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VON KARMAN EQUATIONS

1II. SOLVABILITY OF THE VON KARMAN EQUATIONS
WITH CONDITIONS FOR GEOMETRY OF THE BOUNDARY
OF THE DOMAIN

JULius CisuLa

(Received March 21, 1990)

Summary. Solvability of the general boundary value problem for von Karman system of
nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that
the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the
functional of energy attains absolute minimum which is a variational solution of the problem.

Keywords. Variational solution, Sobolev space, linear continuous functional, operator, cur-
vature, property of coerciveness, weakly lower semicontinuous functional, absolute minimum.
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1. INTRODUCTION

This paper is a free continuation of [1]. We deal with the following problem:

(1.1) Aw= [P,w]+gq in Q,

(1.2) 420 = —[w, w] in Q,

(1.3) w= w,=0 on Iy,

(1.4) w=0, Mw+ kyw,=m, on I,,

(1.5) w, =0, Tw+ (w,®d,, — w,d,) + ksw=r; on I5,
(1.6) ®=0,, ¢, =0 on 4R,

where:

Q denotes a bounded simple connected domain in E,,

QeC™,

368



4Q denotes the boundary of Q such that

0Q=r,vr,vr;, I'inlj=0 for i,j=123, i#*j,

u ou &u etc
= - u =T L)
Y A 3" oy
A = A Au) = Uy + 20y, + Uy, ,
[u,v] = u,0,, + vy, — 2u,0,,,

n = (n,, n,) is the unit vector of the outer normal to 62,
© = (—n,, n,) is the unit tangent vector to 52,

o is the Poisson constant, 0 < ¢ < 1/2,

Mu = odu + (1 — o) [u.n} + 2unn, + uyn?

Xy tx ey
Tu = —(du), + (1 — 0) [unn, — uy(n2 — n ) — uynen,l, .

In [1] we have established the solvability of the von Karmén equations under the
following conditions:

Ko, =0 on I,,
K$,=20, &, =20 on I,,

where K is the curvature of the curve §Q. In this paper we will show sufficient con-
ditions of solvability which depend on the geometry of the boundary 6Q and do not
depend on the values of ¢, and @, on 4Q.

Analogously to [1] we shall define a variational solution of the problem
(1.1)—(1.6). We shall show that the corresponding functional of energy is coercive
and weakly lower semicontinuous. We shall prove the coerciveness of the functional
using the idea of Ciarlet-Rabier [4] with the assumption I', = I'; = 0. The existence
of the solution for similar boundary conditions is proved in [6] using the idea of
Knightly [7] but for other sufficient conditions. Furhter, in [ 6] the assumption I'; = 0
is introduced, but also a free edge with the condition ¢, = ¢; = 0 is searched.

2. VARIATIONAL SOLUTION OF THE PROBLEM

We assume (as in [1]):

(2.1) ky,myeL(I3); ki ryeLy(l3); qeLy(Q) for p>1,
(22 k,>20aeonl,, k3=0ae.on Iy,
(2.3) B, € WA26Q), @, WHH5Q).
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We denote:

A(u, v) = [g [ug(ve, + 0v,,) +
+ 2(1 = o) uyyv,, + u,(v,, + ov,)]dxdy,
a(u,v) = [, kyuw,ds + [, ksuvds,
p(u) = [r, myu,ds + [, ryuds,
(1, V)worz = fo (Upxler + 2u,, + uy0,)dxdy,
B(u; v, z) = [o [(uyv, — uy0,) 2, + (o, — u.0,) 2] dxdy,
¥ ={ueC?(Q): u=u,=0o0n Iy, u=0o0nT, u,=0on I,}.
V=1v;
here ¥ is the closure in the topology of W?:%(Q).

From (2.3) and from Q e C® we obtain the existence of a function F e W**(Q)
such that

F =¢,, F,= &, inthe sense of traces on 6Q,

(F, ¥)w,22 = 0 for arbitrary € Wo*(Q). r
Let

f=®—F.

Definition 2.1. The variational solution of the problem (1.1)—(1.6) is a pair of
functions (w, f) € V x WE2(Q) with the following properties:
(2.5) A(w, 0) + a(w, @) = B(F; w, @) + B(f;w, ¢) + p(¢) + [qqe dxdy,
(26) (fs ¥hwgrz = —B(ws w, ¥)
for arbitrary p eV, Yy e W5*(Q).

On ¥V we define an inner product
27 (u, v)y = A(u,v) + a(u,v).

Under some assumptions (see [5]) we can show that (2.7) is an inner product and
the corresponding norm is equivalent to the norm of the Sobolev space W?:3(Q).
For example, it is sufficient to assume

1° mes(I'y) > 0 or
2° mes (I';) > 0 and I, is not a part of any straight line.
Using the Riesz representation theorem for linear continuous functionals on Hilbert
spaces we get (see [1] or [5]) the existence of operators L: ¥ = ¥, C,: W3*(Q) x
x Vo>V, C: Vx Vo W?(Q) and g* € V such that
(2.8) B(F;w, 9) = (Lw, @)y,
(29) B(f; w, @) = (Ci(f, w), @)v»
(2.10) B(w; w, ) = (Cy(w, W), ¥)wo2.2 »
(2.11) p(9) + fagqe dxdy = (¢*, @)y
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for arbitrary w, W, ¢ € V and f, ¥ € W5'*(Q). Using (2.8)—(2.11) we get the equi-
valnce between equations (2.5), (2.6) and equations

(2.12) w=Lw+ C(f,w) +g* in V,
(2.13) f = =Cy(w,w) in Wy (Q).
If we put

Cw = Cy(Cy(w, w), w)
then we obtain from (2.13) and (2.12)
(2.14) w—Lw+Cw—g*=0 in V.

3. PROPERTIES OF OPERATORS OF THE PROBLEM
In [1] we have shown some properties of the operators L, C,, C, and [,].

P.1. For an arbitrary sequence {w"} < V such that

w' = w weaklyin V
we have
Lw" — Lw stronglyin V,

Ca(w, W) = Co(w, W) strongly in W3 (2).
(See Lemma 4.3 in [1].)

P.2. The following implication takes place:
Cy(w,w) =0 in Wy*(Q)=[w,w] =0 in W >}Q).
(See Lemma 4.5 in [1].)

P.3. For arbitrary we V, F € W»%(Q) the following formula takes place
(3.1) fa [(Fepwy — Fyyw) w, + (Foyw, — Foow))w,]dxdy =
= [q[w,w] Fdxdy — [, K, F(w,)>ds — {, K; F(w,)* ds —
- jr3 Fn(wr)z ds )
where K; denotes the curvature of the curve I';, i = 1, 2, 3.

(See (4.5) in [1] and the boundary condition for w.)

P.4. The solutions of (2.14) are critical points of the fuctional J: V — E,, which
is defined by the relation

62 ) = HwlE — How Wl + H[Calon W — (4% W
(See Lemma 5.1 in [1].)
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Let K; be the curvature of the curve I'; (i = 1, 2, 3). In the next part of the paper
we shall assume that least one of the following assumptions C.1—C.6 is fulfilled.

C.1 (Fig. 1)
(3.3) Ky(x,y) 20 and K;(x,y)>0 on 6Q.
%
Fig. 1
C.2 (Fig. 2)
(34) Ky(x,y) <0 and Ki(x,y) <0 on 6Q.
I
L
Fig. 2
C.3 (Fig. 3) There exists a line with the equation ax + by + ¢ = 0 such that
(3.5) Ky(x,y).(ax + by +¢)20 on I,,
(3.6) Ki(x,y).(ax + by +¢) 20 on I;,
(3.7) an, + bn, >0 on I,

where ii = (n,, n,) is the unit vector of the normal to 6Q.
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Remark. Let a be the angle of vectors m = (a, b) and # = (n_, n,). Then (3.7)

has the form
(m, A)g, = |m] cosa >0,

and we get
ve(—n2,n/2).

/
// ‘l‘f.' +6 =

ix+by+s <0 Ay +6>9
+

AN N
Fig. 3

C.4 (Fig. 4) I'; = 0 and there exist parallel lines with the equations ax + by +
+¢; =0, ax + by + ¢, = 0 such that
(3-8) Ky(x,¥).(ax + by + ¢;)(ax + by + ¢;) <0 on TI,.
/by e=0

/8x+by+5,=0

Fig. 4
373



C.5 (Fig. 5) I'y = @ and there exists an ellipse with the equation

R Y
(=mp  -nf
a? b?

such that

(39)  Ky(xy). [(" i) S )

g B ]§0 on I,.

C.6 (Fig. 6) I'y = 0 and there exists a parabola with the equation

(x — m)* =2p(y — n)
such that

(3.10) Ky(x,y) . [(x = m)*> = 2p(y —n)] <0 on I,.

’lx—m)l=29(y—n\

|
\
|
|
\
|
|
\
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Lemma 3.1. Let at least one of the assumption C.1—C.6 take place. Then for an
arbitrary weV:

(3.11) [w,w]=0=>w,=w, =0 ae.in Q.

Proof. Let C.1 or C.2 take place. In (3.1) we put

F=1 in Q,
and we get

Ir, Ka(wy)? ds + [r, Ks(w)*ds = 0.
Using the assumptions C.1 or C.2 we obtain
(3.12) K,w)*=0 on I,,
(3.13) w,=0 on Ij.
Now we put in (3.1)

=3x*+y*) in Q.

Using (3.12) and (3.13) we get

fo[(wo)? + (w,)*]dxdy =0
and then

w,=w,=0 in Q.
Let the assumption C.3 take place and let

F=ax+by+c in Q.

. Then (3.1) can be written in the form
fr, Ks(ax + by + ¢)(w,)* ds +
+ [, Ks(ax + by + ¢)(w)?ds + {, (an, + bn))(w)? ds = 0.

Now using the assumption C.3 we obtain

(3.14) K,(ax + by + ¢)(w,)> =0 on I,,

(3.15) w,=0 on I;.

For arbitrary y, such that y, = I', and mes (y,) > 0 we have
ax + by +¢=0 ae.on y,=K, =0 ae.on y,.

Then (3.14) yields

(3.16) K,(w,)? =0 on TI,.

The rest of the proof is the same as in the case of assumptions C.1 or C.2. We put

F = }(x* + y?) and use (3.15), (3.16).
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Let the assumption C.4 take place and let
F = 3(ax + by + ¢;)(ax + by + ¢;) in Q.
Then we obtain from (3.1):
(3.17) fa [b*(we)? — 2abw,w, + a*(w,))*] dx dy =
= [, Ky(ax + by + ¢;)(ax + by + ¢;) (w,)* ds .

The left hand side of (3.17) is nonnegative. According to (3.8) the right hand side of
(3.17) is nonpositive. Hence

(3.18) K,(ax + by + ¢,)(ax + by + ¢;)(w,)* =0 on TI,.
Similarly to the previous part of the proof from (3.18) we have
(3.19) K,(w,)? =0 on I,.

If we put F = ¥(x* + y?) in (3.1) and use (3.19) we can complete the proof of this
part in the same way as in the previous parts.
Let the assumption C.5 take place and let

2 )2
polomt, b =nt
a? b?

Then (3.1) has the form

(3.20) j ) [;% 7 + 5 W] dx dy =

_ I K [(" i) Uil 1] (w)? ds

in Q.

a? b?

The left hand side of (3.20) is nonnegative. According to (3.9) the right hand side of
(3.20) is nonpositive. Hence

2 2 .
o wo)? + ;—E(Wy)z =0 in Q

and
w,=w,=0 in Q.
In the end let the assumption C.6 take place. Let
F=(x-m}?—-2p(y—n) in Q.
Then we get from (3.1):
(3.21) 2 fo(w)?dxdy = [, Ko[(x — m)® = 2p(y — n)] (w,)* ds.
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According to (3.10) we obtain from (3.21):
w, =0 in Q,

and this implies
w(x,y) = C(y) in Q1).

Now we shall prove that w(x, y) = 0 in Q. If it were not true, there would exist
(x0» Yo) € Q such that

(3.22) w(xo, ¥o) = C(yo) * 0.

Q is a bounded and simple connected domain in E,, therefore there exists (x;, yo) €
€ 6£2. But on the boundary 622 we have w = 0 and hence

w(xy, ¥o) = C(y,) = 0,
which is a contradiction with (3.22).

Remark. It is possible to formulate sufficient conditions C.5 and C.6 also for
an ellipse and parabola with rotated axes.

4. EXISTENCE OF THE SOLUTION
In what follows we prove coerciveness of the functional J.

Lemma 4.1. Let at least one of the assumptions C.1—C.6 take place. Then

(4.1) lim J(w) = o,
R— o
where R = |w],.

Proof. (The basic idea is in [1] and [4].) If the functional J were not coercive,
there would exist a sequence {w"} in the space ¥ and a constant ¢ > 0 such that

(4.2} lim [w"],, = o
and
(4.3) w2 — HLw", w")y + [ oW W) gz — (g% W)y < ¢

for arbitrary n e N. According to (4.2) we can suppose w" & 0. For all n we set

w"”

Iwlly

V" =

Ly w22, () C(8) and therefore w(x, y) € C(Q).
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for arbitrary n e N. From (4.3) after dividing by [w"|; and using homogeneity of
the operators L and C, we obtain

@4) 3= Lo, )y + W | oo ) e <

T Uv

Because |v"], = 1, the sequence {v"} is bounded in the Hilbert space V. Then there
exists a weakly convergent subsequence, which we denote again by {v"} for simplicity,
and so

v" > v weaklyin V.

With the help of property P.1 and the properties of the inner product we obtain

(4.5) (Lv*, v")y — (Lv, v)y,
R R A LX)
(4.7 (g%, ")y = (g% v)y .

%

(i) Let |Cy(v, v)|we2.2 > 0. From (4.2) and (4.5)—(4.7) we have that the right
hand side of the inequality (4.4) converges to zero while the left hand side diverges
to co. But this is a contradiction. ’

(ii) Let [|Cy(v, v)]wee2 = 0, ie. Cy(v,v) = 0. According to the property P.2 we
have [v, v] = 0 and then from Lemma 3.1 we obtain v, = v, = 0 a.e. in Q. Now
from (2.4) and (2.8) we get

(4.8) (Lo, v)y = B(F;v,v) = 0.

From (4.4) we have

(4.9) 3 - HLo" "), € —— + —— (g%, v"), .

Hllvllll

Using (4.2), (4.5), (4.7) and (4.8) we obtain that the left hand side of (4.9) converges
to 1/2 while the right hand side converges to 0. And this is a contradiction.

We have just proved that the functional J defined by (3.2) is coercive in V. The
functional J is also weakly lower semicontinuous in ¥ (see Definition 5.1 and Lemma
5.2in [1]). Now, using theorem from [3], we have the existence of at least one point
of minima of the functional J. This point is a critical point of J. So we proved the
following.

Theorem. Let the assumptions (2.1)—(2.3) and at least one of the assumptions
C.1—-C.6 take place. Then there exists at least one solution of (2.14), i.e., there
exists at least one variational solution of the problem (1.1)—(1.6).
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Sthrn

ROVNICE VON KARMANA
11l. RIESITELNOST PRI PODMIENKACH NA GEOMETRIU HRANICE OBLASTI

JUL1us CiBULA
V &lanku sa skuma rieSitelnost vieobecnej okrajovej ulohy pre von Karméanovu sustavu neli-
nearnych rovnic. Variaéna formulacia ulohy je ekvivalentna istej operatorovej rovnici. Prisla-

chajuci funkcional energie je koercivny a slabo zdola polospjity. Na zaklade toho funkcional
nadobuda absoltitne minimum aspoii v jednom bode, ktoré je variaénym rieSenim ulohy.
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