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CONFIDENCE REGIONS IN NONLINEAR REGRESSION MODELS
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Summary. New curvature measures for nonlinear regression models are developed and
methods of their computing are given. Using these measures, more accurate confidence
regions for parameters than those based on linear or quadratic approximations are obtained.

Keywords: Nonlinear regression, confidence regions, weak intrinsic and weak parameter-
effects curvatures.

1. INTRODUCTION

Consider the usual nonlinear model

(1) ytzf(X1,@)+Et t=1)"'1n
where y = (y1,...,yn)’ is a vector of observations, x; = (Zu1,...,Z:) are some
control variables, @ = (6,,...,6,) is a vector of unknown parameters and ¢; are

independent normally distributed random variables, ¢; ~ N(0,02). The function f
is supposed to have a known form, nonlinear in @.
For the model (1) the least squares estimates O are the values of the parameters
which minimize the sum of squares S(@) = i (ye = f(x, @))2, or in vector notation
t=1
S(0) = "y - n(@)"2, where (@) = (r)l(Q), .. .,nﬂ(@))l and 7:(O) = f(x:, @).
Let e = e(@) = y — (@) be the error vector. As shown by Gallant [7], if @
is the true value, then the 100(1 — a)% exact confidence region for @ includes all
values éatisfying e(@) P(O)e(O) < a%x%(p, @) if 0% is known or ¢(@) P(@)e(O) <
ps?F(p,v,a)if o2 is estimated independently by s2. (Here, P is the projection matrix
for the column space of the n x p matrix of partial derivatives of 7 with respect to @.)
Since it is difficult to display exact regions in the case of more than two parameters,
methods of obtaining approximate confidence regions are of considerable value.
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The approximate likelihood region for @ (i.e. the confidence region based on like-
lihood ratio) is defined as the set of values @ for which

) S(@) - 5(0) < 8

where 6 is a number not depending on @. Typically, one would put §2 = c?p? where
¢ = o and ¢ = /x*(p, @) if ¢? is known or ¢ = /pé and c = /F(p,v,a) if ¢*
is estimated by &2 based on v df. (Here, x%(p, @) and F(p,v,a) denote the critical
values of y2—and F-distributions with p, and p and v df and tail area probability
«a, respectively; ¢ is called the standard radius.) As shown by Beale and confirmed
by Bates and Watts in [1], the right hand side of (2) should contain the so-called
intrinsic curvature Ng which, however, can be neglected in practice.
Of course, the simplest approximation to (2) is the L-region

(3) (@ - O)YV'V.(O - 0) < *p?

where V. = | 2116

Box and Coutie [3] recommended another simple region, namely

~, 11 8%s . A
@) ©-0) | 350516 @-0) <2,

as an approximate likelihood region for @ (the so-called CL-region).

Having used a quadratic approximation to the solution locus instead of the usual
linear approximation and curvature measures developed by Bates and Watts [1],
Hamilton et al. [8] gave confidence regions corresponding to ellipsoids on the tangent
plane at the least squares point which are more accurate than the regions (3) and (4).
However, Cook and Witmer [6] showed examples of models for which the Bates-Watts
methodology did not work.

The aim of this article is to develop criteria which enable us to find more accurate
confidence regions than those developed by Bates and Watts [2] and Hamilton et al.
[8]. For this reason the weak intrinsic, weak parameter-effects and total curvatures
are introduced and methods of their computing are given. In the last part of the
article we discuss advantages of our approach.
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2. PARAMETER-EFFECTS ARRAYS

Let A = (4%,),i=1,..,n,j=1,..,pk=1,.., ¢beannx pxgarray. Its
i-th face A, = (A:;.k) is a p X ¢ matrix and its jk-th column A;.k = (A}k, .. .,A;‘k)' is
a n-vector. The array A’ can be written as

. . 1
Al ... Ay, A

. or, equivalently, as :
Ap1 Apq A?,

In what follows we consider the square bracket multiplication introduced by Bates
and Watts [1]. If E is an m x n matrix and T is an n X p X ¢ array, then the elements
of the i-th face M;, i =1, ..., m of the m x p x ¢ array M = [E][T] are E; Tji, j = 1,
..o p, k=1, ... q where E; is the i-th row of E and Tj is the jk-th column of T.

Let E, F, G, H, J, Ube kxn,Ilxpgxk, nxn,rxk and s x n matrices,
respectively. The following properties will be used throughout the paper:

a) [JEJ[AL] = [J][[E)A.]

b) [U][FA..G] = F[U][A..]G (Cook and Goldberg [5])

) F(WA. k)= H[f][A ]k

d) FH(WA. k) = f'(H[H][A.]k)

) [E)laA.] = alE][A’]

f) F(aA.)G =aFA_.G

forall FER"”, heRP, k€R?, aeR!.

Let V. and W, denote the n x p matrix and the n x p x p array of the first and
second derivatives of the model function 7(@) with elements

oni |- ; oni =
Vij = 5—;;]@ and Wj;, = #5;-[@,
respectively.

We assume that the rank of V. is p and V. = UR is the unique orthogonal-
triangular decomposition of V. (R-decomposition), where the columns of the n x p
matrix U form an orthogonal basis for V. and R is an upper triangular matrix with
Ri;; > 0,i=1, ..., p. Then the parameter-effects array for the parameter @ at Ois
defined as follows (see [1]):

(5) AT = [U)[U'W.L]
where L = R™1,
Definition 1. By an n X p X ¢ X r array we understand
Al
A= :
AT,
where Af i = 1, ..., nare p X ¢ X r arrays.
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The premultiplication QA..., the postmultiplication A.. Q, the *-multiplication
Q=A... and the square-bracket multiplication [Q][A...], where Q is a matrix, mean the
summation over the second, third, first subscripts and the superscript, respectively.

Definition 2. The p X p X p X p array
(6) AT = [U[L' « (U'H...L)]

where U, L are as in (5) and H.,, is the n x p X p x p array of the third derivatives
of the model function n with the elements

i On;
v = 50;00,00;

is called the four dimensional parameter-effects array.

3. LIKELIHOOD REGIONS

Let V(4 denote the array with the elements

i O 3
Tikim = 36,56,00:00,

Using the Taylor-series expansion up to the term od degree 4 we obtain

. 1,.. 1 ) 1
(7) e=y-n(@)=¢- (V.<p + 3¢ Wip+ cp' + ('HLp) + QZW)“’“) +.. )

where & = e(0), p = @ — @. Using &'V. = 0 we get

/

o= it (VIV— W ])p+ [(VJP)'(sP’W:.sp) ~ ¥ ()|
®) + |39V + (M) + WA - VO]

In the rest of the article it is assumed that
1) n(®) is a continuous function in @ with finite derivatives up to and including
degree 4 over the whole parameter space 2.
2) The vector 8S(©@)/d@ vanishes only at the one point @ € £2.

3) &(p* (¢'H...p)), &V®Bp(*) and the Beale’s nonlinearity Ng (see [1]) can be
neglected.

From (2) and (8) we obtain
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Lemma 1. Under the above assumptions the approximate likelihood region is

¢ (VIV. - [EIW.])p + ¢ VI(¢'W..p)
1 .
9) + [§<p’ V/(¢' * (¢'H...p) + lew’W?:'wli’] +...< %
where the neclected terms are of degree 5 and higher in ¢ and WT: = [PT][W.,] =
NACAARA A N]E

. . . 2 .
Proof. |lo,W.o|* = l¢'WTll? + ||¢'[l — PTIIW. Jp||” = ll'WT ¢|I2, be-
cause Ng = 0 implies ||¢'AY *p|| = 0, where A_ " is the intrinsic curvature array (see
[1], (2-30)) and consequently |¢'[/ — PT][W..J¢| = 0. |

Put ¢* = Ah, p1 = A1 h, p2 = Azh where h is a unit vector in R? and A\, A1,A2 >0
are such that ¢*, ¢, and 2 are boundary points of the regions (9), (3) and (4),
respectively. Evidently, Ay = (A1)p = ¢p||V.h||™! and A = (A2)p = cp(H (V/V. —

928
[&7W.])h)~ -1/ , because ————[@ = V'V. —[¢][W..]. Inserting ©*\h into (9) we

have
AW (VIV. = [][W.])h+ X3H V!(K'W._h)
(10) + 24 [ W V!(K + (WH. b)) + —||hWT h“’] =¢e?p.

If we now “invert” (10), expressing A as a power series in cp we get

-1
— . W(VIV.—[&IW.)A]"7  cp  ||V.h||W V(KW h)
A=A =(A)p { [ WV'V.h ] ) [h’(V,’V. ~ [3’][W])h]2

2 p?|| V.hl|
8[H(VV. - [¢)W.])h]""*

(11) xh (%h V! (W * (WH...h)) + %Hh'W?:'h[I’)] + }

[swv:(h'w:.h)) — 4 (V'V. - [&][W..])

A
The second factor on the right-hand side of (11), being Ap/(A1)p = (,\—> is the
1)
“radius” ratio that does not depend on the length of h.

Theorem 1. Let d be a unit vector in R?. Then
c2p?
(12) Atd = (M)Ld {1 + a(d) - F(d) + ﬂ(d) +. }
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where

a(d) = (1 - d'Bd)~1/2 — 1,
B =L'[&)W..]L,

I(d) = d'(d'AT"d)/(1 - d'Bd)?,

A(d) = %(1 — d'Bd)~"/? [E)(zz!'(d'A,T_-a/))2 — 4(1 - d'Bd)

1 1
(13) x (gd'(d' « (d'AT ) + led’AT'dllz)] , ()ea = epliLd]l.

Proof. Using the fact that V.Ld = Ud and ||V.Ld|| = 1, we obtain

(14) [(V.Ld)][(Ld)" * ((Ld)'H ..Ld)] = d'(d" * (¢'AT"d)).

Then inserting h = Ld into (11) we get (12). O
Definition 3. AN = "r‘rjlla,x |a(d)], AT = "1<1}"a.x1 £|r(d)|,

A= max |a(d) —fl‘(d)l are called the weak intrinsic, weak parameter-effects and

lldll=1
total curvatures, respectively.

There is a close relationship between the Bates-Watts curvatures and those pro-
posed by us. Definition 3 says that A = "I‘?”ax |a(d)|, a(d) = (1 — d'Bd)~'/? where
=1
B = L'[¢'][W..]L. Using the properties of the square bracket multiplication we obtain
B = [&'][L'W_.L]. For the residual vector & we have

é=Pyé= (N(N'N)"'N')e = NN'é

where the columns of the n x (n — p) matrix N form an orthogonal basis for the space
orthogonal to the tangent plane. Hence

B = [¢'][L'W..L] = [(NN'é)][L'W_.L]
= [¢'N][LINW L] = [¢'M[AT],
i.e. B is the p X p matrix obtained from the square bracket multiplication of the
rotated residual vector N’é and the intrinsic curvature array AN:. It follows that
AV is a function of the intrinsic curvature array proposed by Bates and Watts. The
same argument can be used in the case of AT and A.

Moreover, an inequality holds between AT and the Bates-Wats maximum intrinsic
curvature FT (analogously for AN and and I'V). We have I'T = "m"a.x po||d'AT-d||

(see e.g. [1], [5]). On the other hand,

& d/(dIAT.d))l
AT = r ax I( -
=1 1l @] = 2 ldi=1 (1~ d'Bd))?
c/pé J'AT- F(p,n—p,a) r
< dj| = Y227 b
<=5 e ax [|d"A..d|| = 5
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since 1 — d’Bd = 1. Consequently, AT < %\/F(p,n —p,a)IT.
If we may neglect the term c—gﬁﬂ(d) in (11) then

(15) Ki) -1I<A<AN+AT
Al h

and

(16) (-"-) -1| <AT  VvheRe.
Az 'l

Inserting the different values od d into (12) we obtain the bounds of the approxi-
mate likelihood region.

4. COMPUTING NONLINEARITIES

Evidently AN = max|1 — (1 — X;)~'/2| &~ max }|X;|, where ); are the eigenvalues
of the symmetric matrix B = L'[¢'|[W.]L = U'[6W!, + ... + é.W"]L. For finding
likelihood regions we suggest that A™ can be neglected if it is not greater then 0.03
(cf. [1]).

For calculating AT we note that

KH(WAT:-h) ¢p A
AT e IV APV .
lhi=: 1 (1—WBR)? ~ 2 (1 - h'Bh)?’

where h maximizes |A(h)|, A(h) = ' (h'ATh), A = |A(h)|. Since |[h]| = 1, A(h) gives
a local extremum at a point h* if h* has the same direction as the gradient VA(h).
We have
AA(h)\' K (AT)I
VA(h) = (#) = h’A?:'h + 24 = h'c:.h
’ WALy
where C., = (cfj), with cfj = (AT)f] + 2(A';':);'.k, i,5,k =1, ..., p. Note that A(h) is
an odd function of h. Hence the algorithm for finding h* can be described as follows:
(1) choose an initial direction h;, ||| = 1;
(2) calculate g; = VA(h;) and & = gi/||&ll;
(3) If g/h; < 0.9999 then set hiy1 = (38 + hi)/||38 + hi|| and repeat (2), otherwise
A= |gH(&AT &) (cf. 1))
In practice we choose h; = (1,0,...,0), ..., (0,...,0,1) (715,:!:715,0, . ..,0), .

I
(;}5, ety i715) Y ey (0, ceey 71-2-, :1:715) and compare the results obtained. We claim

. T _ e A
that we have found the global maximum. Then A® = —253————~,——~—~2
(1-gBg:)
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For calculating A we note that A ~ AT if AV < 0.03. When AN > 0.03, then

N 1, cp W(WAT h)
A max || oh 2 (1— WBh)?
) PO Y L.

2 2 (1— h*'Bh*)2 ||’

where h* maximizes l%h’ Bh — %h’ v ATh)| We note that h’Bh is an even function
in h and E(h) = 1#Bh — LW (W AT h) reaches its maximum (minirum) at h* for
/

which h*'(h*’AT*h*) < 0 (> 0). The gradient of £(h) is VE(h) = (%}’l) =

(WB) — £HKC..h. '
The algorithm for getting ¥; = "r'r,lua.x1 X(h) can be described as follows:

(1) Choose an initial direction h*;, ||h*:]| = 1;

(2) calculate b; = —h*; sgn((h*;)' (h*}AT h*}));

(3) calculate g; — VE(h;) and g = gi/l|gil|

(4) if gih; < 0.9999, then set h*; 41 = (38 + hi)/||38: + hi|| and repeat (2), otherwise

1, o cphi(HAT )
By = ghiBhi =3 (1= h;Bhy)?"

The initial directions are chosen as above and the results obtained are compared.
The algorithm for calculating £ = min X(h) is similar but in the second step we
put h; = h*; sgn(h*;(h*/AT h*;)). Then T = max(|Zy],|Z2).

5. ASSESSING THE SIGNIFICANCE OF CURVATURES

We suggest the following rule for the choice of the appropriate confidence region
(cf. [4)).

1) If A <0.15, curvature effects may be ignored and the L-region (3) accepted.

2) If 0.15 < A < 1/3, the L-region (3) is accepted for rough analysis only. Ii
further AT < 0.15, the CL-region (4) should be used.

3) 1f0.15 < A < 1/3, 0.15 < AT, the approximate region (12) is recommended.

4) If 1/3 < A, a suitable reparametrization should be used. Our experience ha:
shown that we ought to calculate A* = Ia(a) - 2r(d) + ff;g’—’ﬁ(&)|, wher
d maximizes Ia(a) - 5.}1‘(3)', in order to obtain more information about th
model.

Example. The Fieller-Creasy problem. Let

nm@)=...=n,(0) =6,
N+1(@) = ... = 12,(0) = 0,0,
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and suppose that o2 is known, 02/n = 1, ¢ = x2 (2;0.05) = 6. It can be shown that

B=0,AN =0,H. =0and (\)g = ﬁg(éf(dl—@2d2)2+(1+é§)2d§)1/2,
1 2

o(d) =0,

9,d? + (1 — O3)d dy — O2d3
_%p(d);\/g@@?dl*‘({ @2)‘1{ 2 203
@1\/1+@%

. 2
c?p? _ 15 2 dy(dy — @2d3)
—5—B(d) = 7 (pT(d)" - 3 (—IT) :

The results for different values of (€, @) are listed in Table 1 (cf. [6]).

TABLE 1
Curvatures in the Fieller-Creasy model

@, IT ¢! AT At
0 033 0.41 0.314 0.485
1.2 035 0.41 0.238 0.324
1.8 048 0.41 0.305 0.431
24 0.63 0.41 0.374 0.559
3.0 0.77 0.41 0.440 0.712

—

oo o] oo [o2] w @’

In the first case the value I'7 (the Bates-Watts parameter-effect curvature) is smaller
than the cutoff ¢=! but A7 is large (> 0.25). By the rule, the L-region is not accepted
which agrees with the findings in [6]. Since AT < 1/3, we construct the region (12).
A* is smaller than 0.5 so we conclude that (12) is acceptable.

In the second case AT is large but not seriously: 0.15 < AT < 0.25, A* is
relatively small (< 0.35). We hope that there is no big mistake in using the L-
region. The L-region in the third case differs from the corresponding exact region.
The region (12), however, agrees with it.

In the last two cases we have AT > 1/3 and A* > 0.5. Neither the L-regions nor
the regions (12) should be used. This, again, agrees with the findings in [6].
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1.5

(b)

-3.0 0.0 3.0

Figure 1. 95% likelihood re-
gion for (1, ¢2) when

a) (Ql, Qz) =(3;0),

b) (01,02) = (8;1.2)

c) (@1,02) = (8;1.8);

| 2 —— L-region, — - — using I'(d)
only, — - -— using I'(d) and B(d),
exact region.
—-1.5 T T T
-3.0 0.0 3.0

6. DiscUSSION

Hamilton et al. [8] have constructed simple confidence regions, but not for the orig-
inal parameter @. Instead, their results concern a parameter 7 which is a nonlinear
function of @.

Clarke [4] presented methods of constructing regions with higher precision. How-
ever, his investigations deal with a single parameter ©;, not with the whole vector ©.

The advantage of our approach is that it leads to confidence regions for the original
parameter ©@. Moreover, our results agree with those obtained by Clarke [4] for p = 1.

It should also be pointed out that the total curvature introduced in Definition 3
has to be taken into account in order to obtain more accurate confidence regions for
parameters in nonlinear regression models.
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Sihrn
OBLASTI SPORAHLIVOSTI PRE NELINEARNE REGRESNE MODELY
RAsTISLAV PoTocky, To VAN BaN
V ¢&linku si uvedené algoritmy na vypocet novomavrhnutych mier zakrivenia pre ne-
linedrne modely. Pomocou tychto mier mozno ziskaf presnejsie oblasti spolahlivosti pre

parametre modelu v porovnani s tymi, ktoré si zaloZené na linedrnej alebo kvadratickej
aproximdcii modelovej funkcie.
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