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Summary. In this paper we analyse an algorithm which is a modification of the so-called
two-level algorithm with overcorrection, published in [2].
We illustrate the efficiency of this algorithm by a model example.
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INTRODUCTION

A standard multigrid algorithm for solving systems of linear algebraic equations
consists of two main parts: the correction of error on the “coarse level” and smooth-
ing. The rate of convergence of the algorithm is strongly dependent on the properties
of the vector which is the correction of the error obteined on the “coarse level”. This
correction usually aproximates the error of solution very well in the sense of its
“progress”, but not in the sense of its “size”. Therefore, the algorithm can be accel-
erated when we multiply the correction by a suitable scalar factor. The main goal
of this paper is to show how to get this scalar factor. The presented algorithm is
the modification of that published in [2]. The convergence analysis is made for the
two-level case.
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1. NOTATION

Consider two finitedimensional real spaces H', H?, where n = dim(Hl), m =
dim(H?), m < n. Let the space H' be equipped with an inner product (.,.); and the
associated norm ||.|i = (., )?, i=1, 2. In most applications H*, i = 1, 2 will be the
Euclidean space.

We are interested in numerical solution & € H! of the problem

(1.1) Au="f,

where f € H', u € H! and A: H! — H! is a linear, symmetric and positive operator.
The problem (1.1) has a unique solution for any f € H!. Let p: H? — H* be a linear -
injective operator called prolongation. Adjoint operators relative to inner products
(- )1, (-, -)2 will be denoted by *.

Define the restriction operator r: H! — H? by

(1.2) r=p,
i.e.
(1.3) (x,py)1 = (rx,y)2 forany x € H', y € H>.

For technical details of the construction of r, p see [3]. Put
(1.4) 2A = rAp.

It is easy to see that 2A is a linear, symmetric and positive operator. Hence we can
define other inner products

(15) (.,.)1 = (A.,.)l,
(1.6) (- )2=(3A., )2
and the associated norms by

(17 Bih=(.%,
(18) =04
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2. STANDARD TWO-LEVEL ALGORITHM

Let
(2.1) S(): H = H!
be an iterative method for the solution of (1.1) satisfying the fix-point condition
(2:2) (@) = a.

For any integer v > 0 we define
(2.3) F() = #(I()
and for » = 0 we put
(2.4) FO() =1,

where 1! is the identity operator on H!. Further we shall suppose that .#(x) can be
written in the form

(2.5) F(x) = Mx + Nf,
where M, N: H! — H?! are linear operators satisfying the consistence condition
(2.6) I' = NA + M.
Note that (2.6) implies (2.2).
Let «* € H! be an arbitrary vector, v; > 0, v > 0 given integers. One iteration

(u* — u*+1) of the standard two-level algorithm is defined as follows:

= #W(f), weH,

(2.7a) U

(2.7p) vii=(CA)" (A —-f), vieH?,
(2.7¢) i:=u—pv: i€H!,

(2.7d) = (), ot e KL

This algorithm is analysed in [1], [3].
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3. ACCELERATED TWO-LEVEL ALGORITHM

Let v; > 0, v, > 0, v € H! be given. One step of the accelerated two-level
algorithm is defined by

(3.1a) i:=2M(d), weH,

(3.1b) vii= (A (AT -f), vIeH?,
(3.1¢) v:=pvl, veH,

(3.1d) G:=0-v, u€H,

(3.1¢) o:=#")(G), @eH,

(3.1f) V=M1, veH,

(3.1g) t:=t(u,v), fE€R (see(3.3)),
(3.1h) t=n—tv, ot eH,

where the number ¢ € R is defined by the condititon

(3.2) I(@—-itv)—a|, = mm{m(u—tv) —af1 }.

It is easy to see that (3.2) holds for

; (Au—-f,v)y ...
3.3 t=+——0"—"— ifv#£0
(3:3) BN #
and for any { € Rif v = 0.

Remark 3.1. If we put f := 0 in (3.1g) instead of £ := ¢(&, V) defined by (3.2)
then we have u't! = & = S(*))(§), i.e. we obtain the same result as by usmg
algorithm (2.7) (see (2. 7d))

4. CONVERGENCE ANALYSIS

Define subspaces S, T of H! by
(4.1) S =Im(p) = {x € H': x = py for some y € H?},
(4.2) T =51 ={xeH: (x,2); = 0 for every z € S}.
Lemma 4.1. T = Ker(rA), where Ker(rA) = {x € H': rAx = 0}.
Proof. The proof consists in the verification of the equality
(4.3) St = Ker(rA).

It is evident that (x,pz); = (rAx, z), for any x € H', z € H2.

Let x € S*. Then (x,pz); = 0 for any z € H?. By virtue of the previous identity
we arrive at rAx = 0, i.e. x € Ker(rA).

Let x € Ker(rA). Then (rAx,z), = 0 for any z € H? and hence we may write
x€ St O
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Let x € H'. We define the error of x by

(4.4) e(x)=x—10

and the defect of x by

(4.5) d(x) = Ax—f.
Note that

(4.6) d(x) = Ae(x).

Lemma 4.2. The following equalities are valid:

(4.7) (i) = M1 e(u'),

(4.8) v = p(rAp) " rAe(D),

(4.9) e(@) = [I' - p(rAp)~'rAJe(a),
(4.10) e(i) = M¥2e(a),

(4.11) e(u't) = M¥2[e(@) = iv],
(4.12) He(u ) = IM"2[e(@) — iv]lh =

= min{[IM**[e(a) ~ tv]l:}.

Proof. The equalities follow immediately. a

Remark 4.1. Let v € H! be given. Using algorithm (2.7) we obtain the
iteration u*+! with an error M“2e(ii) (see Remark 3.1 and (4.11)), using algorithm
(3.1) we obtain the iteration u**+! with an error M*?[e(&) — fv]. According to (4.12)
we have IM*2[e() — iv]ll < IM*2e(@)l:-

Remark 4.2. Let x € H'. Since §,T are A-orthogonal subspaces of H! there
exist unique two vectors xg € S, x7 € T such that x = xs 4+ xy. The following is
true:

IxIE = lxsl? + Mxr i, xslly < Mxll,  lxrll < lixlh.
Lemma 4.3. Let Q = I' — p(rAp)~1rA. Then
(4.13) Qx = x7.

Proof. The proof consists in the verification of the following equalities:

(4.14) QXT = XT,
(4.15) Qxs = 0.

The equality (4.14) follows immediately from Lemma 4.1.
The vector xg € S can be written in the form x5 = pw for some w € H2. Therefore
Qxs = Qpw — p(rAp)~'rApw = 0, which is nothing but (4.15). O
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Note that

(4.16) IQxl: < Ixl:  for all x € HY,
(4.17) 0 < IQxlls < lIxl: for all x € H*\(T US).
Define
1Qxl:
4.18 k(x) = , x#0.
(@18 (=Bl iy

We have k(x) € (0,1) for all x € H!, x # 0 and k(x) € (0,1) for all x € H*\(T U S).
Lemma 4.4. The equality

He(u Dl _ . IM*2[e(i) — tv]lly - . IM7e(d)
4.19 B W _ gy LR Z VI N iG]
(419 [P0 TR e R o]
where e(i) € T, v € S, is valid.
Proof. As e(u) Qe(ir) and v = p(rAp)~irAe(ii), we have e(d) € T,v € S.

We can write l|'('(u_5‘l— in the form

le(w )l _ Bl Be@l: (@l
(4.20) @~ Gl 1@k @

Since e(d) = Qe(ir) we may write

(121) ke(@) = 1O

From the equality (4.7) we obtain

L@l _ IM" ()l
(4.22) le()l — @

and using (4.12) we have

i41 va 4 _
(4.23) me(“: )P = min [im [e(ti) tv]ml'
le(@l,  ter Be(@)ll,
Substituting (4.21), (4.22), (4.23) in formula (4.20) we obtain (4.19). O
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Theorem 1. Let v; > 0, v > 0 be given integers. We shall suppose that there
exists a real number q € (0,1) such that

(4.24) IMx]l; < glixll:  for any x € H.

Then the iterative process given by algorithm (3.1) converges for every u® € H* and
the following inequality holds for any u* € H!:

(4.25) He(u ™+l < ¢+ lle(w))lh.
Proof. The proof follows immediately from Lemma 4.4. (m]
Remark 4.3. Since e(d) = e(i) — v, e(i) € T, v € S we have

(4.26) UvIi} = [1 - £*(e(@))] - Ne(@U-

In what follows we shall suppose that all assumptions of Theorem 1 are satisfied.

Lemma 4.5. Let e(i) € H'\(SU T). Denote

(4.27) o) = W ¢ oy,
ixH:

Put
(4.28) gr = p(e(@)),
(4.29) qs = (p(v),
(4.30) r = p(e(@),
(4.31) k = k(e(d)).
Then the following equality is valid:

] 2 — a2k? — o2(1 — k2)]?
(32) eI = {q%.lﬂ e } @1

Proof. Since e(d) € SUT, we have v £ 0, (i) # 0, k € (0,1). Therefore gr,
s and r are well-defined. From Lemma 4.2 and (3.3) we have

(4.33) He(u*)lh = IM?2[e(@) — iv]ll,

where ~
(M¥2y, M"’e(E/))1
IMeav i

i=

19



Using elementary calculations we obtain

(M¥2v, M¥2 e(ﬁ))f

i+1\w2 _ va o () l2
(4.34) He(u ")y = UM™2e(u)l; — Mo v

Because
IM72 (@)1} = IM**[e(@) + vIIE =
= M”72 e(@)lI} + 2(M*2e(@), M*2v); + IM*2v||} =
= grlle(@)l} + 2(M*2 e(a), M*>v); + glIvil} =
= g7k Jle(D)IT + 2(M*e(u), M¥>v); + ¢5(1 — kP [le(@) I3
and
IM2e(@) I} = r2lle(@)l}

we arrive at

= 1
(4.35) (M*2e(3), M"2v)y = 5" — g}k — g3(1 - k)]
Substituting (4.35) in formula (4.34) we obtain (4.32). O
We denote

(4.36) gr = sup (x),

x€T\{o}
(4.37) gs= sup ¢(x).

x€S\{o}

Since e(d) € T, v € S we have

(4.38) qr
(4.39) gs

)

N IN
CI)' "i‘

Hence ¢r < ¢, §s < ¢*?, ¢ < 1 (see (4.24)).
Consider a real number 7 € (max{gr, s}, 1) and define the set

(4.40) () = {x € H\(0}: p(e(x)) > 7).
Note that & € &/(7) if and only if r > 7.

Theorem 2. Let us suppose that all assumptions of Theorem 1 are valid and let
a real number 7 € (max{qr, §s},1) be given. Then for any u* € H' such that

(4.41) LY € o (F)
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the following error estimate holds:

Be(v )l faao - [~ g h? - 31 - h’)l’} _

——>— < sup —
Be(v)BF ~ neony 4g3(1 - h?)

(4.42)

Proof. Since il € & (7) and §r < ¥, §s < 7 we have g1 < r, g5 < r. Therefore
e(U) ¢ TUS, i.e. the assumptions of Lemma 4.5 hold and we obtain

; 1.2__q2k2_q2 1—k22 .
fe(u I3 = {q:zrlc2 _1 qu(l —SIEZ) ) } be(@)l?

for some k € (0,1). Now, it is easy to see that (4.42) is true. O
We shall consider a special iterative method #(.) defined by

(4.43) FL(x) = (' —wA)x+wf, x€H', we(0,2/p(A)),

where p(A) is the spectral radius of A.
Remark 44. Put

(4.44) M=1"-wA,

"(4.45) N = wl.

Then the iterative method (4.43) can be written in the form (2.5). The condition (2.6)
follows immediately from (4.44), (4.45). Moreover, it is easy to see that the iterative
method (4.43) satisfies the condition (4.24) with the constant ¢ = max{|1—wAmin(A)|,
|1—wp(A)]} < 1, where Amin(A) is the least eigenvalue of A. Of course, all eigenvalues
are real and positive numbers, because A is a symmetric and positive operator.

Lemma 4.6. Let the iterative method %(.) be given by (4.43). Then the in-
equality

(4.46) IME+Ea B, Relly > IMEoxy EME Xl
holds for any integers £, > 0, £&2 > 0 and x € H*.

Proof. Let {\}%,(n = dim(H')) be the spectrum of A and {v}-, the
sequence of the corresponding eigenvectors such that ||v;||1 = const, 1, 2, ..., n. The
operator M (see (4.44)) has the same eigenvectors and the eigenvalues

(4.47) {1-wh}L,.

The vector x € H! can be decomposed as follows:

n
(4.48) X = Za,-v,-, a; €ER,i=1,2...,n.
i=1 ’
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Then the inequality (4.46) can be written in the form
n n

(4.49) {2 Ml - wr)a*ePa? {3 Mial} >
i=1 i=1

> (3 M(1 - wh)Pad) - (2 M1 - wA)oad).

Put

4.50 bi = Ma?, i=1,2,...,n,
(4.50) ;

(4.51) a=1-wk, i=12 ... ,n.

Of course, b; > 0 for i =1, 2, ..., n. We shall prove that the inequality

n

(4.52) (35 5) (35 biaXE+) > (55 b,a22) (3 biaZ?)
i=1 1 i=1 i=1

1=
is valid for any sequence {b;}7,, b; > 0. Using elementary calculations we obtain
n n
(4.53) 3 bibjaf €t 5 5™ pbjaralt.
i,5=1 i,j=1
Since
n n n
Z b‘,bja?(€1+fi) _ Zb?a?(fl‘*'fa) - E bibj(ai?(fx+€:) + a?(€x+€z))
ij=1 i=1 i=1,j<i
and
n n n
E b,-b,-a?f’aff‘ _ Zb‘?a?(fﬁ'f?) - E b;bj(a,?f‘aff“ + a?fza;&)
i,j=1 i=1 1=1,j<i
we arrive at
n
(4.54) Z b‘bj(a?(f1+€2) + a?(fl"'&)) > Z b;bj(afe‘af" + a;{.’fna.’?&).
i=1,j<i i=1,j<i
The inequality (4.54) holds for any {b;}?_;, b; > 0, because we have

a?(fﬁ-fz) + a?(€1+fn) _ a?é’xu;fn _ a?fna?& = (a?& _ aj?fz) . (a?El _ a]?fx) >0

for any sequence {a;}7;.
Therefore inequalities (4.53), (4.52), (4.49) and (4.46) hold too.
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Theorem 3. Let #(.) be given by (4.43),v1 2 0, vo = 1, 7 € (max{§r,ds},1).

Put
,'—.2 —_ q‘? h2 — q-2(1 - h2)]2
(4.55 G(¥,qr,qs) = sup {q‘zhz—[ T S }
) (7, qr ) he(0,1) T 4‘1?;(1 — h%)
Then the error estimate
(4.56) Ne(v"* I} < max{gF#**, G(F, dr,ds)} He(v")I}
holds.
Proof. We shall consider the following cases:
(i) e w(r),
(i) (@) =0,

(i) e(@) #0, u¢ (F).

ad (i). According to Remark 4.4 the assumptions of Theorem 1 are satisfied.
Since & = S (u') € &/(7), the assumptions of Theorem 2 are fulfilled, too, and

we immediately obtain

(4.57) le(™* )2 < G(F, 37, s) Be(u))3.

ad (ii). Since e(d) = 0, we have e(d) = Qe() = 0. From (4.11) we arrive

e(u*+1) = 0. Then (4.56) is trivially satisfied.

ad (iii). Since U ¢ &/(7) and e(@) # 0, we may write p(e(#)) < r. Put x
Mée(u'), &, = 1, & = vy — €, where £ is an integer, 0 < € < v1. On the basis

(4.46) we obtain

(4.58) IMIME ()l - IM* el < IMIM”* ()]l - EMEe(u)ls-

However, e(i) = M“1e(u') # 0. Therefore Mfe(u‘) #0forany £ =0,1, ..., v and

we may write

IMMEe(u))Illy _ IMIM*2 e(w)]l

4.59 )| FRP )L b
(4.59) IME(l S M)l
£§=0,1,..., . Since v, = 1, we have

MM -
(4.60) p(e()) = Mo e (@) <T.

We will write [M”*e(u)|l; in the form
MM~ el IM[M**~2e(u)]lh
M =te(u)lls M ~2e(u)ly
IMIM° ()l (i
x S fle(ut)
IMee(u)llx

(4.61) IM**e(u)lly =
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From (4.59), (4.60), (4.61), and (4.7) we obtain

(4.62) Be(@l: < ™ He(v))l:-

By virtue of (4.12) we have

(4.63) Be(w™* )l < IM2e(@)ls-
Further

(4.64) He(@)l < Be(@)ls,
(4.65) IMe(@)lh < rle@h.
From (4.62), (4.63), (4.64), (4.65) we immediately obtain
(4.66) Be( )i < o Re(v') -

Therefore (4.55) holds.

5. A MODEL EXAMPLE

Let m be an integer. Put n=3m,m=m—-1,n=n-1,
(5.1) H' = E",
(5.2) : H?=E™,
where E¥ is the k-dimensional Euclidean space.
We consider the problem (1.1), where A is the n x n matrix defined as follows

2 -1
-1 2 -1
-1 2 -1
(5.3) A= .. .
-1 2 -1
-1 2
Define the prolongation
0
X )
1
1
1
1 1
(5.4) P=3 1 (of type n x m).
1
1
1
\ 0
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According to (1.3) we have

1110

(of type m x n). Let #(.) be given by (4.43),w = §, i.e.

1 1 1 n
(5.6) L(x)=(l —§A)x+§f, x € E",
where ! is the identity n x n matrix. From (1.4) we obtain

(5.7) ZAZ% (of type m x m).

The proof of the following identity may be found in the paper [1]:

(5.8) sup [IMQJ? = 2
m 3

(see[1]: (5.6a), (5.1), (5.2), (2.10a), (2.8), (2.1). According to Lemma 4.3 and (4.36)
we have

(5.9) ¢3 < - for any integer m

[T )

It is well-known that the eigenvectors of A are the vectors with the entries
(5.10) (w); = sin ('—Jﬁl) ij=1,2..,n
and the corresponding eigenvalues are

(5.11) A; = 4sin? (%) i=1,2,...,n.

the eigenvectors v? of %A are the vectors with the entries
(5.12) (v3); = sin (%}) ij=1,2,...,m
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and the spectrum of %A is
(5.13) ,\,-:gsin2 (%) i=1,2,... m

Lemma 5.1. The following equality is valid:

1
(5.14) PV.’2 = §(c.~v,- — Com—iVam—i + Cam4iVom4i), 1=1,2,.. .,m,
where
k
(5.15) ck=1+2cos<—ﬁ1[), k=1,2,...n

For the proof see [1].
Lemma 5.2. The vectors Mp , Mpv L,J=1,2,...,m,i+#jare A-érthogonal. 4

Since A, M have the same eigenvectors, the proof follows from Lemma

Proof.
5.1 immediately. O
Lemma 5.3. The following equality holds:
_ mMPV,‘Zml
(5.16) gs =, max I
Proof. An arbitrary vector x € S can be written as
m
(5.17) x=Za.-pv,—2, aGER, i=12,....m
According to Lemma 5.2 we arrive at
m
(5.18) IMxI} = > aZIMpv? .
i=1
Therefore we have
IMpy; ﬂh
(5.19) IMx? < (_r}la.xm Tov? ATITE EaZMpvzmz
Since
m
(5-20) [N HEDIH [V
i=1
we obtain
2 2
(5.21) M o 1"—“'1—"2"_"’1
mxml i=l..,m  pyf m1
Consider j € {1,2,...,m} such that
mpvjsz i=1,...,m mpv;"m%
and put z = pvf. Then (5.21), (5.22) imply (5.16). 0
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Lemma 5.4. The equality

5.23 j2 = =
( ) ) ds 3
holds for any integer m.
Proof. It is easy to prove that
(5.24) Ievili = IV, i=1,2,...,m,
5.25 vlif=2a, i=1,2,...,n,
1
(5.26) WG =2m, i=1,2,...,m
i Gaidam—i  Bmyidamsi
(5:27) o= o - o !
1 1 1
(5.28) 1- 5,\,-)2 +(1- §,\,,7,_,-)2 +(1- -3-,\2m+,-)2 =1.

According to Lemma 5.1, (5.24), (5.25) and (5.26) we arrive at

IMpv2 2 1 1
(629) oA = graglel - ghPhs
1 1
+ moi(1 = g)‘zm—i)zl\zm—i + (1= 5/\2m+s)2/\2m+s]-

Using (5.27), (5.28) we obtain
IMpvZll} 1

5.30 et = = = .
( ) llpvizm% 3y 1:2) ,
From (5.16) and (5.30) we conclude (5.23). 0

Since we know that g3 < 2 and g% = } for any integer /1, we can use Theorem
2 and Theorem 3 for the error estimate of the iterative process given by algorithm
(3.1). In both cases we need to know the value G(F, ¢r, ds) (see (4.55), (4.56) and
(4.42)).

TABLE 1. (Theoretical results, independent of m.)

7 G(F,qr,3s)
0.85 0.300
0.90 0.200
0.95 0.100
0.98 0.040
0.99 0.020
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TABLE 2. (Numerical results, i = 900, m = 300.)

Algorithm(2.7) Algorithm (3.1)
i Be()l He(u)I i
0 0.547631 x 10~2 0.547631 x 10~2
vy =3 1 0.251916 x 10~2 0.138005 x 10=* | 1.97929
2 0.110962 x 10~? 0.170185 x 10=6 | 1.02789
vy =1 3 0.488981 x 1072 0.194823 x 103 | 1.85861
4 0.215570 x 10~3 0.299069 x 10-1°| 1.01789
0 0.547631 x 102 0.547631 x 10~2
v=3 1 0.242473 x 10~2 0.138005 x 10=* | 1.97929
2 0.107420 x 10~2 0.170185 x 10=5 | 1.02789
vy =13 3 0.476081 x 103 0.194823 x 10~3 | 1.85861
4 0.211079 x 103 0.299069 x 10~1%| 1.01789
0 0.547631 x 10~2 0.547631 x 102
vn=>5 1 0.242466 x 10~2 0.138001 x 10~* | 1.97929
2 0.107398 x 10~2 0.141713 x 10=¢ | 1.12114
vy =3 3 0.475879 x 103 0.512204 x 10~° | 1.97739
4 0.210943 x 10~* 0.396811 x 10~ | 1.07900
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MODIFIKACE DVOJUROVNOVEHO ALGORITMU SE SUPERKOREKCH

V préci je navrien a analyzovan algoritmus, ktery je modifikaci tzv. dvojiroviiového
algoritmu se superkorekci, ktery byl publikovdn v prici [2]. Uéinnost je ilustrovidna na
modelovém piikladé.
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