!) (see the proof of Theorem 3.3).

Remark 4.3. If O(M) is the set of all F-observables of a fuzzy quantum space
(X, M), then O(M) is a real vector space with respect to the sum.

Remark 4.4. We define the subtraction of F-observables £ and y as z — y =
z + (—y), where (—y)(E) = y({t: —t € E}), E € B(R!).
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Sthrn
SUCET POZOROVATELNYCH VO FUZZY KVANTOVYCH PRIESTOROCH
ANATOLI) DVURECENSKLJ, ANNA TIRPAKOVA

V prici je zavedeny sicet pozorovatelnych vo fuzzy kvantovych priestoroch, ktoré

zovseobeciiuji Kolmogorov pravdepodobnostny priestor, pouzijic idey tedrie fuzzy mnozin.
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