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SHAPE OPTIMIZATION OF ELASTO-PLASTIC AXISYMMETRIC BODIES 

IVAN HLAVACEK 

(Received October 10, 1990) 

Summary. A minimization of a cost functional with respect to a part of a boundary is con­
sidered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-
Karman and piecewise linear stress approximations are used to solve the state problem. A con­
vergence result and the existence of an optimal boundary is proved. 

Keywords: domain optimization, control of variational inequalities, Hencky's law of elasto-
plasticity. 

AMS Subject class: 65K10, 65N30, 73E99. 

INTRODUCTION 

In the present paper we solve the following optimal design problem. Given body 
forces, surface loads and material characteristics of an elasto-plastic axisymmetric 
body, find the shape of its meridian section such that a cost functional is minimized. 
The cost functional is defined by an integral of the yield function and either zero 
displacements or zero surface tractions are prescribed on the unknown part of the 
boundary. 

One of the simplest mathematical models describing the elasto-plastic behaviour 
of solid bodies is given by the constituent law of Hencky (see e.g. [1]). The classical 
boundary value problems can be formulated in terms of a variational inequality 
by means of stresses, i.e. by Haar-Kármán principle. 

Extending some ideas of Falk and Mercier [2], we introduce piecewise linear 
approximations of the stress field and of the unknown boundary to define approximate 
optimal design problems. The main result of the paper is a convergence analysis of 
the approximate solutions and the existence proofs for both the approximate and the 
original optimization problems. 

The paper represents a continuation of some previous author's results in the field 
of shape optimization [3], [4], [5], [7]. 
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1. Formulations of the optimization problems 

Let us recall some basic relations of the elasto-plastic bodies obeying the law 
of Hencky. 

Let a bounded elasto-plastic body occupy an axisymmetric domain I l c H 3 with 
Lipschitz boundary, which is generated by rotation of a two-dimensional domain D 
about the x3 = z — axis. If all the data of the problem are axisymmetric, we pass 
to the cylindrical coordinate system (r, z, S). The physical components of the 
displacement-vector u are denoted by ur = u, uz = w (u$ = 0). 

The space of displacement functions with finite energy is then 

Jť(D) = {v = (u, w) e (Wl'2(D) n L2
/r(D)) x W\ '2(D)} , 

'du\2 

Kdz) (í ["'lr'+ ( * ) + (г> h"' 
t 1 / 2 

r âr áz ! 

\dr) \dz) 

Henceforth Wk
T'2(D), k = 1,2,..., denotes the weighted Sobolev space with the 

norm 

u k,r,D ($D X \D*uYrdrdz)^; 

L2
n(D) is the space of functions with the following norm 

\\u\\0^D = (\Du2r»drdzyi\ 

where n is an integer; lsr(r), where F cz 3D — F0, F0 being the intersection of dD 
with the z-axis, is defined analogously on the boundary of D. 

We define U& as the space of symmetric 3 x 3 matrices such that r/13 = o23 = 0 
and identify indices r, z, $ with 1, 2, 3. Let the repeated index imply summation 
over the range 1, 2, 3. Then let 

HI = (°i/>u)ll2> ^ e ^ -
Assume that a yield function f: lRff -> IR is given, which is convex, Lipschitz and 

(1) f(Xo)-\X\f(o) 

holds for all X e R, a e Vla. 

Example 1. These conditions are fulfilled by the von Mises function 

f(o) = const ||ad|| , const > 0 , 
where 

°/j = °ij ~ i^ijamm » (<>v = Kronecker's delta) 

is the stress-deviator. Note, that 

/(<-)- . const ( H 2 " K O a ) 1 / 2 - • 
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We introduce the following space 

S(D) = {T: D -> Rrf I Ty e L2(D); i,j = 1, 2, 3} 

and the scalar product 

<^ e>D = ID °ijeijr dr dz , <j,ee S(D) , 

Hkr ,D = <<?, CT>D2 • 

Moreover, we shall use also the energy scalar product 

(<*> T ) D = <ba, T}D 

and the associated norm 

H D = (^ O-)D 2 > 
where b: S(D) -> S(D) is the isomorphism defined by the generalized Hooke's law, 
i.e., 

e = boo etJ = bijkmakm . 

We assume that positive constants b0, bj exist such that 

(2) boHov.D = Mi = MHoUD VGeS(D) 

and 
<ft(7, T>j> = <cr, bT^ VG, T G S ( D ) . 

Assume that 

dD - F0 = ru u F, , Fu n F, = 0 . 

Let a body force-vector f = (Fr, F2) e [L2(D)]2 and a surface traction-vector g = 
= (gr, gz) e [ L r ( r ^ ) ] 2 b e g i ven. 

We define the set of plastically admissible stress fields 

P(D) = {TGS(D) | / ( T ) = 1 a.e. in D} 

and the set of statically admissible (equilibriated) stress fields 

E(D) = {T e S(D)\ <T, e(v)>c = J ^ ( y ) Vv e V(D)} , 
where 

[dujdr, \(du\dz + Ow/O>), 0 
e(v) = OV/dz 0 

sym. u/r 

V(D) = {ve Jf(D)| v = 0 on FJ (in the sense of traces-see e.g. [4] - Lemma 1), 

&D(V) = jD (P,w + F.w) r dr dz + \Fg (gru + gzw) r ds . 

The Haar-Kdrmdn principle says that the actual stress field minimizes the 
complementary energy 

mi 
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over the set P(D) n E(D). (For the derivation of the principle — see [1] or [2]). 
The principle is equivalent to the following variational inequality: find a e P(D) n 
n E(D) such that 

(3) (a, T - tj)D ^ 0 VT e P(D) n £(D) . 

Passing to the shape optimization problem, we introduce the following set of 
admissible design variables 

Uad = {a e C^\\p, 1])| amin S a(z) £ amax, |da/dz| £ Ct , 

|d2a/dz2| g C2 a.e. , J0 a
2(z) dz = C3} , 

where amin, amax, C1? C2 and C3 are given positive constants. (Here Cn)J denotes 
the space of differentiable functions, the derivatives of which are Lipschitz in the 
interval [0, 1]). 

We shall consider a class of domains D(a), where a e Uad and 

D(a) = {(r, z)\ 0 < z < 1, 0 < r < a(z)} . 

For any a e Uad, the graph F(a) of the function a will concide either with the part FM * 
(Case I) or with rg (Case II). 

The function a has to be determined from the following Optimal Design Problem: 

(4) a = arg min f(0, a(p)) , 
/?eC/ad 

where 

f(P,o) = $Dmf2(o)rdrdz 

and a(P) is the solution of the variational inequality (3) on D = D(f$). 
In what follows, we shall present some conditions, sufficient for unique solvability 

of (3) for all a e Uad. 
Assume that 

biJkm e L°(B) 

are given and (2) holds for all o e S(D), where 

& = (0, 8) x (0, 1), 8 > amax . 

Case I. Assume that forces 

Fe[L2
r(D)f and g e [L2

r(dD - E0 - T,)]2 

are given, where 

r 0 = {(r, z)\ r = 0, z e ( 0 , l ) } , T, = {(r, z)\ r = 8, z e ( 0 , l ) } . 
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(41) Moreover, assume that a tensor field o° e E(D) and constants CL > 0, s > 0 
exist such that 

(42) K ( r , z ) - o - ° ( t , z ) | | ^ C L | r - t | 

holds for almost all z e (0, 1) and all r, t e [0, 5], 

(43) (1 + s)o°e P(D) . 

Case II. Assume that Fe [L2(D)]2
? g = 0, 

(44) a tensor field o° e S(D) exists such that 

<r°\D{a) e E(D(a)) Va e Ua°d , 
where 

Ua°d = { a e C < 0 ^ ^ 

(42) and (43) hold. 

Example 2. (for Case II). Let us consider 

g = 0 and F = (Fr, 0 ) , 

Fr = co2rD(r, z) , 

(centrifugal forces only), where oo = const, and the density Q satisfies the following 
conditions 

Qe !?(£>), \Q(r, z) - Q(t, z)\ S Ce\r ~ t\ 

for a.a. z e (0, 1) and all r, t e [0, S]. 
We define Of; = 0 with the exception of 

< 4 = >-Er. 

It is then easy to verify (42), (43), (44) for sufficiently small norm ||Fr|J£,«,(/>), using 
also the property (I) of the yield function. 

Proposition 1.1. The Haar-Kdrmdn principle has a unique solution for any 
D(a), a e Uad. 

Proof. The set E(D(a)) n P(D(a)) is non-empty, as follows from the assumptions. 
(Note that (1) implies f(0) = 0 so that 0 e P(D(<x)) and o°\D{a) e P(D(oc)) follows 
from (43), since P(D(a)) is convex.) 

In Case I we use the fact that any restriction o-°\D(a) e E(D(oc)). Indeed, an extension 
v~ of v e V(D(cx)) by zero belongs to V(D) and 

<*°, e(v)yD(a) = <tr°, e(v~)yD = &D(v~) = <FD(0L)(v) 

follows from (41). 
The sets £(D(a)) and P(D(a)) are convex and closed in S(D(a)), the functional of 

complementary energy is quadratic, strictly convex. Hence the existence of a unique 
minimizer a(tx) follows. 
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2 . Approximations by piecewise linear stress fields 

Let JV be a positive integer and h = 1JN. We define Aj = [(7 — 1) h,jti], j = 
- 1,2,...,N, 

Uft
d = {aft e CW-'flO, l])|amin 5S aft(2) ^ amax , 

a ^ e P ^ J , . ) V;, |daA/dz| = C x , 

|<5ft
2aft(./h)| = C2 , j=l,...,N-l, ft aft

2 dz = C3} , 

where 

52
h<xh(jh) = h-2[aft((j + 1) ti) - 2ah(jh) + a((j - 1) h)] 

and Pi(Aj) denotes the set of linear polynomials on A}. (Note that Uad <£ Uad). 
Let Dh 5= D(a,.) for aA e Uad. The polygonal domain Dh will be carved into triangles 

by the following way. We chose a0 e (0, amin) and introduce a uniform triangulation 
of the rectangle 01 = [0, a0] x [0, 1], which is independent of ah, if h is fixed. 

In the remaining part Dh — 01 let the nodal points divide the segments [a0, ah(jh)~], 
(j = 0, 1, ...,N) into M equal segments, where 

M = 1 + [(amax - a0)N] 

and the brackets denote the integer part. Consequently, one obtains a strongly 
regular family {^h(oih)}, h -> 0, och e Uad, of triangulations. 

Let us consider the space of linear finite elements 

Vh(Dh) = {vh = (uh, wh) e [C(WDh)Y\(uhjr)\T e P,(T), 

wh\TePt(T) VTe,Tft(aft), vft = 0 on T„} . 

(Here T denotes any triangle.) 
Note that Vh(Dh) <=. V(Dh) and uh = 0 on T0 follows from vft 6 V(Dft). 
The stress field will be approximated by means of the following space 

Hh(Dh) = {rft 6 S(A,)|Tft
y|r 6 Pt(T) , i,j= 1,2,3, VTe ^ft(aft)} . 

We introduce an external approximation of the set E(Dh) as follows 

Eh(Dh) = {rft € Hh(Dh)\ <T", e(vft)>Ch = J^Dh(vft) Vvft e Vh(Dh)} . 

Instead of the problem (3) we shall solve the following Approximate State Problem: 
find ah" e Eh(Dh) n Phn(Dh) such that 

(6) (^ T" - o * V = 0 VTfte£ft(£>ft)nPft,(Dft), 

where rj is a positive parameter and 

Phn(Dh) = {rft 6 Hh(Dh)\ JDh (/(r
ft) - 1)+ rdrdz^t,}. 
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Lemma 2.1. Let rh: S(Dh) -> Hh(Dh) be the projection mapping defined by means 
of the equation 

(7) <r,T - T, <rhyDh = 0 VaheHh(Dh). 

Then for any T° G P(D) a function h0(n, T°) exists such that 

h<h0(n,T°)^rh(x%h)ePhn(Dh). 

Proof. The trianguiations &~h((xh) of Dh can be extended to B — Dh in such a way 
that the extended trianguiations {^h(cch, &)}, h -* 0? aAeC/a

ft
d) generate a regular 

family. Let the projections rh be extended to map 5(D) into Hh(3) in the corresponding 
way. 

Then 

(8) | r / | T o _ _ T o | o > r ^ o , ft->0. 

For any g e L2
r(&) and any s > 0 there exists ge e C°°(W D) such that 

flg -g £ | ) 0 ) r ,D<V( e ) / 2 -

It is readily seen that rhg\T, where Tis any triangle of &~h(ah, D), coincides with the 
L,(r)-projection of g\T into Pi(-T). Therefore 

(9) flg ~ rhg\0>rtT _\g ~ rhg£\\0trtT ^ \g - gefl0,,,r + 

+ flge ~ rhge\0>rtT 

follows from the optimality of the L^(T)-projection. 
We may compare rhge with the linear Lagrange interpolate %hgt on any triangle 

Te &*h(oLhi 6). Thus we obtain 

( 1 0 ) I he ~ rhgef0trtT ^ £ flga ~ ^ge | |o,r,T = 
T T 

= ||g« - %gE|Jo,r,fi -S Ch4\g8\
2

2tr>f> 

where the latter estimate can be derived via the argument of Lemma 6.1 and 6.2 

of [8]. Combining (9), (10), we arrive at 

(11) \g-rhg\\0trtt>-+09 h->0. 

Applying (11) to every components of the tensor t°, we obtain (8). 
Since 

(f(rhT°) - 1)+ ^ (f(rhT°) - / (T° ) ) + + ( /(T°) - 1)+ < 

rg[/(V>)-/(r0)|, 
where 

( / ( T ° ) - 1)+ - 0 a.e. in Dh 

by assumption, we obtain 

k ( / ( V ° ) - 1)+ r dr dz :g k | / ( v ° ) " /(*°)l rdrdz< 
S CfC\\rhT° - T°[|0,,>D ^ i, 

for fc < h0(r\, T°), using (8). 
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Lemma 2.2. The set Pht}(Dh) is closed and convex in S(Dh). 

Proof. 1° Let T" e Phn(Dh), tn -> T in S(Dh) for n -> oo. Since 

(f(r)-irg|f(T)-f(T«)i + (f(T")~ir, 
we may write 

k ( / W - 1)+ rdrdz^ k [/(*) - / ( t") | rdrdz + n Vn . 

Passing with n -> oo, the integral on the right-hand side tends to zero, since 

k | / ( t ) - / ( O l r dr dz ^ C||T - T»fl0,r,B„ - 0 . 

Consequently, T e Phn(Dh) follows, as Hh(Dh) is a closed subspace of S(Dh). 

2° Let us consider a e Phn(Dh) and T G Phn(Dh), t e [0, l ] . 
Then, 

/ ( t o + (1 - t) T) - 1 ^ ([/(a) - 1] + (1 - t) [ / (T) - 1] 

and therefore 

[/(to + (1 - 0 T) - 1 ] + g t[f{a) - 1]+ + (1 - t) [ / (T ) - 1] + 

holds a.e. in Dh. Integrating, we obtain 

r<r + (l - t)xePhn(Dh). 

Lemma 2.3. There exists a function ht(n) such that the problem (6) has a unique 
solution for any t] > 0, h < h^rj), ah e U

h
zd. 

Proof. By assumptions (Al), (^44), (-43), there exists 

<T°(*h)eE(Dh)nP(Dh) 

for any h -> 0, cxh e C/Jd. (We define 

(12) a°{«h) = a°\Dh.) 

Using Lemma 2.1, we obtain 

rhG°(och) e Phn(Dh) if h < h0(n, <J0) = hx(n). 

Moreover, since e(vh) e Hh(Dh) for vh e Vh(Dh) <= V(Dh), 

<r,<r°(a,), e(vh)yDh = <<r°(a,)? e(vh)}Dh = <FDh(vh) . 

Consequently, rha°(ah) e Eh(Dh) and the set Eh(Dh) n Phn(Dh) is non-empty. Since 
it is also closed and convex in S(Dh) by virtue of Lemma 2.2, the unique solvability 
of the problem (6) follows. 

Proposition 2.1. Let {a,,}, h -> 0, be a sequence of (xh e U
h
ad such that och -> a in 

c([0,1]). 
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Then a function h^) exists such that if r\ -» 0, h -> 0, h < /23(?l), then 

ahn -> a(a) in S(D), 

where ahn is the solution of the.approximate problem (6), extended by zero to the 
domain D — D(och) and a(a) is the solution of the problem (3) on D(a), extended 
by zero to D — D(a). 

Proof. In what follows we assume that rj -> 0, h -> 0, h < hL(rj). 
1° We may insert 

t* = ry(ah) 

into (6) (cf. the proof of Lemma 2.3) to obtain 

\y%h ,2 ( A rAer0(aft))Dh ^ hh%„ hAah)\\Dh . 

Therefore, cancelling and using the inequalities (2), (7) and (-41), (-44), we have 
(using (12) again) 

bl'2\yto,r,Dh S to»%h £ J r ^ f c J k * 

^ bi'2y(«h)i>r,Dh z cb\». 

Consequently, the sequence [dhti] is bounded, as 

(14) ||5*"l0;r,B £ C^jboY'2 Vfc,!,. 

There exists a subsequence (and we shall denote it by the same symbol) such that 

(15) dhn - a (weakly) in S(D), a e S(D). 

2° We can show that 

(16) a = 0 a.e. in D - D(a). 

Assume that 

[Ho,r,M > 0 

on some set M c D — D(a), meas M > 0. 
Introducing the characteristic function XM °f -M> w e m a y w r^ t e 

|<**, XM°>A = | < A ^>D,nM| = | | ^ i k r , D Mo,r,DhnM - 0 

by virtue of (14) and because meas (Dh n M) -» 0. On the other hand, 

< A XM°>I> -> <<?> XM<7>S = Mo.r.M > 0 

and we arrive at a contradiction. 
3° Let us show that 

<r\DWeE(D(cc)). 

Let a v e V(D(a)) be given. We construct an extension v~ e JV(D) by zero in Case I 
and symmetric with respect to T(a) in the r-direction in Case II, respectively. 
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There exists a sequence {vx}, vx = (wx, wx), x -> 0, such that vxe [C°°(#*f D)]2, 
vx -> v~ in Jt(D) and 

Case I: supp vxn(D - D(a)) = 0 , 

Case II: supp ux n (3D — F^) = 0 

supp wx n (5fi - r , - F0) = 0 . 

(For the proof — see [5] — Lemma 1.3, p. 227). 
Then vx\Dh e V(Dh) V/i, x, (h < h2(x) in Case I). Let us introduce the interpolation 

TV [C(W D)]2 n * ( f i ) ) -> V„(D), 

using the triangulation 3~h(ah, D), introduced in the proof of Lemma 2.1. Let x be 
fixed. Then ux\r = coxe C°°(W D) and we define 

nh(vx) = « " x 5 ^ X ) > 

H/>x = I^x 

and IA is the standard piecewise linear interpolation. 
We have 

and 

(17) <<?*", efa(v.,))>fl = PDh(nh(vx)) . 

We can prove that 

(18) e(7r,(vx))-> e(vx) in 5(D) for h-> 0 . 

In fact, denoting 

(fB(«2/r2 + (a«/3r)2 + (du/dz^rdrd-)1'2 = |«flXl(f l ), 

we have (cf. [6] — Lemmas 5A and 5.9) 

(19) \nr
hux - ux\\Xl(D) = |r(/Ao)x - cox)[|Xl(6) ^ Cfcfo)xf2,D 

and (cf. [8] — Lemma 5.9) 

(20) \\nz
hw - wx | | l j r^ S Ch[|wx[|2,r^ . 

Combining (18) and (19), (20), the convergence (18) can be derived. Moreover, 
we may write e.g. in Case II — Example 2 

(2i) | J ^ > „ K ) ) - JWOI = 
= IJc» FrOt»"x - tO r dr dz| + 

+ IJflh Fru*r dr dz - fD(l) Fr«xr dr dz| ^ 

^ |Fr||o,r,fi K M x - "xl|o,r,» + 

hvh>,DW) lFrMx| r dr dz -> 0 , ft -> 0 , 
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where A(Dh, D(ot)) = (Dh --- D(a)) u (D(a) - Dh) and 

|<MX - Wx|0,r,D = CA|ox|2>|> 

holds due to the fact, that 

supp cox n F0 = 0 . 

The other integrals occurring in ^Dh(nh(vx)) (in Case I) can be treated in a parallel 
way, using also the Trace theorem (cf. e.g. [4] - Lemma 1) and (18). 

Passing to the limit with rj -> 0, h -> 0 in (17) and using the weak convergence 
(15) together with (18), (21), we obtain 

O, eK)>D(«) = ^D(«)(0 • 

Passing to the limit with x -> 0, we arrive at 

O, eW>D(«) = ^D(«)W > 
since 

vx^v~ in Jf(D) =-> e(vx) -> e(v~) in 5(D), 

IK - Mlo,r,D(«) ^ ||"x - "|o,r,D = <̂  |K ~ "||o,l/r,D 
and 

^D(.)K) - ^D(«)W • 

Consequently, 

HD(«)G £ ( D ( a ) ) • 

4° We can show that 

a\DWeP{D{a). 

In fact, the functional 

; : T - > M / ( T ) - l ) + r d r d z 

is convex and continuous on S{D), since for T" -+ T we have 

|;(T) - ; (T") | ^ Jfi|(/(T) - 1)+ - (/(T") - l) + | r d r d z £ 

= J* | / W - / ( t") | r dr dz ^ CrC|]r - T"||0,r>fi - 0 . 

Consequently, j is weakly lower semicontinuous. Using also (16), we may write 

W ) (/(*) - 1)+ r dr dz = j{a) ^ lim inf;(<?"") = 

= lim inf fDh (/(«-*") - 1)+ r dr dz ^ lim 17 = 0 . 
Therefore 

j(o-) ^ 1 a.e. in D{a) . 
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5° Let us verify that o*|D(a) is a solution of the problem (3). 
Let a T G P(D(a) n E(D((x)) be given. We define <7°(a) = <7°|D(a), 

co = T — cr°(a) in D(a), co = 0 in D — D(a) , 

and distinguish the two cases of boundary conditions, in what follows. 
Case L Let us introduce a positive parameter X and introduce k = 1 + A, 

coA(r, z) = stfco(r\k, z) 

by means of the formulas 

O4(r, z) = au(X) co^rjk, z) (no sum) , i,j = 1, 2, 3 , 
where 

axl(X) = a33(X) = 1 , a22(X) = k~2 , al2(X) = k~l , 

Then we deduce 

(22) $Dho>tJeiJ(v)rdrdz = 0 Vv e V(Dk) 

for all h < h0(X). 
In fact, denoting 

DA = k D(a) = {(r, z)| 0 < r < k a(z), 0 < z < 1} , 

and using new variables 

O = r/k , C = z , 
we obtain 

(23) v e V(DA) => JDA co'je^v) r dr dz = 

= ID,. (<s*<o)ij (rlk> 2) eu(v(r> z)) rdrdz = 

= jD(«) tf;/^jG?> C) e l7(v*(e, 0 ) ' f c 2 5 dQ dC = 

= JD(«) / c ~ 2 ^ . ; ( v * ) ^2£ dÔ  dC = 0 , 
where 

v* = (u*, w*), U*(Q, C) = ku(kg, C), w*(O, C) = w(kO, C) • 

Here we have used the fact, that 

Dh c Dx V/i < hx{X) and v* e V(D(a)). 

Extending v e V(D^) by zero to v~ e V(DX), (22) follows from (23). 

Case II. Let us define 

cox(r, z) = s4co(kr, z) 

by means of the formulas 

colj(r, z) = atj(X) a>l7 (kr, z) (no sum) , i,j = 1, 2, 3, 
where 

atl(X) = a33(X) = 1 , a22(X) = k2 , al2(X) = k . 
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We shall again verify (22) for h < h0(X). Denoting 

k"1 D(a) = {(r, z) | 0 < r < k"1 a(z), 0 < z < 1} , 

and using new variables 

Q = kr , C = z , 

we obtain for v e V(Dh) 

jDh <»ueij(v) r d r d z = 

Jfc-iD(a) ( ^ ) . j (&-% -0 eij(v(r> z)) rdrdz = 

= JD(a) ^ . j ( 0 , C) **/**(<?, C)) k~2O dO dC = 0 , 

since k_1 D(a) c D„ V/z < fc0(A) and v* e V(D(a)). Here we defined v* = (w*, vv*), 

«*(<?, c) = k-xu(O/k, c ) , w*(e , c) = w(D/k, c ) . a 

Let us introduce 

y(A) = (1 - 2A'/2/e)/(l + A1'2) 
and 

T
A = ff° + y(A) ft/ (in D) . 

Then 

(24) t ^ e E(D„) Vh<h 0 (A). 

In fact, for v e F(£>A) we use (22) and (Al), (A4) to obtain 

< T \ e(v)}Dh = <<->,), e(v)>D„ + y(X) <o>\ e(v)>Dh = ^ D » . 

Next we can show that 

(25) r%heP(Dh) VA < A.(a>) Vh < h3(X). 

Let us denote x = (r, z) and 

_ f(r/k, z) in Case I , 
y = \(kr9 z) in Case I I , 

a\y) -a°(y) + y(X) co*(x). 
On the basis of (A2), we may write for a.a. z e (0, 1) 

(26) \r\x) - «>(y)\\ = |k°(x) - c°(y)\\ <. Ct|t - r| < CL6X 

where t = r/k or t = rk, respectively. 
Next we shall prove that 

(27) / ( ( l + A1/2) (7A(j;)) 5_ 1 VA < A0(e, o>) , V/t < h2(X) 

for y e D(a). 
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In fact, since for y e D(a) 

coz(x) = s4 co(y) = co(y) + \s4 co(y) - co(y)~\ = 

= x(y) - a°(y) + si co(y) - co(y) , 

we may write 

(28) (1 + A1/2) a" = (1 + 11/2) [<x° + y(A) (T - a0)] + 

+ (1 + A1/2) y(A) [s4a> - co] = 

= (1 + A1/2) [<T°(1 - y) + ry] + (l - 2A1/2/£) [s/co - OJ] = 

= ^ x + @2 . 

By assumption (A 3) and the convexity of the yield function, 

(29) / ( * . ) = (1 + A1'2) [(1 - y)/(<7°) + y/(r) ] ^ 

2 S ( l + A 1 / 2 ) [ ( l - y ( A ) ) ( l + £ ) - 1 + y ( A ) ] = 

= 1 - A1/2(l + E ) - 1 . 

Since the function / is Lipschitz, we have 

(30) / ( ^ 1 + ^ 2 ) g / ( ^ 1 ) + C/||^2|. 

For an estimation of the term $2 we have 

(31) \s4a -a\= ( 2 [ / r V 1 2 - cr12]2 + [k~2a22 - <x22]
2)1/2

 = 3X\\a\\ 

(in Case I) 

and the same upper bound in Case II. 
Altogether, from (20), (29) and (31), we obtain 

(32) f((l + A1/2) ax) = 1 - A1/2(l + s)-1 + 3CfX\\co\\ ^ 1 

if X < X0(s, co) and h < h2(X), for a.a. y e D(a). 
Using (32) and (26), we derive that 

(33) f(x\x)) = f(o\y)) + CfCL8X = (1 + X^2)~l + CX ̂  1 

if A < Ax(co), h < h2W
 anc* f° r a-a- y G D(a)> i.e., a.a. xek D(a) in Case I and a.a. 

x e k"1 D(a) in Case II, respectively. 
Having Case II in mind, we realize that 

x e D ^ r 1 D(a) => y $ D(a) , co(y) = 0 => cox(x) = 0 , 

x\ah)(x) = a\ah), f(x\ah) (x)) S (1 + a)"1 

almost everywhere by assumption (A 3). Combining this result with (33), we are 
led to the conclusion (25). 
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We may apply Lemma 2.1 to the function TA. Consequently (denoting rx\Dh = 
= TA(a;j), we obtain 

rhx\ah) e Phtl(Dh) Vh < h4(r,, TA, X) . 
We have 

rh TA(a„) e Eh(Dh) V/i < h,(X) . 

In fact, since 

Vh(Dh) c V(Dh), 

vh e Vh(Dh) => <r„ TA(a„), e(vA)>Dh = <rA(a„), e(vh)}Dh = j r . ^ 

follows from (24). 
Therefore rh T\a.h) can be substituted into (6) to obtain 

(ah\ rh T*(a„))Dh = (ah\ rhx% ^ \\ah% Vh < h4(r,, -*(a), X). 

Let h -^ 0, t] -» 0, h < hl(>j). Then 

| V * - T*||o.r,l> - 0 

by virtue of (8). 
Moreover, from (15), (16), 

(34) l i m i n f | | ^ | | ^ \\ff\\* = ||er||2(a) . 

Consequently, 

(35) H-H. ) - s (». ̂ P W • 

Then we may write 

(36) ||TA - T|o,,f.O(«) = I b K ~ W)|Jo,r,D(a) + |? ~ ] | H I 0,r,D(«) "* ° 

if X -> 0, since y(A) -> 1 and, by virtue of (31), 

||coA(x) - co(x)|| = \\(sfa>)(y) - co(x)\\ ^ | |^co(y) - co(y)|| + 

+ ||co(j) - co(x)[| ^ 3%(y ) | | + [|co(y) - co(x)l , 

(37) ID ( a ) | | cO(y)-co(x) | | 2rdrdz->0 for X -> 0 . 

In order to verify (37), we apply the following argument. There exists a sequence 
{of}, n = 1,2, . . . , such that 

co" e [C£r(D(a))]4 n S(D(a)) , co" -> co in S(D(a)) . 
Then 

(38) fB(a) ||a>"(y) - «/(x) |2 r dr dz < CX2\of\\cHDM, 

can be deduced on the basis of the mean value theorem. 
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Moreover, we easily derive that 

(39) (jD(a)\\oo(y)^con(y)\\2rdrdz)^2^ 

S C(||O) - ©" ||0,r,I>(a) + H|0,rfkD(«)*D(a)) ' 

Finally, we may write 

My) - H|o,r,D(a) = W^) ~ G>B(y)||o,r,D(«) + 
+ \\0f(y) - 0) n |o 5 r , D ( a ) + ||©" - Oj\\0,r,D(a) 

and using (39), (38), we arrive at (37). 
Passing with k -> 0 in (35), we obtain from (36) 

H-OC) = (a> TW> • 

Thus o\D{a) is a solution of the variational inequality (3). Since the solution is 
unique, (T|D(a) = a(a) and the whole sequence ahn tends to a weakly in S(D). 

6° To prove the strong convergence, we insert x = tr(a) into the argument of 5°. 
Thus we obtain 

{d»\rho\zh))b^\c?>%, 

lim sup \\dh"\\D g (a, e(a))DW = ||<K*)1S(«) • 
A->0, f ; -0 

Combining this result with (34), we may write 

(40) lim p% = H«)]S(.) • 

The weak convergence (15), convergence of norms (40) and the equivalence of 
norms (2) imply the strong convergence 

|5*« - ff(a)||0,r,fl -> 0 . 

Proposition 2.2. Let {aA}, h -> 0, be a sequence of aA e Uh
d such that aA -> a in 

C([0, 1]). 

Then a function hx(rj) exists such that if n ~> 0, h ~> 0, h < hx(n), then 

f(ah, ahn(ah)) -> / ( a , <x(a)) , 

where <r^(aA) and <r(a) is the solution of the problem (6) and (3), respectively. 

Proof. Sincef(0) = 0, we may write (cf. Proposition 2.1) 

/(«»**) = Sf>f2(dhn)rdrdz, 

/(a,(T(a)) = J^ f 2((T)rdrdz. 

By assumption, we have 
\f\8»») -f\a)\ g | / (**) -f(a)\ |j(<r»") + f{a)\ ^ 

^ Cr\#« - a\\ (2/0-) + c r | ** - 4). 
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Therefore, we may write 

| /(«„, <?»") - / ( « , ff(a))| ^ $D | / - ( ^ ) - / - ( f f) | r dr dz ^ 

^ C J"-. 1^" - <r|| /(<r) r dr dz + C \b fla"" - <rf2 rdr dz £ 

= C ( | ^ " - <r[)osr,fl + | | 5* - <r||0,r,B) - 0 

using Proposition 2.L Q.E.D. 

We define the Approximate Optimal Design Problem: given h, n, find ahn e U^, 
such that 

(41) <*,„ = argmin / ( f t , ^ ( ^ ) ) . 
/?h6vadh 

Theorem 1. There exists a function h2(rj) such that the problem (41) has a solution 
for any n > 0, h < h2(n). 

Proof. First we establish two auxiliary lemmas. 

Lemma 2.4. Let h and rj be fixed, fin e U*d and lim fjn = a in C([0, 1]). 
n~> oo 

Denote by &(Pn) the solution dhn(Pn) of the variational inequality (6) on Dh = D(f3n), 
extended by zero to D — D(/3n). 

Then a (positive) function h2(n) exists such that 

&(Pn) -» &(<x) in S(D) for n -> oo 

if h < h2(n). 

Proof. 1° Following the argument of Proposition 2A and using the mapping rn
n 

defined on D(f$n), we can show that 

IK/Ollo,,,^) ^ C Vn . 

Let us define a(/ln) as the vector of coefficients in the formula 

M 

<#-) = 2>.(A.) **(.*-). 
i= 1 

where 9t(Pn) are the basis functions of the space Hh(D(Pn)). 
One can show that positive n0 and C0 = const exist such that 

(42) Ho-r-D(W = CoH^I!«-

holds for all n > n0 and all cr e Hh(D((ln)). 
Consequently, a subsequence of (Of/?,,)} (which will be denoted by the same symbol) 

and a e S(D) exist such that 

(43) * ( # , ) - . (weakly) in S(D). 
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Making use of (42), we prove that 

* ( & ) - > * in UM, 

where o is the vector of coefficients of a on D(a), a = 0 in D — D(a) and the con­
vergence (43) is even strong. 

2° Next we realize that 

a E Eh(D(a)) o A(a) a = «F(a), 

where the matrix A(a) has the entries 

^ ( T , ) , ^ ) ) ^ ) -

Here $l™ are the basis functions (barycentrix coordinates) of Hh(D(a)), Tj(a) e 
e fTh(D(a)) the triangles and vt the basis functions of the space Vh(D(a)). 

Since 
a(pn) e Eh(D(p„)) => A(f$n) a(pn) = ^ ( / Q , 

\ 
passing to the limit with n -> oo, we obtain that 

(44) A(a) a = &(a), i.e. a e Eh(D(a)), 

since the matrices A(/3n) and #"(/?„) depend continuously on pn. 

3° Next we show that 

(45) aePnh(D(a)). 

In fact, the functional 

J- ?->SDU(?)- l ] + ^ d r d z 

in continuous on S(f>) (cf. the proof of Propos. 2.1 — 4°). Consequently, we have 

j(a) = lim j(a(/}n)) g n . 
n~* oo 

4° Let us show that G\D^ is a solution of the variational inequality 

(*, t - 4 , ^ = 0 Vt e F,(D(a) n P„(D(a)). 

Let a test function r be given. We can write 

* = Z fai #i(<*) , 
i = l 

A(a) t , = iF(a) . 

One can prove that the matrix A(a) has a full rang 

nA = dim Vh(D(a)) . 

(It is easy to realize that nA < dim Hhj3). Thus a suitable renumbering leads to the 
equation 

A,(a) f * + A2(a) tl = #-(a) , 
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where A!(a) is regular, so that 

tj = A^(a) P(a) - Arx(a) A2(a) t 2 . 
Let us define 

f*(t2) = Ar1(ys„)(^n)-A2(J8„)t2), 
«л 

/(/?„,«-) = / ( 2 ttt*2W*) + I *f»iO»-)), 

j(j8n,t
2) = W n ) [ / ( / 5 n , f 2 ) - l ] + r d r d Z . 

Obviously, we have 
M 

t - E iU^)UPn) + I r29,.(/?n)e£AW„)) 

and 
j(Pn,i

2) = W n ) [ / ( t ) - l ] + r d r d 2 . 

Let us define m = M — nA and the set 

P2 = { f 2 e ^ | j ( A ? T 2 ) ^ ^ } . 

The latter set is convex and closed in Rm for any fln. Indeed, the convexity follows 
from the convexity of the functionsf(^„, •) and j(pn, •), the closedness from their 
continuity. 

Consequently, we may define the projection 

n„: Um -> P2 on the set P2 in Um . 

Let us consider the vectors 

*« = [*a"fc«*2)> V « ] > n = 1, 2 , . . . 

and the functions 
M 

i = l 

It is readily seen that 

T(fSn)eEh(D(f)n))nPnh(D(f}n)) 

so that we may insert it into the inequality (6). 
Defining also the extensions of x(Pn) and T as follows 

t(/Q = 0 in 5 - D(pn), f = 0 in fi- D(a) , 

we obtain 

(46) (9ifin),m)^Wn)U' 
Next we can show that 

(47) * ( & ) - > * 1" «(->)• 
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In fact, we may write 
M 

(48) ||f(/Q - f ||2,P,fl < 2 Jc [ £ (fBi - fai) ^(ft,)]2 r dr dz + 
i = l 

M 

+ 2 jfi [ I * . . ( W - 3;(a))]2 r dr dz = Jln + J2n. 
1 = 1 

Using some results of Pironneau [9], we obtain 
M 

(49) J2n iS 2||fa||
2
M Jfi X ( W ~ ^(«))2 r dr dz -> 0 . 

i = l 

Moreover, 

(50) Jln <. 2||f„ - fa||
2M Jfl £ 32(/Q r dr dz < C||f„ - fa|

2
M = 

i = l 

= C(\en(nn*l) - fid2*. + |Kf2 - f2||2„, = C(K\n + K2„). 
By definition of nn we have 

% 
(51) X 2 „ ^ | |y„-f2 | |Rm Vj ;„eP 2 . 

Let us construct a suitable sequence {>*,,}. From the proof of Lemma 2.1 we 
conclude that 

(52) h < ho(r,0, a0) -> JDhWn) [ / ( r^ 0 ) - 1] + r dr dz < t,0 , 

where 0 e (0, 1) is an arbitrary parameter and 

M 

K APn) = I Qni Hfin) 
i = l 

is the projection corresponding with the triangulation &~h(Pn). 

On the basis of (42) and the assumptions (A 1), (A 3), (A 4), we obtain for qn = 

*= [ftt-0,2] 

(53) C0|k
2|JR^ ^ Co||^lRM S \\rn

h v°(Pn)\\0,r>D(Pn) S C . 

Moreover, 
r"ha°(pn)eEh(D(pn))nPvh(D(pn)) 

(cf. the proof of Lemma 2.3), so that (52) implies 

j(Pn, Q2n) S rj& . 

Since the function f$ i—> j(/>, f2) is continuous, there exists a sequence {$„}, Sn > 0, 
8n -> 0, such that 

j(0n, f2) ^ fa t2) + (5, ̂  >? + 6n . 

Let us define 

(54) tn = Sn(S„ + r,-r,0)-1, 

yn = < + t„(e2 - *2) • 
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From the convexity of the function y v-+j(fin, y), we deduce that 

i{P„, yn) S tj(pn, e
2

n) + (1 - t„)j(p„, f2) s 

S t„nQ + (1 - tn) (n + Sn) = n 

and consequently, yn e P 2 . 

We may write, using (51) and (53), (54), 

(55) K2n ^ \\tn(Q
2

n - f 2 ) | ] R m - 0 . 

Furthermore, we have 

(56) Kln = | A r l(p„) $F(fin) - A;l(a) &(*) -

- A\
 l(pn) A2(P„) (7t„t i) + Ar'(«) M«) t24w = 

^ JA^(pn)^n) - A;l(a)^(a)\\R„A + 
+ lAZl(P,)A2(f$n)\*\\nnTl-Tl\\*m + 

+ \\A;l(p„) A2(/?„) - V ( « ) .42(«)|, |t2l|R„, - 0 , 

using (55) and the continuous dependence of the matrices Ax"1, A2 and #" on the 
variable /?. 

Combining (50), (55) and (56), we arrive at 

lim JlM = 0 . 
«-»oo 

Inserting this result and (49) into (48), we obtain (47). Using the strong convergence 
(43) and (47) in (46) leads to 

(ff, T)D ^ H|s, 

which can be rewritten as follows 

(a, T - <r)D(a) ^ 0 . 

Since (44) and (45) hold for a and the solution of the variational inequality (6) 
is unique (cf. Lemma 2.3 and its proof), if h < h2(n) = h0(n&, a0) ^ ht(rj) = 
= h0(n, a0), we conclude that 

a = <r(a) 

and the whole sequence {d(f>n)} tends to <r(a) in S(D). 

Lemma 2.5. Let the assumptions of Lemma 2.4 he fulfilled and h < h2(ti). Then 

lim S(pn9 a(0n)) = / ( a , <x(a)) . 
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Proof is analogous to that of Proposition 2.2. Since f(0) = 0, we have 

/(PnMti) = Jl>/W-)) r dr dz , 

I/G&-, °(Pn)) ~ /(«, <K«))I -a 

g C\\d(pn) - a(a)|0, r>B + ||5(A) - <x(«)lo\r,fi] - 0 

by virtue of Lemma 2.4. 

Proof of Theorem 1. Let us denote by 

a = {a(0),a(h),...,a(l)} 

the vector of nodal values of the function a e Uad. Then 

a e Uad o o e i , 

where &0 is a compact subset of IR "̂1"1. 
By Lemma 2.5, the function 

JoW = /(«, <<«)) 

is continuous in s4'. 
Consequently, j 0 attains its minimum in the set s/. 

Theorem 2. Let {ochri}, h -> 0, rj -> 0, h < h2(t]), be a sequence of solutions of the 
Approximate Optimal Design Problems (41). 

Then a subsequence {oc^} exists such that 

(57) a ^ - > a in C([0, 1]) , 

(58) ^ ( a * W ( a ) in [L2(D)]4 , 

where oc is a solution of the Optimal Design Problem (4), ^ ( a ^ ) is the solution of 
the approximate problem (6), extended by zero to D — D(a^) and cr(a) is the solu­
tion of the problem (3), extended by zero to D — D(a). 

Any uniformly convergent subsequence of {ahr]} tends to a solution of the problem 
(4) and an analogue of (58) holds. 

Proof. Let us consider a /? e Uad. There exists a sequence {/?,,}, /i -> 0, ph e Uad, 
such that ph -> /? in C([0, 1]) (for the proof — see [7] — Lemma 3A). 

A subsequence {a^} c {ochtJ} exists such that (57) holds and a e Uad (see [7] — 
Lemma 3.2). We have 

/(a*,, <r*K)) ^ / ( f t , o*(fc)) 

by virtue of (41). 
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Applying Proposition 2.2 on both sides, we are led to the inequality 

/ ( a , a(a)) rg /(/?, <x(/?)) . 

Consequently, a is a solution of the problém (4). The convergence (58) follows from 
Proposition 2.1. The rest of the assertion is obvious. 

Corollary. There exists at least one solution of the Optimal Design Problém (4). 

Proof is an immediate consequence of Theorems 1 and 2. 
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S o u h r n 

OPTIMALIZACE TVARU OSOVĚ SYMETRICKÝCH 
P R U Ž N Ě PLASTICKÝCH TĚLES 

IVAN HLAVÁČEK 

Uvažuje se pružně plastické těleso, jehož stav napjatosti se řídí Henckyovým zákonem. K řešení 
stavové úlohy se používá princip Haara-Kármána a po částech lineární aproximace napětí. 
Tvar meridiánového řezu je optimalizován na základě integrálního kritéria. Dokazuje se kon­
vergence přibližných řešení a existence optimálního meridiánového řezu. 
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