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Summary. A minimization of a cost functional with respect to a part of a boundary is con-
sidered for an elasto-plastic axisymmetric body obeying Hencky’s law. The principle of Haar-
Karman and piecewise linear stress approximations are used to solve the state problem. A con-
vergence result and the existence of an optimal boundary is proved.

Keywords: domain optimization, control of variational inequalities, Hencky’s law of elasto-
plasticity.

AMS Subject class: 65K 10, 65N30, 73E99.

INTRODUCTION

In the present paper we solve the following optimal design problem. Given body
forces, surface loads and material characteristics of an elasto-plastic axisymmetric
body, find the shape of its meridian section such that a cost functional is minimized.
The cost functional is defined by an integral of the yield function and either zero
displacements or zero surface tractions are prescribed on the unknown part of the
boundary.

One of the simplest mathematical models describing the elasto-plastic behaviour
of solid bodies is given by the constituent law of Hencky (see e.g. [1]). The classical
boundary value problems can be formulated in terms of a variational inequality
by means of stresses, i.e. by Haar-Karman principle.

Extending some ideas of Falk and Mercier [2], we introduce piecewise linear
approximations of the stress field and of the unknown boundary to define approximate
optimal design problems. The main result of the paper is a convergence analysis of
the approximate solutions and the existence proofs for both the approximate and the
original optimization problems.

The paper represents a continuation of some previous author’s results in the field
of shape optimization [3], [4], [5]. [7]-
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1. Formulations of the optimization problems

Let us recall some basic relations of the elasto-plastic bodies obeying the law
of Hencky.

Let a bounded elasto-plastic body occupy an axisymmetric domain = R® with
Lipschitz boundary, which is generated by rotation of a two-dimensional domain D
about the x; = z — axis. If all the data of the problem are axisymmetric, we pass
to the cylindrical coordinate system (r, z, 3). The physical components of the
displacement-vector u are denoted by u, = u, u, = w (uy = 0).

The space of displacement functions with finite energy is then

H#(D) = {v = (u,w)e (W} *(D) n L{,(D)) x W}*(D)},

2 2
Vllw) = (J [uz/r2 + (élf> + <6_u> ow?
D or oz
2 2 /2
+ <?—V> + <g»_v> ] rdr dz>] : .
r z

Henceforth W}*(D), k = 1,2, ..., denotes the weighted Sobolev space with the
norm )

Jularo = (G X [0 draz)
Lf,,(D) is the space of functions with the following norm
lu]lomp = (Jp u?r" drdz)'/?,

where n is an integer; L(I"), where I' < D = I'y, I', being the intersection of 0D
with the z-axis, is defined analogously on the boundary of D.

We define R, as the space of symmetric 3 x 3 matrices such that 013 = 0,3, =0
and identify indices r, z, 3 with 1,2, 3. Let the repeated index imply summation
over the range 1, 2, 3. Then let

lo| = (cij0:)""?, oeR,.
Assume that a yield function f: R, — R is given, which is convex, Lipschitz and
(1) (o) = |2/ (o)
holds for all Le R, o € R,.

Example 1. These conditions are fulfilled by the von Mises function

f(o) = const ||e?|| , const > 0,
where

oty = 6;; — 36;;0,m, (J;; = Kronecker’s delta)

is the stress-deviator. Note, that

f(o) = const (|lo]|*> = 3(c,m)?)""*. a
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We introduce the following space
S(D) = {r: D> R,|1,;€e A(D); i,j = 1,2,3}
and the scalar product
(o,e)p = [poerdrdz, o,eeS(D),
lolorn = <o, 025
Moreover, we shall use also the energy scalar product
(0,7)p = {bo, t)p
and the associated norm

lolo = (0, 0)5”,

where b: S(D) — S(D) is the isomorphism defined by the generalized Hooke’s law,
1.e.,
e = b0'<f»> eij = bijkmo-km .

We assume that positive constants by, b, exist such that
(2) bollols.r.0 = olls =< bi]olG,n VoeS(D)
and

<bo, ), = {0, bt), Vo,1€S(D).
Assume that

ob~Ty=TI,uTl,, I'nl,=0.

Let a body force-vector F = (F,, F,) e [LX(D)]* and a surface traction-vector g =
= (g,, 9.) € [ Li(T,)]* be given.
We define the set of plastically admissible stress fields

P(D) = {zeS(D)|f(x) < 1 ae. in D}
and the set of statically admissible (equilibriated) stress fields

E(D) = {te S(D)| (. e(v)>p = Fp(v) VveV(D)},

where
dufor, 3(oufoz + owlor), O
e(v) = owloz 0
sym. ufr

V(D) = {ve #(D)|v = 0 on I} (in the sense of traces-see e.g. [4] — Lemma 1),
Fo(v) = [p(Fu + Fw)rdrdz + [, (g,u + g.w)rds.

The Haar-Kdrmdn principle says that the actual stress field minimizes the
complementary energy

H+l5

471



over the set P(D) n E(D). (For the derivation of the principle — see [1] or [2]).
The principle is equivalent to the following variational inequality: find o € P(D) n
N E(D) such that

(3) (6,1 —0)p 20 VreP(D)n E(D).

Passing to the shape optimization problem, we introduce the following set of
admissible design variables

Uy = {ae C'([0, 1])| Umin < %(2) £ Lo
[d?x/dz?| < C, ae., [5o*(z)dz = Cs},

dofdz] £ Cy,

where o0, %max» C1> C, and Cj are given positive constants. (Here C''! denotes
the space of differentiable functions, the derivatives of which are Lipschitz in the
interval [0, 1]).

We shall consider a class of domains D(«), where o € U,4 and

D(x) ={(r,2)]0 <z <1, 0<r<afz)}.

For any o € U,q, the graph I'(a) of the function « will concide either with the part I, -
(Case I) or with I, (Case II).

The function « has to be determined from the following Optimal Design Problem:

(4) o = arg min #(B, a(B)),

BeUaa

where
j(ﬁ’ O’) = j‘D(ﬂ) fZ(O') rdrdz

and o(p) is the solution of the variational inequality (3) on D = D().

In what follows, we shall present some conditions, sufficient for unique solvability
of (3) for all . € U,,.

Assume that

bijim € L(D)
are given and (2) holds for all ¢ € S(D), where
D=1(0,8) x (0, 1), &> tpay -
Case I. Assume that forces
Fe[LYD)]* and ge[LXdD =Ty = I,)]?
are given, where

Iy ={(r,z)|r=0,2e(0,1)}, I'y={(r,z)|r=20, ze(0,1)}.
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(Al) Moreover, assume that a tensor field ¢° E(D) and constants C;, > 0, ¢ > 0
exist such that

(42) ”ao(r, z) — (1, z)” < C,_|r — t[
holds for almost all z € (0, 1) and all r, t € [0, 5],
(43) (1 +¢)e®eP(D).

Case Il. Assume that Fe [L2(D)]?, g = 0,
(A44) a tensor field ¢° € S(D) exists such that

0°|p € E(D(2)) Vae Ul
where
Uzg = {2e CV ([0, 1]ty < (2) <

(42) and (A43) hold.

I
max j

Example 2. (for Case II). Let us consider
g=0 and F=(F,0),
F, = w’ro(r, z),
(centrifugal forces only), where @ = const. and the density g satisfies the following

conditions
eeL*(D). |or.z) — oft. 2)| < Clr — 1|
fora.a.ze(0,1)and all r, 1€ [0, §].
We define ¢7; = 0 with the exception of

o _
33 = rF,.

It is then easy to verify (42), (43), (44) for sufficiently small norm |[F,| «p). using
also the property (1) of the yield function.

Proposition 1.1. The Haar-Kdrmdn principle has a unique solution for any
D(a), o € U,.

Proof. The set E(D(x)) n P(D()) is non-empty, as follows from the assumptions.
(Note that (1) implies f(0) = 0 so that 0e P(D(x)) and ¢°|p,, € P(D(x)) follows
from (A3), since P(D(x)) is convex.)

In Case I we use the fact that any restriction 6°|,,, € E(D(«)). Indeed, an extension
v~ of v e V(D(x)) by zero belongs to V(D) and

<0° e(V))pe) = (a® e(v )p = Fp(v7) = Fpw(¥) ‘

follows from (A1).

The sets E(D(«)) and P(D(x)) are convex and closed in S(D(«)), the functional of
complementary energy is quadratic, strictly convex. Hence the existence of a unique
minimizer o(a) follows.
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2. Approximations by piecewise linear stress fields

Let N be a positive integer and h = 1/N. We define 4; = [(j — 1) h, jh], j =
=12,..,N,

Uzd = {ah € C(O)’l([os 1])Iamin g (Zh(Z) é <xmax ’
o|s, € Py(4;) V), |doy/dz] £ Cy,

|6o4(jR)| S C,, j=1,...N =1, [§o7dz=C,},
where

Spou(jh) = ™ *[au((j + 1) B) — 204(jh) + o((j — 1) h)]

and P,(4;) denotes the set of linear polynomials on 4;. (Note that ULy ¢ U,y).

Let D, = D(w,) for o, € Uly. The polygonal domain D, will be carved into triangles
by the following way. We chose a, € (0, ,,;,) and introduce a uniform triangulation
of the rectangle # = [0, «,| x [0, 1], which is independent of a,, if h is fixed.

In the remaining part D, — & let the nodal points divide the segments [ao, a,(jh)],
(j =0,1,..., N) into M equal segments, where

M =1 + [(0max — %) N]

and the brackets denote the integer part. Consequently, one obtains a strongly
regular family {7 ()}, h - 0, o, € Uk, of triangulations.
Let us consider the space of linear finite elements

Vi(Dr) = {vi = (un, wa) € [C(€¢ D) *|(unf7) |7 € Py(T)
wilre Py(T) VTeT(w), v, =0 on TI,}.

(Here T denotes any triangle.)
Note that V,(D,) = V(D,) and u, = 0 on I',, follows from v, € V(D,).
The stress field will be approximated by means of the following space

Hy(D,) = {t" e S(D,)|chi|lr e P{(T), i,j=1,2,3, VTeT ()} .
We introduce an external approximation of the set E(D,) as follows
E\(D,) = {¢" € H(D,)| <", e(v\)>p, = Fp,(vi) Vvi€ Vi(D))} .

Instead of the problem (3) we shall solve the following Approximate State Problem:
find ¢" € E,(D,) n P,,(D,) such that

(6) (", " — g, =0 Vi Ey(D,) A Pu(Dy)
where 7 is a positive parameter and

Pu(D) = {2 H(D)] [, (F(%) = 1)* rdrdz < n}.
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Lemma 2.1. Let r,: S(D,) — H,(D,) be the projection mapping defined by means
of the equation

7 {ryt — 1,6y, =0 VYo" e Hy(D,).
Then for any t° € P(D) a function hy(n, t°) exists such that
h < ho(ﬂ’ ‘Co) = rh(ToIDh) € Ph'I(Dh) .

Proof. The triangulations 7 ,(«,) of D, can be extended to D = D, in such a way
that the extended triangulations {7 ,(«,, D)}, h — 0, , € U’;, generate a regular
family. Let the projections r, be extended to map S(D) into H,(D) in the corresponding
way.

Then

(8) [rsz® = °o,p0 >0, h—0.
For any g € L(D) and any & > 0 there exists g, € C*(%¢ D) such that

lg = gcllorn < ()2
It is readily seen that r,,gIT, where T'is any triangle of 7 ,(a, ﬁ), coincides with the
Li(T)-projection of g|y into Py(T). Therefore
(9) ”g - rthO,r,T = Hg - rhga”O,r,T = ”g - gel]O,r,T +
+ ugz - rhgeuo,r,r
follows from the optimality of the L(T)-projection.

We may compare r,g, with the linear Lagrange interpolate 7,9, on any triangle
Te 7 (e, D). Thus we obtain

(10) ZF: "ge - rhgeﬂé,r,T .—<_ ; Uga - 7thg.*:”(.z),r,T =

= "ge - nhge”(%,r,ﬁ = Ch4Ig2 ;,r,ﬁ

where the latter estimate can be derived via the argument of Lemma 6.1 and 6.2
of [8]. Combining (9), (10), we arrive at

(11) lg = rgloyp—0, R—0.

Applying (11) to every components of the tensor 7°, we obtain (8).
Since

(f(re®) = D" < (f(r®) = f(O)" + (F(°) - )T =

< [f(re®) = 1)

(f(z°) = 1)* =0 ae. in D,

by assumption, we obtain
fo, (f(rs7°) = D* rdrdz £ [p, |[f(rz°) — f(z%)| rdrdz <
< CClrt° = Popn =1

for h < hy(n, <°), using (8).

where
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Lemma 2.2. The set P,,(D,) is closed and convex in S(D,,).
Proof. 1° Let t" € Py, (D)), =" - 7 in S(D,) for n — oo. Since

(f() = D" = [f(0) = S()] + (f) = D7,

we may write
p, (f(x) = D* rdrdz < [p, |f(x) = f(z")| rdrdz +n Vn.
Passing with n — oo, the integral on the right-hand side tends to zero, since
§on |f(7) = f&)| rdrdz £ Cllt — "||o,p, ~ 0.

Consequently, t € P,,(D,) follows, as H,(D,) is a closed subspace of S(D).

2° Let us consider o € P,,(D,) and 1 € P,,(D,), te [0, 1].
Then

flto + (1 = t)1) - 1 < 1[f(o) = 1] + (1 — 1) [f(z) — 1]

and therefore \
[0 + (1 = )2) = 11" = d[f0) — 1]* + (1 = ) [(0) — 1]*
holds a.e. in D,. Integrating, we obtain
to + (1 — t) v e Py (D).
Lemma 2.3. There exists a function hy(n) such that the problem (6) has a unique
solution for any n > 0, h < hy(n), o, € Uly.
Proof. By assumptions (A1), (44), (43), there exists
0°(ay) € E(D,) 0 P(D,)
for any h — 0, a, € Uly. (We define
1) o) =)
Using Lemma 2.1, we obtain
r0°(e) € Py (D)) if h < ho(n, 00) = hy(n) .
Moreover, since e(v,) € H,(D,) for v, € V,(D,) = V(D,),
<rio®(em)s €(Va)>p, = <o%(), e(va)>p, = Fp,(¥4) -

Consequently, 7,6%;) € E,(D,) and the set E,(D,) 0 P,,(D,) is non-empty. Since
it is also closed and convex in S(D,) by virtue of Lemma 2.2, the unique solvability
of the problem (6) follows.

Proposition 2.1. Let {a,}, h — 0, be a sequence of a, € Uly such that a, > a in

c([o, 1).

476



Then a function hy(n) exists such that if n —» 0, h — 0, h < hy(n), then
6" - a(a) in S(D),

where 6™ is the solution of the.approximate problem (6), extended by zero to the

domain D ~ D(a,) and o(«) is the solution of the problem (3) on D(x), extended
by zero to D = D(a).

Proof. In what follows we assume that n — 0, h —> 0, h < h(n).
1° We may insert
™ = r,0%a,)
into (6) (cf. the proof of Lemma 2.3) to obtain
lo" 5, = (o™ rig®(@))o, = 0", [110°(@)]n, -

Therefore, cancelling and using the inequalities (2), (7) and (A1), (44), we have
(using (12) again)

b6 " o.r.0, = o™, = |70 (e)]ln, =
< b o%(@)]o.r.p, = Cb? .

Consequently, the sequence {5""’} is bounded, as

(14) 16" lo,r,0 < C(b4[bo)"* Vh, 1.
There exists a subsequence (and we shall denote it by the same symbol) such that
(15) " — g (weakly) in S(D), oeS(D).

2° We can show that
(16) c6=0 ae in D= D).
Assume that
lollosar >0

on some set M = D = D(«), meas M > 0.
Introducing the characteristic function y,, of M, we may write

5", 130} = K, 73,0 17010 [l ppnse =0
by virtue of (14) and because meas (D, n M) - 0. On the other hand,
@™, 1mo>p = <o, xn0>p = o5 > 0

and we arrive at a contradiction.
3° Let us show that

o|p € E(D(2)) .
Let a v e V(D(x)) be given. We construct an extension v~ e #(D) by zero in Case I
and symmetric with respect to I'(«) in the r-direction in Case II, respectively.
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There exists a sequence {v,}, v, = (u,, w,), » > 0, such that v, e [C*(%/ D)]?,
v, = v~ in #(D) and

Case I: suppv, N (D = D(a)) =0,
Case II:  suppu,n (0D ~Iy) =0
suppw, N (0D = I'y = I'y) = 0.

(For the proof — see [5] — Lemma 1.3, p. 227).
Then v,|p, € V(D,) Vh, %, (h < hy(x) in Case I). Let us introduce the interpolation

n: [C(6¢ D)])? n #(D)) - V,(D),

using the triangulation 7 ,(a,, D), introduced in the proof of Lemma 2.1. Let % be
fixed. Then u,/r = w, € C*(%¢¢ D) and we define

(V) = (mhu,, Tw,,) ,
mu, = r(l,w,),
mw, = Iw,

and I, is the standard piecewise linear interpolation.

We have
(V)b € Vi(Ds) . e(m(v..))|o, € Hi(Dy)
and
(17) 6", e(mi(v.))>p = Fp,(ml(¥s)) -
We can prove that
(18) e(myv,)) > e(v,) in S(D) for h—0.

In fact, denoting
({5 (w?[r?* + (0ufor)* + (0u[0z)?) r dr dz)'/? = [lu[x,p) »
we have (cf. [6] — Lemmas 5.1 and 5.9)

(19) [ = wlxio) = [r{Tios = @) x.0) < Chlonz.
and (cf. [8] — Lemma 5.9)
(20) ”TEiW - Wx”l,r,f) é Ch”WxHZ,r,D .

Combining (18) and (19), (20), the convergence (18) can be derived. Moreover,
we may write e.g. in Case II — Example 2

(21) [‘g'—l)n(nh(vx)) - gD(z)(vx)| =
< |fp, Fmju, — u,) rdrdz| +
+ ”D;. Fruxr drdz — jp(a) F,.u,cr dr dZI <
< [F o [Tt = teflorn +

[ 4o, Dea) ]F,u,] rdrdz—->0, h—>0,
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where 4(D,, D(a)) = (D, =~ D(x)) v (D(2) = D,) and
|7, — wforn < Chlw,|, »

holds due to the fact, that
suppw, N Ty = 0.

The other integrals occurring in %, (m,(v,,)) (in Case I) can be treated in a parallel
way, using also the Trace theorem (cf. e.g. [4] — Lemma 1) and (18).

Passing to the limit with # - 0, h — 0 in (17) and using the weak convergence
(15) together with (18), (21), we obtain

{0, e(vx)>D(a) = ‘g;D(u)(vx) .
Passing to the limit with % — 0, we arrive at

0, e(¥)>pw) = Fpw(¥)
since

v, > v~ in #(D)=elv,)—>ev) in S(D),

”ux - u”O,r.D(a} é "ux - ﬁ”o.r.f) é 5”“)( - ﬁ”o.l/r,b
and

F (V) = Fpw(v) -
Consequently,
0| € E(D(x)) .
4° We can show that
0lpw € P(D(2) .
In fact, the functional
jit o Jp (f(7) = )" rdrdz
is convex and continuous on S(D), since for T — 1 we have
li®) = i@ = [ |(7(x) = ) = (F(") = )*|rdrdz =
< [o[f(2) = 1) rdrdz < C,Clle = 0,0 = 0.
Consequently, j is weakly lower semicontinuous. Using also (16), we may write
fow (f(6) = 1)* rdrdz = j(s) < liminf j(6") =

n—=0,h—0

= liminf [, (f(¢") — 1)* rdrdz < limn =0.
Therefore
f6) <1 ae.in D(x).
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5° Let us verify that o|D(a) is a solution of the problem (3).
Let a T e P(D(x) n E(D(x)) be given. We define ¢°(a)) = 6°|p 4,

w=1—-0%0) in D), w=0 in D= D),

and distinguish the two cases of boundary conditions, in what follows.
Case I. Let us introduce a positive parameter A and introduce k = 1 + 4,

w¥(r, z) = Lo(rfk, z)
by means of the formulas

wi(r, z) = a;(2) wi(r[k, z) (no sum), i,j=1,2,3,
where
ag(A) = a33(A) =1, ay(4) = k™2, ap(A)=k".

Then we deduce
(22) fp, @he(v)rdrdz =0 VYveV(D,)

for all h < hy(2).
In fact, denoting

D,=kD(a)={(r2)]0<r<kuafz), 0<z<1},
and using new variables

o=rlk, { =z,

we obtain

(23) ve V(D,) = [p, oje; (v)rdrdz =
= [p, (Hw);; (r[k, z) e;(v(r, 2)) rdr dz =
= ID(z) aijwij(gs C) eij(V*(Q’ C))kzg dQ dg =
= [pw k20 e,(v¥) kKPododl = 0,

where

ve = (u*, w¥), u*(o, ) = ku(ke, (), w*(o, () = w(ke, ().
Here we have used the fact, that
D, <= D; Vh < hy(2) and v*eV(D(2)).
Extending v € V(D)) by zero to v~ e V(D,), (22) follows from (23).
Case Il. Let us define
o*(r, z) = Adolkr, z)
by means of the formulas
wi(r, z) = a;(A) w;; (kr, z) (nosum), ij=1,2,3,

where
ay(A) = a33(0) =1, ay(d)=k*, ap(d)=k.
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We shall again verify (22) for h < hy(1). Denoting
k™' D(e) = {(r,2) |0 < r < k™' afz), 0 < z < 1},
and using new variables
e=kr, {=z,
we obtain for v e V(D))
Ip, wijei(v) rdrdz =
Ji- 10 (@), (kr, z) ey(v(r, 2)) r dr dz =
= [ ko0, {) e;(v*(0, ) k™20 do dl = 0,
since k™! D(x) = D, Vh < ho(2) and v* € V(D(x)). Here we defined v* = (u*, w¥),
u*(e, {) = k™ 'u(o/k. C), w*(e.0) = w(o/k, 0). O
Let us introduce

Y(4) = (1 — 242 [e)/(1 + AV/?)

and

" =0° + (1) 0* (in D).
Then
(24) o€ E(D,) Vh < ho(2).

In fact, for v e ¥V(D,) we use (22) and (A41), (44) to obtain
@, e(v)p, = <o%(), e(V)>p, + ¥(2) <&, e(v)>p, = Fp,(v) .
Next we can show that
(25) |y, € P(D,) Vi < Ay(w) Yh < hy(4).
Let us denote x = (r, z) and

o (r/k,z) in Casel,
Y=\(kr,z) in CaselI,

a*(y) = a°(y) + 3(4) ©*(x)-
On the basis of (42), we may write for a.a. z € (0, 1)

(26) [#*(x) = *(»)] = 6°(x) — o°()]| < Cuft — 1| = €102

where t = r[k or t = rk, respectively.
Next we shall prove that

(27) AL+ 2 () S 1 VA< dofes @), Vh < hy(2)
for y e D().
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In fact, since for y € D(a)
@l(x) = o oy) = o(y) + [« o(y) - o(y)] =
= 1(y) — o°(y) + F 0(y) — (),
we may write
(28) (1+ A172) 0% = (1 + A1%) [6° + 9(A) (z — 0°)] +
(L 4+ A7) 5(2) [ — o] =
= (1 + 22 [6%(1 — ) + 7] + (1 — 2212)e) [#w — 0] =
=%, + %,.
By assumption (4 3) and the convexity of the yield function,
(29)  S(#) S (1 + [ =) (") + 74()] <
(14 272 [(1 = 5(2) (1 + &)7* + 9(2)] ‘
=1 = A1 4 6)

A

Since the function f is Lipschitz, we have

(30) f(B, + 8,) < f(B,) + C(| 2, .
For an estimation of the term %, we have
(31) |76 — o|| = (2[k™ 615 — 645]* + [k 20,5 — 0,,])""* < 32| 0
(in Case I)

and the same upper bound in Case II.
Altogether, from (20), (29) and (31), we obtain

(32) (L4 A7) e*) <1 — 221 + &)™! + 3C o] £ 1

if 2 < Ao(e, w) and h < hy(2), for a.a. y € D().
Using (32) and (26), we derive that

(33) F(E#(x)) < (X)) + C;Cu% = (1 + A1 4 CA <1

if 2 < 2y(w), h < hy(2) and for a.a. y € D(a), i.e., a.a. x € k D(«) in Case I and a.a.
x € k™! D(2) in Case II, respectively.
Having Case II in mind, we realize that

xeD, = k™' D(a)=y¢ D(x), o(y)=0=o*x)=0,
om) (x) = o), f(H() () = (1 +¢)7

almost everywhere by assumption (4 3). Combining this result with (33), we are
led to the conclusion (25).
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We may apply Lemma 2.1 to the function t*. Consequently (denoting t*|,, =
= 7*(0,), we obtain

rat (o) € Py (D)) Vh < hy(n, %, ).
We have

ro ™) € Ey(Dy)  Vh < hy(2).
In fact, since
V(D) = V(Dy),
vi € Vi(Dy) = <ry Hou), e(vi)dp, = <t (o), €(Vi)Dp, = F v

follows from (24).
Therefore r, t(2,) can be substituted into (6) to obtain

(6", 1y THo))p,, = (6", rt*)p 2 [|6"]5 VR < hy(n, T4(a), 2) .
Let h >0, # =0, h < hy(n). Then
”r,,‘c’t - r’T”O’,)D -0

by virtue of (8).
Moreover, from (15), (16),

(34) tim inf [#"]5 2 &[5 = [obe -

Consequently,

(35) lol2@ = (0. T)oe -

Then we may write

(36) [ = lospw = M(@* = Oorne + Iy = 1 [0 = 0

if 1 — 0, since y(4) — 1 and, by virtue of (31),
[0*(x) = o(x)] = [(Zo) () = o(x)] = |« o(y) - o(y)] +
+ o) = o(x)] = 32[e()] + [oly) - o],

(37) fpe @) = @(x)|* rdrdz -0 for 2-0.

In order to verify (37), we apply the following argument. There exists a sequence
{w}, n=1,2,..., such that

o" e [C3(D(@))]* N S(D(a)), "= w in S(D(x)).

Then

(38) Jp@ [0"(y) = @'(x)|? rdrdz < CAZ”“’””C‘(D(&:))

can be deduced on the basis of the mean value theorem.
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Moreover, we easily derive that

(39) (Ipw [lo(y) = @"(»)]|? rdrdz)'/? <
< (o = @ orpew + [|©]o.r k=) -

Finally, we may write

[]w(y) - “’Ho,r,nm = Hw(y) - wn(y)HO,r,D(az) +
+ [0"(v) = @"[orpw + [|©" = @fo.rpw

and using (39), (38), we arrive at (37).
Passing with 4 — 0 in (35), we obtain from (36)

”aﬂlz)(a) = (0, T -

Thus oy, is a solution of the variational inequality (3). Since the solution is
unique, o|p,, = o(a) and the whole sequence 6" tends to ¢ weakly in S(D).

6° To prove the strong convergence, we insert T = o() into the argument of 5°.
Thus we obtain

(6", ro*(@))s = [6"]5 .

},T?)ili}é)) 16"]5 < (o, o(@)pe = [o(2)][bea) -

Combining this result with (34), we may write
(40) lim 65 = {|o(@) 5w -

The weak convergence (15), convergence of norms (40) and the equivalence of
norms (2) imply the strong convergence

[6" = o()]o,0 = 0.

Proposition 2.2. Let {o,}, h — 0, be a sequence of o, € Ut such that a, — a in

c([o. 1]).

Then a function h,(n) exists such that if n — 0, h > 0, h < hy(n), then
F (o, () = F (o, 0(a)) ,
where ¢"(,) and o(a) is the solution of the problem (6) and (3), respectively.
Proof. Since f(0) = 0, we may write (cf. Proposition 2.1)
F (o, 6™) = [5 f3(6") rdrdz,
Fo, o(a)) = (5 f*(o) rdrdz.
By assumption, we have
|12(6™) — f(o)| < |£(8™) = £(o)| |£(8") + f(0)| =
< Cfe" — o (2£(0) + Cfl6™ — o).
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Therefore, we may write
| ) = S 0(@)| < T |12 - £2(0)| rdr dz <
S Cfp e - o f(o)rdrdz + C [, [6" — o|? rdrdz <
< (|6 = oloy.p + [ = a]2,.5) > 0
using Proposition 2.1. Q.E.D.

We define the Approximate Optimal Design Problem: given h, y, find oy € Uly,
such that

(41) o, = argmin #(B,, a"(B,)) .

BreUagh
Theorem 1. There exists a function h,(n) such that the problem (41) has a solution

for any n > 0, h < hy(n).

Proof. First we establish two auxiliary lemmas.

Lemma 2.4. Let h and n be fixed, p, € Uy, and lim B, = o in C([0, 1]).

Denote by G(P,) the solution () of the variational inequality (6) on D, = D(B,),
extended by zero to D ~ D(B,).
Then a (positive) function h,(n) exists such that

&(B,) — 6(z) in S(D) for n-— o
if h < hy(n).

Proof. 1° Following the argument of Proposition 2.1 and using the mapping r,
defined on D(f,), we can show that

“O-(B")Ho,r.D(ﬂ,,) <C Vn.

Let us define (B,) as the vector of coefficients in the formula

M=

o(B) = Y. o:(8) 945,

1

where 9,(8,) are the basis functions of the space H,(D(f,))-
One can show that positive n, and C, = const exist such that

(42) lollorn@. = Collélrm

holds for all n > n, and all o € H,(D(B,))-
Consequently, a subsequence of {&(f,)} (which will be denoted by the same symbol)
and ¢ € S(D) exist such that

(43) &(B,) — (weakly)in S(D).
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Making use of (42), we prove that
6(B,) = ¢ in RM,
where ¢ is the vector of coefficients of ¢ on D(«), ¢ = 0in D = D(«) and the con-
vergence (43) is even strong.
2° Next we realize that
o € E(D()) < A(x) 6 = F(a),
where the matrix A(«x) has the entries
(T, e(vi)r, -

Here 9;" are the basis functions (barycentrix coordinates) of H,(D(x)), Tj(«)e€
€ 7 ,(D(«)) the triangles and v, the basis functions of the space V;(D(a)).
Since

o(8,) € E{(D(B,) = A(B,) 6(B,) = Z(B,),

passing to the limit with n — oo, we obtain that

(44) Al) 6 = F(a), ie. oeE(D(2)),

since the matrices A(f,) and #(B,) depend continuously on B,

3° Next we show that

(45) o e P, (D(a)).

In fact, the functional
jit- [s[f(r) = 1] rdrdz

in continuous on S(D) (cf. the proof of Propos. 2.1 — 4°). Consequently, we have
j(e) = lim j(6(B,)) < n.

4° Let us show that o-,D(a) is a solution of the variational inequality
(6,7 — 6)p@wy 2 0 VreE (D(a) N Py(D(x)) .

Let a test function 7 be given. We can write

M
T = Z %11' 9‘(“) N
i=1
Al) 2, = F(a).
One can prove that the matrix A(«) has a full rang
n, = dim V,(D(x)) .

(Tt is easy to realize that n, < dim H,/3). Thus a suitable renumbering leads to the
equation
Ay(2) 2 + Ay(x) 22 = #(a),
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where A, () is regular, so that
ty = A7 () F(o) — A7 (o) Ax(2) 22 .
Let us define

) = AT B (F(B) — Ax(5) ),
8.2 = (3 50980 + 3 408),

J(Bas 2%) = [np,y [F(Bn #2) — 1]* rdrdz.
Obviously, we have
= 3 (1) 848, + Z t} 94(8,) € E(D(B,))

inA i>ny

and

j(ﬂu, fz) = J'D(ﬂ,.) [f(T) - 1]+ rdrdz.
Let us define m = M — n, and the set

Py = {#? e R" | (B, t*) S 1} .

The latter set is convex and closed in R™ for any f,. Indeed, the convexity follows
from the convexity of the functions f(B,, +) and j(B,, *), the closedness from their
continuity.

Consequently, we may define the projection

:R™ - P} ontheset P> in R™.

ne

n
Let us consider the vectors
A — [Al(n 2) 7TT2:|

and the functions
M
T(Bn) 221 %ni Sz(ﬁn) .

It is readily seen that

“(B,) € Ei(D(B,)) ~ Pyu(D(B,))

so that we may insert it into the inequality (6).
Defining also the extensions of 7(8,) and 7 as follows

#)=0 in D=D(), #=0 in D= D(x),
we obtain

(46) (8(B.) 7(B))o = [6(B,)]5 -

Next we can show that

(47) #(,) » % in S(D).
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In fact, we may write

() I8 = T = 250[3 (o — ) SBNT rara +

+20, [iiifa,.(s,.(p,,) )] rdrdz = Juy + Jy

Using some results of Pironneau [9], we obtain

M
(49) Jonw < 2| )lam §5 Y (94(B,) — 94())* rdrdz - 0.
i=1
Moreover,
M
(50) Jin £ 2|2, — tlam Jo 2, 97 (B,) rdrdz £ C|j3, — 2,[am =
i=1

= C([ta(mit2) = tallana + [mts — 2o = C(KT, + K3,) -
By definition of =, we have
(51) KZn = ”yn - /fazz”ll"‘ Vyn € Pr? .

Let us construct a suitable sequence {y,}. From the proof of Lemma 2.1 we
conclude that

(52) h < hy(nO, 6°) = [p, s, [f(rio®) — 1]" rdrdz < 5O,

where © €(0, 1) is an arbitrary parameter and

Th Uo(ﬁn) Z.; Oni Si(ﬁn)

is the projection corresponding with the triangulation 7 ,(8,).
On the basis of (42) and the assumptions (4 1), (4 3), (4 4), we obtain for g, =
= [on. 07]
(53) Co”@f Hnm = CO”Qn”RM = ”"; JO(ﬁn)”O,r,D(/I,.) = C.
Moreover,
r": O-O(ﬁn) € Eh(D(ﬁn)) N Pnh(D(ﬁn))
(cf. the proof of Lemma 2.3), so that (52) implies
Jj(Bus 02) £ 16 .

Since the function B j(B, £2) is continuous, there exists a sequence {4,}, 6, > 0,
é, — 0, such that

J(Bi 22) S (0 %3) + 6, S + 5,
Let us define '
(54) ty = 6,6, +n —n0)7",

Yo =t + t,(on — 25).
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From the convexity of the function y  j(B,, ), we deduce that
J(B 32) = (B o) + (L = 1,) j(B, %7) <
é tnn@ + (1 - tn) (l’] + 511) =1n

and consequently, y, € P2.
We may write, using (51) and (53), (54),

(55) Ko < [lt(en = 22)]Jen = 0.
Furthermore, we have
(56) K= [471(8,) #(B,) — A7 (o) # (o) —
— AT (B) A2(B,) (m2) + A7 (@) Ax(@) 82 fans <
< [47'(B) #(B) — A7 (@) F(@)|ana +
+ [471(8) A=)« [mits — &l +
+ |47 (8,) A2(B,) — AT (@) Ax(o)]a 127 [ = 0,

using (55) and the continuous dependence of the matrices 4; ', 4, and # on the
variable S.
Combining (50), (55) and (56), we arrive at

limJ,,=0.

n-— o0

Inserting this result and (49) into (48), we obtain (47). Using the strong convergence
(43) and (47) in (46) leads to

(0,%)p = |o]l5
which can be rewritten as follows
(6,7 — 0)pey 2 0.

Since (44) and (45) hold for ¢ and the solution of the variational inequality (6)
is unique (cf. Lemma 2.3 and its proof), if h < hy(n) = ho(n®, ¢°) < hy(n) =
= hy(n, 6°), we conclude that

o = o(a)

and the whole sequence {(,)} tends to &(«) in S(D).

Lemma 2.5. Let the assumptions of Lemma 2.4 be fulfilled and h < h,(n). Then
lim #(B,, a(B,) = £(a, o(e)).

n—oo
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Proof is analogous to that of Proposition 2.2. Since f(0) = 0, we have

F (B o(B) = [5f(5(By) rdrdz,

| £ (B 0(8,) — #(@. o())] <

< C[é() — &@or.0 + [6(8) = 5()]5.5] 0
by virtue of Lemma 2.4,

Proof of Theorem 1. Let us denote by

a = {a(0), a(h), ..., a(1)}
the vector of nodal values of the function o € U!;. Then

aeU' <aco,
where o/ is a compact subset of RV*1, '
By Lemma 2.5, the function

jo(a) = #(a, o(x))

is continuous in 7.
Consequently, j, attains its minimum in the set </

Theorem 2. Let {0}, h - 0, n — 0, h < hy(n), be a sequence of solutions of the
Approximate Optimal Design Problems (41).
Then a subsequence {u;,} exists such that

(57) a —> o in C([0,1]),

(58) " (o5g) > o) in [L(D)]*,

where o is a solution of the Optimal Design Problem (4), 6"(a;,) is the solution of
the approximate problem (6), extended by zero to D = D(og;) and o(x) is the solu-
tion of the problem (3), extended by zero to D = D(a).

Any uniformly convergent subsequence of {a,,} tends to a solution of the problem
(4) and an analogue of (58) holds.

Proof. Let us consider a e U,y There exists a sequence {B,}, h — 0, B, Uy,
such that §, » B in C([0, 1]) (for the proof — see [7] — Lemma 3.1).

A subsequence {o;} = {a,} exists such that (57) holds and a € U4 (see [7] —
Lemma 3.2). We have

H (g 6"(o59)) = F(Bs> 0™ (Br))
by virtue of (41).
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Applying Proposition 2.2 on both sides, we are led to the inequality
H (o, o(@)) < 7(B, o(B)) .

Consequently, « is a solution of the problem (4). The convergence (58) follows from
Proposition 2.1. The rest of the assertion is obvious.

Corollary. There exists at least one solution of the Optimal Design Problem (4).

Proofis an immediate consequence of Theorems 1 and 2.
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Souhrn

OPTIMALIZACE TVARU OSOVE SYMETRICKYCH
PRUZNE PLASTICKYCH TELES

IvaN HLAVACEK

Uvazuje se pruzng plastické t&leso, jehoZ stav napjatosti se fidi Henckyovym zakonem. K feSeni
stavové ulohy se pouziva princip Haara-Karmana a po &astech linearni aproximace napéti.
Tvar meridianového fezu je optimalizovan na zakladg integralniho kritéria. Dokazuje se kon-
vergence pribliznych feSeni a existence optimalniho merididnového fezu.
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