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VON KARMAN EQUATIONS 

III. SOLVABILITY OF THE VON KARMAN EQUATIONS 

WITH CONDITIONS FOR GEOMETRY OF THE BOUNDARY 

OF THE DOMAIN 

JULIUS CIBULA 

(Received March 21, 1990) 

Summary. Solvability of the general boundary value problem for von Karman system of 
nonlinear equations is studied. The problem is reduced to an operator equation, It is shown that 
the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the 
functional of energy attains absolute minimum which is a variational solution of the problem. 

Keywords. Variational solution, Sobolev space, linear continuous functional, operator, cur* 
vature, property of coerciveness, weakly lower semicontinuous functional, absolute minimum. 
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1. INTRODUCTION 

This paper is a free continuation of [1]. We deal with the following problem: 

(1.1) A2w = [<£, w] + q in (2, 

(1.2) A2<P = - [ w , w] in O , 

(1.3) w = wn = 0 on F! , 

(1.4) w = 0 , Mw + k2wn = m2 on F2 , 

(1.5) w„ = 0 , Tw + (wx<Pyx - wy<Pxx) + k3w = r3 on F3 , 

(1.6) <£ = <£0 , <P„ = # ! on 5Q , 

where: 

Q denotes a bounded simple connected domain in E2, 

QeC™ , 
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SQ denotes the boundary of Q such that 

SQ = F1uF2uF3, F£nF, = 0 for i , j = 1,2, 3 , i+j, 

Su 32u 
ux = — > uxy = > etc., 

A2u = A(Au) = uxxxx + 2 u x w + w ^ , 

[u,v] = uxxvyy + uyyvxx - 2 ^ ^ , 

« = (nx, ny) is the unit vector of the outer normal to SQ, 

T = (— ny, nx) is the unit tangent vector to SQ, 

a is the Poisson constant, 0 < a < 1/2, 

Mu = oAu + (1 — a) \uxxn
2
x + 2uxynxny + u^nj] , 

Tu = -(Aw)„ + (1 - a) [uxxnxny - uxy(n
2
x - n2) - uyynxny]x. 

In [1] we have established the solvability of the von Karman equations under the 
following conditions: 

K&0 = 0 on F2 , 

K<£0 = 0 , <PX = 0 on F3 , 

where K is the curvature of the curve SQ. In this paper we will show sufficient con­
ditions of solvability which depend on the geometry of the boundary SQ and do not 
depend on the values of $0 and 3^ on SQ. 

Analogously to [1] we shall define a variational solution of the problem 
(1.1) —(1.6). We shall show that the corresponding functional of energy is coercive 
and weakly lower semicontinuous. We shall prove the coerciveness of the functional 
using the idea of Ciarlet-Rabier [4] with the assumption F2 = F3 = 0. The existence 
of the solution for similar boundary conditions is proved in [6] using the idea of 
Knightly [7] but for other sufficient conditions. Furhter, in [6] the assumption F3 = 0 
is introduced, but also a free edge with the condition 4>0 = ^ = 0 is searched. 

2. VARIATIONAL SOLUTION OF THE PROBLEM 

We assume (as in [1]): 

(2.1) k29 m2 e Lp(r2) ; k3, r3 e L t(F3) ; q e LP(Q) for p > 1 , 

(2.2) k2 = 0 a.e. on F2 , k3 = 0 a.e. on F3 , 

(2.3) <P0eW3/2'2(SQ), $xeWll2>2(SQ). 
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We denote: 

A(u, v) = \Q [uxx(vxx + avyy) + 

+ 2(1 ~ a) UxyVxy + Uyy^yy + 0 1 ^ ) ] dX d j , 

a(w, v) = JF2 k2wnvn ds + J r 3 k3wv ds , 

p(u) = J r 2 m2w„ ds + J r 3 r3w ds , 

(W, ^ ^ 2 , 2 = JQ (U^V^ + 2UXyVXy + UyyVyy) (lX dy , 

B(u; v, z) = JD [(uxyvy - uyyvx) z , + (uxyvx - wXJCvy) z j dx dy , 

r = {w e C20^): w = wn = 0 on Fl9 w = 0 on F2, wn = 0 on F3} . 

V= TT ; 

here ^ is the closure in the topology of W2'2(Q). 
From (2.3) and from Q e C00 we obtain the existence of a function Fe W2'2(Q) 

such that 
F = <!>0 , F„ = <£x in the sense of traces on (5Q, 

(F, ^)^02.2 = 0 for arbitrary \jj e Wl>2(Q). 
Let 

/ = $ - F . 

Definition 2.1. The variational solution of the problem (1.1) —(1.6) is a pair of 
functions (w,f) eVx Wlt2(Q) with the following properties: 

(2.5) A(w, <p) + a(w, <p) = B(F; w, <p) + B(f; w, <p) + p(cp) + \Q q<p dx dy , 

(2.6) ( / ,<AW.2= ~B(w;w,x\j) 

for arbitrary <peV,\l/e W2
0'

2(Q). 
On Vwe define an inner product 

(2.7) (u, v)v = A(w, v) + a(u, v). 

Under some assumptions (see [5]) we can show that (2.7) is an inner product and 
the corresponding norm is equivalent to the norm of the Sobolev space W2,2(Q). 
For example, it is sufficient to assume 

1° mes(Fi) > 0 or 
2° mes (F2) > 0 and F2 is not a part of any straight line. 

Using the Riesz representation theorem for linear continuous functional on Hilbert 
spaces we get (see [1] or [5]) the existence of operators L: V-* V, Cx: Wl'2(Q) x 
x V-> V, C2: V x V-> W2

0'
2(Q) and q* e V such that 

(2.8) B(F; w, <p) = (Lw, <p)v , 

(2.9) B(f;w,cp) = (C 1 ( / ,w) ,< ? V, 

(2.10) B(w; w, xj/) = (C2(w, w), $ ) W Q 2 . 2 , 

(2.11) p(<p) + Jw q<p dx dy = (q*9 <p)v 
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for arbitrary w9w,<pe V and / , ifr e WQ'2(Q). Using (2.8)-(2.11) we get the equi-
valnce between equations (2.5), (2.6) and equations 

(2.12) w = Lw -^ C-(/, w) + a* in V, 

(2.13) / = -C2(w9w) in W2'2(Q). 

If we put 

Cw = C1(C2(w, w), w) 

then we obtain from (2.13) and (2.12) 

(2.14) w - Lw + Cw - 4* = 0 in V. 

3. PROPERTIES OF OPERATORS OF THE PROBLEM 

In [1] we have shown some properties of the operators L, Cl9 C2 and [,]. 

P.l . For an arbitrary sequence {w"} cz V such that 

wn -> w weakly J/1 V 
we have 

Lwn -» Lw strongly in V, 

CavW", wn) ~> C2(w, w) strongly in Wl'2(Q) . 

(See Lemma 4.3 in [1].) 

P.2. The following implication takes place: 

C2(w9 w) = 0 in W2
0>

2(Q) => [w, w] = 0 in W~2>2(Q) . 

(See Lemma 4.5 in [1],) 

P.3. For arbitrary w eV9 F e JV2'2(.Q) the following formula takes place 

(3.1) J0 l(Fxywy - Fwwx) wx + (Fxywx - Fxxwy) wy] dx dy = 

= Jfl [w, w] F dx dy - Jr2 K2 F(wn)
2 ds - JV3 K3 F(wv)

2 ds -

- J F 3 F n (w T ) 2 ds , 

where Kj denotes the curvature of the curve Fi9 i = 1, 2, 3. 
(See (4.5) in [1] and the boundary condition for w.) 

P.4. The solutions o/(2.14) are critical points of the fuctional J: V-+ Ei9 which 
is defined by the relation 

(3.2) J(w) = Hwjy - |(Lw, w)v + HC2(w, w)fl*,0..., - (q*, w)v . 

(See Lemma 5.1 in [1].) 

371 



Let Kf be the curvature of the curve F, (i -= 1, 2, 3). In the next part of the paper 
we shall assume that least one of the following assumptions C.1 — C 6 is fulfilled. 

C.l (Fig. 1) 

(3.3) K2(x, y) = 0 and K3(x, y) > 0 on 5Q . 

Ғig. 1 

C.2 (Fig. 2) 

(3.4) K2(x, y) g 0 and K3(x, y) < 0 on ÔQ 

Fig. 2 

C.3 (Fig. 3) There exists a line with the equation ax + by + c = 0 such that 

(3.5) K2(x, y) . (ax + by + c) = 0 on P2 , 

(3.6) K3(x, y) . (ax + by + c) = 0 on F3 , 

(3.7) anx + bny > 0 on F3 , 

where n = (nx, ny) is the unit vector of the normal to SQ. 
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Remark. Let a be the angle of vectors m = (a, b) and n = (nxi ny). Then (3.7) 
has the form 

and we get 

(m, n)Ľ2 = \m\ cos a > 0 , 

a є ( — 7г/2,7r/2) . 

зx+ijў+б <ö 

iî / 
/lк+ly + g »ø 

""Ч i •u f - î î ; 

«.*.>•+ t > Я 

Fig. 3 

C.4 (F*a. 4) F3 = 0 and there exist parallel lines with the equations ax + by + 
+ cx = 0, ax + fcj + c 2 = 0 such that 

(3.8) K2(x, y) . (ax + by + c*) (ax + by + c2) g 0 on F2 . 

/ix+lijf+c4=0 /ax+ly+s^O 

/JL 

Ғig. 4 
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C.5 (Fig. 5) r 3 = 0 and there exists an ellipse with the equation 

(x - m)2 (y - n)2 

_ _ _ _ _ _ + _ _ _ _ _ _ _ ! 

such that 

(3.9) j.2(,,y)^_ ^ Ч _ ^ _ _ - i ] î ş o on Г2 

Fig. 5 

C.6 (Fig. 6) F3 = 0 and ?here exists a parabola with the equation 

(x — m)2 = 2p(y — n) 

such fhat 

(3.10) K2(x, y) . [(„ - m)2 - 2p(j - «)] rg 0 on f2 . 

Ғig. 6 

374 



Lemma 3.1. Let at least one of the assumption C A - C . 6 take place. Then for an 
arbitrary w e V: 

(3.U) [w, w] = 0 => wx = wy = 0 a.e. in Q . 

Proof. Let C.l or C.2 take place. In (3.1) we put 

F = 1 in Q , 

and we get 

$r2K2(wn)
2ds+ f r3K3(w t)

2ds = 0 . 

Using the assumptions C.l or C.2 we obtain 

(3.12) K2(w„)2 = 0 on r29 

(3.13) wT = 0 on F3 . 

Now we put in (3.1) 
F = i(x

2 + y2) in Q . 

Using (3.12) and (3.13) we get 

^ [ K ) 2 + (w,)2]dxdy = 0 
and then 

wx = wy = 0 in ;Q . 

Let the assumption C.3 take place and let 

F = ax + by + c in Q . 

v Then (3.1) can be written in the form 

Jr2 K2(Ox + by + c) (wn)
2 ds + 

+ Jr3 K3(ax + by + c) (wT)2 ds + Jr3 («/7x + bny) (wT)2 ds = 0 . 

Now using the assumption C.3 we obtain 

(3.14) K2(ax + by + c)(wn)
2 = 0 on F2 , 

(3.15) wT = 0 on F3 . 

For arbitrary y2 such that y2 a F2 and mes (y2) > 0 we have 

ax + by + c = 0 a.e. on y2 => K2 = 0 a.e. on y2 . 

Then (3.14) yields 

(3.16) K2(w„)2 = 0 on F2. 

The rest of the proof is the same as in the case of assumptions C.l or C.2. We put 

F = K*2 + y2)and u s e (3-15)' (3-16)-
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Let the assumption C.4 take place and let 

F = %(ax + by + ct) (ax + by + c2) in Q . 

Then we obtain from (3A): 

(3.17) lQ \b2(wx)
2 - 2abwxwy + a2(wy)

2] dx dy = 

= j>2 K2(ax + by + c_) (ax + by + c2) (wn)
2 ds . 

The left hand side of (3.17) is nonnegative. According to (3.8) the right hand side of 

(3.17) is nonpositive. Hence 

(3.18) K2(ax + by + c_) (ax + by + c2) (wn)
2 = 0 on F2 . 

Similarly to the previous part of the proof from (3.18) we have 

(3.19) K2(Wn)
2 = 0 on r 2 . 

If we put F = \(x2 + y2) in (3.1) and use (3.19) we can complete the proof of this 
part in the same way as in the previous parts. 

Let the assumption C.5 take place and let 

,____j__ + &_!___, _ n. 
a2 b2 

Then (3.1) has the form 

(3-20) lJl(Wxy + l{Wyyyxdy = 

- ! > . * -

(* - m ) 2 , (__-__) 
2 

+ ^ - V • - 1 Ю
2d„. 

The left hand side of (3.20) is nonnegative. According to (3.9) the right hand side of 

(3.20) is nonpositive. Hence 

l(Wxy + l(Wyy = o in a 
bz az 

and 

wx = wy — 0 in Q . 

In the end let the assumption C.6 take place. Let 

F = (x - m)2 - 2p(>! - rc) in 0 . 

Then we get from (3.1): 

(3.21) 2 f„ (w„)2 dx dy = j r 2 X_[(x - m)2 - 2p(y - »)] (w„)2 ds . 
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According to (3.10) we obtain from (3.21): 

wx = 0 in Q , 

and this implies 

w(x, y) - C(y) in Q x) . 

Now we shall prove that w(x, y) = 0 in .Q. If it were not true, there would exist 
(xo> yo) G Q such that 

(3.2.2) w(x0, y0) = C(y0) # 0 . 

£2 is a bounded and simple connected domain in E2, therefore there exists (xl9 y0) e 
e 8Q. But on the boundary 50 we have w = 0 and hence 

w(*i>yo) = C(yo) = 0 , 

which is a contradiction with (3.22). 

Remark. It is possible to formulate sufficient conditions C.5 and C.6 also for 
an ellipse and parabola with rotated axes. 

4. EXISTENCE OF THE SOLUTION 

in what follows we prove coerciveness of the functional J. 

Lemma 4.1. Let at least one of the assumptions d —C.6 take place. Then 

(4.1) l im J(w) = oo , 
R-OD 

where R = |w[|K. 

Proof. (The basic idea is in [ l ] and [4].) If the functional J were not coercive, 
there would exist a sequence {wn} in the space Vand a constant c > 0 such that 

(4.2) lim Aw"fl-, = co 
n-> co 

and 

(4.3) iHw"|i2 - i(Lw\ w% + i||C2(w», y*n)\w0^ ~ (q*> *n)v S c 

for arbitrary n e N. According to (4.2) we can suppose wn 4= 0. For all n we set 

vn = - — -

j) W2>2{Q) G C(Q) and therefore w(;c,y) e C®. 
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for arbitrary neN, From (4.3) after dividing by \wn\v and using homogeneity of 
the operators L and C2 we obtain 

(4.4) I - i(LV, v")y + i H > ||C2(t-\ ,»)f l^ , g - £ - + _ L - (,. , „-V • 
Mr Mr 

Because |f"|K = 1, the sequence {if} is bounded in the Hilbert space V. Then there 
exists a weakly convergent subsequence, which we denote again by {vn} for simplicity, 
and so 

e" -+ v weakly in V. 

With the help of property P.l and the properties of the inner product we obtain 

(4.5) (Lif,if)r-+(Lv,v)v, 

(4.6) |Ca(«r\ 1/01.V.M - ]C2(D, v)l*r0,>, 

(4.7) («* ,«" ) K -» («* ,O)K-

(i) Let |C2(t?,t>)J^2,2 > 0. From (4.2) and (4.5)-(4.7) we have that the right 
hand side of the inequality (4.4) converges to zero while the left hand side diverges 
to oo. But this is a contradiction. 

(ii) Let |C2(vt v)lWo2,2 = 0, i.e. C2(v,v) = 0. According to the property P.2 we 
have [v9 v] = 0 and then from Lemma 3.1 we obtain vx = vy = 0 a.e. in Q. Now 
from (2.4) and (2.8) we get 

(4.8) (Lv, v)v = B(F; v, v) = 0 . 

From (4.4) we have 

(4.9) 1 - i(Lv*, v \ g F4i5 + j ~ (q*, v% . 

Using (4.2), (4.5), (4.7) and (4.8) we obtain that the left hand side of (4.9) converges 
to 1/2 while the right hand side converges to 0. And this is a contradiction. 

We have just proved that the functional J defined by (3.2) is coercive in V The 
functional / is also weakly lower semicontinuous in V(see Definition 5A and Lemma 
5.2 in [1]). Now, using theorem from [3], we have the existence of at least one point 
of minima of the functional / . This point is a critical point of J. So we proved the 
following. 

Theorem. Let the assumptions (2.1) —(2.3) and at least one of the assumptions 
C.1--C.6 take place. Then there exists at least one solution of (2A4), i.e., there 
exists at least one variational solution of the problem (1.1) —(1.6). 
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Súhrn 

ROVNICE VON KÁRMÁNA 
III. RIEŠITELNOSŤ PRI PODMIENKACH NA GEOMETRIU HRANICE OBLASTI 

JULIUS ClBULA 

V článku sa skúma riešitefnosť všeobecnej okraj ověj úlohy pre von Kármánovu sústavu neli-
neárnych rovnic. Variačná formulácia úlohy je ekvivalentná istej operátorovej rovnici. Prislú-
chajúci funkcionál energie je koercívny a slabo zdola polospjitý. Na základe toho funkcionál 
nadobúda absolutné minimum aspoň v jednom bode, ktoré je variačným riešením úlohy. 
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