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IDENTIFICATION OF CRITICAL CURVES 

PART II: DISCRETIZATION AND NUMERICAL REALIZATION 

JAROSLAV HASLINGER, VACLAV HORAK, PEKKA NEITTAANMAKI, KIMMO S A L M E N J O K I 

(Received April 11, 1990) 

Summary. We consider the finite element approximation of the identification problem, where 

one wishes to identify a curve along which a given solution of the boundary value problem 

possesses some specific property. We prove the convergence of FE-approximation and give some 

results of numerical tests. 

Keywords: Identification of a curve, approximation by F E M , convergence. 

AMS classification: 49E30, 65N30 

I N T R O D U C T I O N 

In practice we often meet problems when we wish to identify a curve along which 
a given solution of a boundary value problem possesses some specific property. 
In [1] the problem of identification of a curve along which the "flux" functional 
j ^ (dujdn) ds attains its maximum, is analysed. The present paper deals with the 
approximation of this problem. Some numerical results are presented. 

1. SETTING O F T H E PROBLEM 

This paper deals with the finite element approximation of an identification problem, 
the continuous version of which has been already introduced in [1] . Let us mention 
its definition. We shall assume the following mixed boundary value problem: 

{&>•) 

where 

-Дм — f in Q , 

u = 0 on Гx , 

õu „ 
— = g on Г2 , 
õn 

Q = {(А" l5 x2) e R2 | 0 < x2 < p(x-), xг e (0, 1)} 
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is a bounded domain, the Lipschitz boundary dQ of which is decomposed as follows 

dQ = rt u F2, 

F2 = {(xl9 x2) e R2 | x2 = p(xx)9 xx e (0, 1)} , 

Fi = dQ\F2. 

Here p is a Lipschitz continuous function on [0, 1]. Moreover, fe l}(Q)9 g e L2(F2)-
In order to give the variational form of (^ '), we introduce the space 

V= {vGH l(.Q)| v = Oon FJ . 

The variational formulation of (&') reads as follows: 

, v fFind u e V such that 

|(Vu, Vi>)0ffl - (/, r ) 0 f O + Jr2 gv ds Vv e V. 

The symbol ( , ) 0 O denotes the usual scalar product in L2(0). 
Let 0 < a < j 5 < l , < 5 > O b e given. By Uad we denote a subset of Lipschitz con­

tinuous functions, defined by 

Uad = {q> | 3a e [0, a], j8 e [/?, 1]: <p e C^f la , j8)] , 

<p(a) = p(a), cp(j8) = p(j8), (3 = <B g p on [a, j8], 

|<p(xi) — ^(x i) ! :g C^Xj — xx\ Vx1? xt e [a, /?], meas 0(<p) = C2} 

where 
Q(q>) = {(xl9 x2) e R2 | 0 = x2 g p(xx) x, e [0, a] u [/?, 1] 

0 ^ *2 ^ <Kxi) x i G [a> J8]} 

and Cl9 C2 are positive constants such that Uad #= 0. 
Finally, set 

J r(^) = ( ~ • l ) ~ JiV<,) 9 ds - J/vO,) 0 ds , 
\™ /«fl(9) 

where 
r\(q>) = {(x1? x2) e R2 | x2 = p(xj), x! e (0, a)} 
r2

2(cp) = {(xl9 x2) eR2\x2 = p(xx)9 xx G (fi, 1)} 

and < , }dQ(qt) denotes the duality pairing between H~l/2(dQ(<p)) and H1/2(dQ(q>)). 
In [1] the following problem has been introduced: 

(p\, J Find <p* G Uad such that 
} Uv*) = max J(ę) . 

фЄUad 
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This problem can be equivalently formulated (see [l]) as follows: 

such that 

where 

fFind (p* e Uad si 
\f(q>*) = min J(q>) 

<ř>єl/ a d 

J{<P) = W ) / d * + Jiv<«o g <*s + J>22(<p) g ds . 

The existence of at least one solution (p* of (P) has been established in [1], 

2. APPROXIMATION OF (P) 

In what follows we shall assume Q c R2 to be of a special type, namely such that 
the function p describing F2 is piecewise linear in [0, 1] with nodes included in [a, /?] 
only (see Fig. 1)*) 

* H 

г2 л 
П 

Гi 

— 1 \ Гi 
1 1 — 1 — • 

1 X, 

Figure 1. 

Let -^„(a, P): a = at < a2 < ... < an = ft be a partition of [a, />], where the 
number of nodal points n doesn't depend on a e [0, a] and /? e [/?, 1]. The ^-co­
ordinates of the vertices of p are included in @n(<x9 j3). Any @n(a, f$) will be charac­
terized by two numbers hmax(a, ft) — max,-1 aI+1 — at\9 hmin(a9 ft) = min£ |aI+1 — a5|. 
We shall assume that the position of ai9 i =- 1, . . . , n depends continuously on a, ft. 

The approximation of Uad will be constructed by means of piecewise linear 
functions: 

Un
ad = {cp | 3a e [0, a] , jj e [/?, 1]: 9 e C([a, £]), 

^IflTTTal e p i ( « i - i « ^ <Ka) = Ka)> <K#> = K0) > 
5 g <JO ^ p on [a, jff], l ^ ^ ) - ^(x^l ^ Ci^j - xx | 

Vxl5 xx e [a, j8], C2 = meas &((?) ^ C?3} . 

Cl9 C29 C3 are positive constants chosen in such a way that U%d 4= 0. 

*) This assumption is only for technical reasons. 
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Remark 2.1. The equality constraint meas Q(cp) = C2 in the definition of 
Uad is now replaced by two sided inequality constraints C2 ^ meas Q(q>) ^ C3 

(for the choice of C29 C3 see below). This means that Uad ^ Uad. 
The approximation of (P) is now defined as follows: 

.pv ("Find <pneUn
d such that 

1 h \j(<p*n) = minJ(<p). 
<peUn

ad 

Next, we shall analyse 

(i) the existence of at least one solution <p* of (P)„; 

(ii) the relation between (P)n and (P) when n -* oo + . 

3. EXISTENCE OF A SOLUTION FOR (P)n 

In order to prove the existence of a solution for (P)M, we formulate this problem 
in the language of discrete design variables. The vector of discrete design variables 
a) = (col9 ..., co2n) contains 

(j) the nodes of Sn(a, /?); 

(jj) the x2-coordinates of vertices of (p e Un
d at ai9 i = 1, . . . , n. 

For the sake of simplicity of notation we shall suppose that the first n components 
of o> are the nodes of @n(a9 0)9 while the elements of (jj) are listed last, i.e. 

co. = at i = 1, . . . , n ; 

ay. = r/)(a.„n) i = n + 1, ..., In. 

Let the parameter n be fixed. Then Uad can be identified with a compact subset 
U of R2n as follows: 

= j o) e R2n | hmax(col9 con) = o>l+t ~ o>f = hmin(col9 con)9 i = 1,..., n - 1; 

o>! G [0, a] , con G [/?,1], G>„+1 = p(cD1)9 co2n = p(con) ; 

(5 S o)i g p(cof„„), i = n + 2 , . . . , In - 1; 

|coi+1 - a>i\ ^ C ^ + i - , , - ©!--!, i = n + 1, . . . ,2n - 1; 

c2 s „, frPH-rt-)) + f' 5=»L±-i)Kl, - „,,,) + 

U 

+ (i-a>,)^^2
+^^e3}. 

Let 3~n: U"d -* R2" be a mapping defined through the relation 

3r„(<P) = (<*u • • •> ««> <P(ai)> • • •> <Ka»)) > <? e ^ d • 
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It is easy to see that ^n(Uld) = U and the inverse mapping ZTn
x\U -* U^d is given by 

n 

^n \<0) = Z ^ j + / i > © = (">1> • • •> <*>2«) e t/ , 

where ^ , j = 1, ..., rc are piecewise linear functions satisfying ^y(af) = 5^. Finally, 
set 

Se(co) = J(^l<o) = J ^ ) / d x + JrafW gds + $riH(p) 9 ds . 

The equivalent formulation of (P)B is given by 

(0\ (Find co* e U such that 

\&(co*) = min JSf(co). 

The main result of this section is 

Theorem 3.1. For any n there exists at least one solution cp* of (P),r 

Proof. U is a compact subset of R2*, co -> j£?(eo) is a continuous function. Using 
the classical compactness argument, we obtain the existence of at least one CD* = 

n 

= (co*, co*, ..., o>*n) G U solving (p)n. Setting cp* = £ ^*+r/j w e arrive at the asser­
tion of Theorem 3.1. J = l 

4. RELATION BETWEEN (P) A N D (P)B, n -> GO 

Let {^„(a, /?)}, w -+ oo be a regular family of partitions of [a, /?] in the following 
sense: 

'there exists a positive number q independent of 

n, a, p and such that 

kgxM) 
^min(a, J8) 

q. 

Let </>* G U3d be a solution of (P)„. Now we shall analyse what happens when 
n -» oo. 

First of all we shall specify the choice of constants C2, C3 appearing in the definition 
ofUa

n
d.Weset 

* - * ( ! - $ • ) . 

where y e (0, l) and the meaning of C2 is given by the definition of t/ad. First we prove 
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Lemma 4.1. For any cp e Uad, cp: [a, ff] -> R1 there exists a sequence cpneUad 

defined on [a, ff\ and such that 

(41) <pnzX <p (uniformly) on [a, /?] . 

Proof. Let cpeUad be defined on [a,/?], a e [0, a] , /? e [/?, 1]. Set <p„ = rn<p, 
where rncp denotes the piecewise linear Lagrange interpolation of (p. Using the 
classical approximation properties of cpn we have 

1 1 
(4-2) \\<Pn ~ <H|L««a,/T,) = C~ IklW^-aa^)) = C ~ » 

n n 
which yields (4A). Let us prove that <p„ e Uad. Clearly, it is necessary only to verify 
that 

C2U - Py\ S meas £>(<?„) ^ C2 (l + (^j\ 

(the other properties of <pn appearing in the definition of U"aA are satisfied because 
of the definition of <p„). We have 

meas Q(<p„) = J0(„n) dx = meas Q — Jf J£„ dx = 

= meas i2 - Jf Ĵ „ dx ± J£ Jj d* = 

= meas flfa) + JJ (JJ dx, - ft, dx:) dx2 =£ C2 + Jf |J*. dx,| dx2 

П Є 
because of (4.2), provided n is sufficiently large. 

Similarly 

meas Q(<pn) * C2 (l - (^j\ . 

The main of this section is 

Theorem 4.1. Let cp* e Uad, cp*: [a*, jS*] -> R1 be a solution of (P)„. Then (here 
exist subsequences of {a*}, {/?*}, {<?*} (denoted by the same symbol) and a* e 
e [0, a], jg* G [/?, 1], <p* G Uad, <p*: [a*, /?*] -> R1 such that 

K * - a * , ^ f , n->oo 

( 4 3 ) L * - cp* on Im = [a* + 1 , J?* - A ] 
( m mj 

/or any integer m and 

(4.4) (p* is a solution of (P). 

Proof. Let <p„* e Ua"d, <p*: [a*, / £ ] -> R1 be a solution of (P)„: 

(4.5) S(q>t)£S(<p) V<peU:d. 
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As a* e [0, a] , /?* e [/5, 1] there exist subsequences of {a*}, {/?*} (still denoted by 
the same symbol) and numbers a* e [0, a] , /?* e [/?, 1] such that 

(4.6) a* ->a* , P* -> P* , n -> co . 

Let m be an integer and Im as above. Then cp* are defined on Im (m being fixed) for 
n sufficiently large. As the sequence {cp* |Jm} satisfies on Im all assumptions of the 
Ascoli-Arzela theorem, there exist a subsequence {cp*i} c: {<p*} and a function 
<p*(m) G C(IM) such that 

<p*Z> <p*{m) on I m . 

Replacing m by (m + 1), one can find a subsequence {<p*2} <z {<p*i} defined on 
Im+1 and a function <p*(m+1) e C(Im+1) such that 

* _> ~*(m+l) __ r 

(p„2 __» (p ' o n Im+1 . 
Clearly <p*{m+1) = <p*(m) on Im. Repeating the same procedure for any integer m 
and passing to the diagonal subsequence defined by means of {9*1}, {cp*i}, ... one 
construct a sequence, denoted by {cp*}9 such that 

cp* Z$ cp* on Im where <p* = (p*(m) on Im, m integer. 

It is easy to see that up* e Uad. Indeed, as 

A - (~j\ ^ meas &(<?*) S C2 (l + ^ 

then 

(4.7) lim meas *Q(<p*) = C2 • 
n-»oo 

But 
meas 0(<p*) = meas O — Jf% j£n* dx = 

= meas Q - JJm J£n, dx - JGm J£n* dx , 

where meas Gm -> 0 as m ~> 00. Keeping m fixed and n - > o o w e have 

lim meas Q(cp*) = meas O — JJm j£* dx — JGm j£» dx . 
n-*ao 

Letting m -> 00 we finally obtain 

lim meas Q(cp*) = meas Q — jp
al J£* dx = meas Q(cp*) . 

n—> 00 

Comparing this with (4.7) we see that meas Q(<p*) = C2. Further 

<p* («* + i \ = lim L* L* + -)- «?*(«*)) + lim <?*(«*) = 
\ m / n - o o \ \ mj J n-*ao 

= lim («,.* («* + i ) - </>„>„*)) + lim p(aB*) = p(«*) + c(m) , 
B-.oo\ \ m) ) B"*oo 
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where c(m) -> 0 if m -> oo. Thus cp*(<x*) = p(a*) and similarly (p*(j5*) = p(fi*). 
The other conditions appearing in the definition of Uad are easily satisfied. Let us 
prove that 

(4.8) lim J(q>*) = J(q>*) . 
J1-+00 

Indeed, 

W . j / d x = j f l /dx - j ; ; : j j„./dx = 

= iafdx - J/m J£n./dx - JGm j£„./dx , 

where meas Gm -> 0 as m -H• oo. For m fixed and ra -> oo we have 

lim J0(Vn.)/dx = J 0 / dx - J/m j£. /dx - JGm J$./dx . 
J1~>00 

Letting m -> oo we finally obtain 

(4.9) lim J0(9n.,/dx = J 0 /dx - Jf.* j£. /dx = J0(„.,/dx . 
/ . - •oo 

Similarly 

J-Vcv) ^ d s = IS"* 3 V(- + (P')2) d*i " ^ JS* <7 V(l + (P')2) d*i -

= Jra'(*«) 9 <is 
and 

. n-»oo . 

Jr2*(>n') g ds -» Jr22(<) g ds . 

Taking into account this, (4.9) and the definition of J5", we arrive at (4.8). 
Let cp e Uad, <p: [a, />] i—> R1 be fixed. According to Lemma 4.1 there exists a se­

quence <pneUad, «rV [a, /?] H-> R1 and such that (4.1) holds. In the same way as 
before one can prove that 

lim S((pn) = J(q>) . 
n-+ao 

From this, (4.8) and (4.5) we get 

Jf((p*) = J(q>) . 

As cp e Uad is an arbitrary element this means that q>* solves (P). 

5. NUMERICAL EXAMPLES 

Let us suppose for simplicity that p is a linear function defined on [0, 1], and let 
0 < a < ft < 1. Let n be fixed. The partition ^„(a, /?) will contain moving nodes, 
forming a partition of [a, /?] (see Fig. 2). 
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The vector of discrete design variables co = (col, ..., to2n) now contains 

(j) the nodes of Bn(a, /?); 

(jj) the x2-coordinates of vertices of (p e U^d at ah i = 1, ..., n. 

The set U, introduced in Section 3, is a compact subset of R2". 

0 (J- oc 0)n 1 X. 

Figure 2. 

From the definition of U we see that all constraints with the exception of the last 
one are linear. In U we take the constants to be 

a = 045 , p = 0-85 , Cx = 1-5 , C2 = C2 = C3 = 0-5894 , 

S = 04 , hmJ(ou con) = 1 , fc-m^o)!, co.,) = 0-02 , n = 13 . 

In order to solve the problem (P)n numerically one uses some iterative method; 
typically a gradient type method. 

In optimization we apply the Sequential Quadratic Programming method (sub­
routine E04VDE of NAG-library). Domain integrals are computed using Gaussian 
quadrature and line integrals with the trapezoidal formula. A sufficient subdivision 
is performed dynamically in the domains of integration to get accurate results. 
In sensitivity analysis the method of part I was compared with the finite difference 
and the algebraic method and all three methods gave the same gradient. In optimiza­
tion the algebraic gradient, obtained through analytical differentiation of the cost, 
was used. 

In the examples we take Q to be given by 

® = {(*i> xi) e R2 | 0 < x2 < p(xx) = ixt + \ , xt e (0, l)} . 

We consider two cases: 

Example 5.1. Let x3 = f(xl9 x2) = — 2n2 sin (nx^) sin (nx2), g(xu x2) = — 2*5TT . 
. sin (nxt) cos (nx2) and let Q be given as above. As an initial guess we choose 

cot = 0425 + (i - 1) 00625 , i = 1, ..., 13 
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and 

G)14 = 0-5625 , o)15 = 0-5 , o)16 = 0-4375 , <y17 = 0-375, 

o)18 = 0-3125 , Q)19 = 0-3125 , o)20 = 0-40178 , co2l = 0-49107 , 

co22 = 0-58035 , G)23 = 0-66964 , co24 = 0-75892 , co25 = 0-84821, 

co26 = 0-9375 . 

In Figure 3 below we have the initial and optimal curves q> fot this example. 

Figure 3. 

In Table 1 below we have the values off along the optimal curve q>*. 

Table 1. 

xг 
x2 

xъ 

0-0000000 0-5000000 0-0000000 

0-1092079 0-3361881 - 5-780113 

0-1313176 0-3030236 - 6-446706 

0-2441563 0-3359311 -11-91932 

0-2645934 0-3665868 -13-32052 

0-3071481 0-4304188 -15*83973 

0-3508292 0-4959405 -17-60962 

0-4093626 0-5837405 -18-29257 

0-47500Í2 0-6689263 -16-97169 

0-7462183 0-6193624 -13-14121 

0-8078977 0-7118464 - 8-811865 

0-8717889 0-8076833 - 4-395551 

1-000000 1-000000 0-000000 

The cost in optimization was reduced from J0 = -3-93614 to Jopt = -4-88278. 
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Example 5.2. Let x3 = f(xl9 x2) = x\ + xjjE, g(xi> xz) = 1 a n ^ let .Q be given as 
above. Moreover, let the initial guess be the same as in Example 5.1. In Figure 4 
below we have the initial and optimal curves <p for this example. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

* 

Figure 4 

In Table 2 below we have the values off along the optimal curve <p*. 

Table 2. 

0-0000000 
0-2072488 
0-3436032 
0-4082979 
0-4289429 
0-4492524 
0-4692871 
0-5995702 
0-6263743 
0-6976938 
0-7892034 
0-8258656 
1-000000 

0-5000000 
0-5999357 
0-5744058 
0-4785570 
0-4560512 
0-4260519 
0-4344718 
0-4016983 
0-4395616 
0-5465407 
0-6838051 
0-7387984 
1-000000 

0-2500000 
0-4028749 
0-4480052 
0-3957239 
0-3919747 
0-3833479 
0-4089961 
0-5208459 
0-5855591 
0-7854833 
1090431 
1-227877 
2000000 

From the table we see that f is constant along most of the optimal curve <p, which 
corresponds to the theory from [1]. The cost in optimization was reduced from J0 = 

0-6616 to J, opt 0-3124. 
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