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HYSTERESIS MEMORY PRESERVING OPERATORS

PAVEL KREICT

(Received March 5, 1990)

Summary. The recent development of mathematical methods of investigation of problems
with hysteresis has shown that the structure of the hysteresis memory plays a substantial role.
In this paper we characterize the hysteresis operators which exhibit a memory effect of the Preisach
type (memory preserving operators). We investigate their properties (continuity, invertibility)
and we establish some relations between special classes of such operators (Preisach, Ishlinskii
and Nemytskii operators). For a general memory preserving operator we derive an energy
inequality.

Keywords: Hysteresis memory, Preisach operators, memory preserving operators, energy
inequality,

AMS Classification: 58C07, 58D30.

The latest development of the mathematical theory of hysteresis has shown that
the structure of the memory plays an important role in solving partial differential
equations arising in various problems of mathematical physics. Hysteresis memory
appears naturally in evolution differential inequalities. The construction of the
solution ([6], [7], [8]) is based on estimated of the dissipation of energy which is
closely related to the memory effect.

One of the classical models of hysteresis is the Preisach operator. It turns out that
the inversion and superposition of Preisach operators are in general not Preisach,
but they exhibit the same memory effects. This leads us to consider a wider class of
operators (memory preserving operators) characterized by the “Preisach” structure
of memory. We specify the relationship between various models of hysteresis (Prandtl,
Ishlinskii, Preisach, mh-hysterons, moving model etc.) and we find sufficient con-
ditions for the validity of an energy inequality.

The concept of memory preserving operator is developed here only for odd opera-
tors, but in special cases (for instance in the Preisach case) the oddness is not sub-
stantial. Let us note that the preservation of memory implies the wiping-out property

(cf. [1], [9]).

305



1. OPERATOR /,

(1.1) Definition ([5], [6]). For a piecewise monotone function ue C([0, T])
and for h = 0 we put
1,(u) (0) = sign (u(0)) max {0, [u(0)| — &},

max {I,(u) (to), u(t) — h}, te(to, t1],
() (1) = if u is nondecreasing in [t,, t,],

min {lh(u) (to), u(t) + b}, te (o, t],

if u is nonincreasing in [t,, t,] .
(1.2) Remarks

(i) The operator I, is sometimes called “play”. It represents the plastic deforma-
tion in Prandtl’s model of elastoplasticity.

(ii) We have Iy(u) (t) = u(z).
(iif) The function &(f) = I,(u) (¢) for u e W*'(0, T) is the unique solution of the
inequality (see [8])
Eu—¢—¢)z0 Voe[—hn],
&(0) = sign (u(0)) max {0, |u(0)] — h} .
(iv) The operator I, can be extended to a Lipschitz continuous operator in
C([0, T]). More precisely, for every u, ve C([0, T]) and ¢t [0, T] we have

[1(w) (1) = L) (O] = [u = 00,0 =
= max {|u(s) — v(s)|, se[0,1]} (see[5], [8]).
In [6] we can find another formula for the operator I, which reflects the structure

of the memory: it shows which values from the “past” of the input function u are
necessary for determining the value of I,(u) (¢).

(1.3) Definition. Let ue C([0, T]), te[0, T] be given. The memory sequence
of u at the point t (denoted by MS(u) (t)) is the sequence (finite or infinite) {(z;, h;)},
0<t; <ty =t 0<h;; <h;= |u], given by the formulas:

t = max {re [0, £]; [u(0)] = [ufo,n}
t=1t, for u(t)<0, t=1 for u(t)20,
and by the induction
tye = max{te[ty_y, 1]; u(t) = min {u(c); o€ [try_y, ]},
tyer1 = max {1 € [ty t]; u(r) = max {u(c); o€ [ty, 1]}}
until ¢, = ¢, and

hy=h=|u(t)] for t=1, i=0 or 1;
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for higher indices we put
h; = H(=1)7 (u(t;- ) — u(t)))-
(1.4) Lemma (see [6]). For ue C([0, T]), te[0, T], h = 0 we have
Li(u) (t) = sign (u(¢)) max {0, |u(t)| — R},
L(u) (t2) = I(u) (tzx- 1) — 2 max {0, hy, — h},
L) (tai41) = B(u) (t20) + 2 max {0. hyyyq — h}.

If the sequence MS(u)(t) is infinite, then u(t;) —» u(t), hence h; \ 0 as j — oo
If MS(u)(¢) is finite (for instance t, = t), we define h,y, = h,,, = ... = 0. This
enables us to rewrite the formulas in Lemma (1.4):

W) 0= (0 (b = 1)+ S (7 (= )
(L5) for helhess ],
L(w)(t) =0 for h=h,

L9 )= 3 (I Oy = ).

2. MEMORY PRESERVING OPERATORS

(2.1) Definition. An operator P: C([0, T]) - C([0, T]) is called:

rate independent, if for every ue C([0, T]) and every increasing bijection
s:[0, T] - [0, T'] we have P(u os) = P(u)os;

memory preserving, if there exist functions @,: D, — (0, ), D, = {(p;, ..., p1) €
€RY, 0 < p<...<pg}, k=1,2,..., such that the following implication holds:

If MS(u)(f) = {(t;, h;)}, then MS(P(u))(¢) = {(t;, ;)}, where
ry = ¢1(h1) ro = qjl(ho)
(2'2) §) = ‘pz(hz, h1) or ry = cDz(hp ho)
re = (o ..., hy) Feet = Pyl +.mr ho)

for t = t; or t = t,, respectively.

(2.3) Lemma. Every memory preserving operator is odd and rate independent.
Proof. Applying formula (1.6) to P(u) we obtain

24 PE)() =j=°%1(-1)f+1 (r) = r141)

and Lemma (2.3) follows easily. -
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Motivation. The functions @, are those which we obtain from experimental
data by making measurements of the output. The function ®, (in ferromagnetism)
describes the “primary magnetization curve”, &, characterizes the “‘first order
loop” corresponding to simple harmonic inputs, and the functions @, for k = 3
determine minor loops of k-th memory level. We use the term identification functions.

(2.5) Lemma. The function h > ®(h, hy_,, ..., h,) is nondecreasing in (0, h_,)
for every k 2 1 and every (h,_y, ..., h;)€ D,_. Moreover, if the operator P is
injective, then this function is increasing.

Proof. Let 0 = t, < t, < ... < t, = T be a partition of [0, T]. We choose the
function ueC([O T]) to be linear in [1;,_,t;], j =2, ..., k, u(0) = hy, u(t;) =

=(=1)Y""h; + Z( D)+ (hy — hyyy) for j=2,..,k — 1, u(t,) = u(t,_,). For
1€ (t-y, 1) we have

MS(u) (t) = {(ty, hy), ooy (tim s Biy)s (8, B()))
where (1) = 3(= D) (u(t) — u(te—y)), h(t) = hy_y.
Put w = P(u). For te(t,, t;,) we have
MS(w) (1) = {(t1 71), s (- 15 i a)s (6 P(1)}

where r; = ®;(h;, ..., hy) for j =1, ..., ky,
#(t) = Du(hi(t), hy—qy oy hy)

Let us assume that ®,(-, h,_y, ..., hy) is not nondecreasing. Then there exist

fi-y < 0 <1 < Tsuch that #(o) > #,(c). By (2.4) we have

w(o) — w(t) = 2(=1)""" (flo) — Ai(7)) -
Therefore, MS(w) (t) contains a point (t;, #(7,)) for some 7, € (f;_, 7), but this
contradicts the memory preservation property.

Let P be injective and let us assume #,(o) = #(7) for some #,_;, <o <1< T
We put u,(t) = u(t) for te[0, a], u,(t) = u(s) for te(s, T), u,(t) = u(t) for 1
€ [0, 7], uy(r) = u(7) for t e (1, T). We see that (2.4) implies P(u;) = P(u,), but this
is a contradiction.

The following concept is closely related to the “erasure of memory”, cf. [1].

(2.6) Definitio2. We say that the system {®,: k = 1,2, ...} of identification func-
tions is reducible, if

(i) @, is continuous in D, for k = 1,2, ...,

(i) forevery k = 2and 0 < h,_; < ... < h, we have
(0, hy—y, ..., hy) =0,
O (hy—ys hy—yy oo hy) = Dy (hy— s o hy) s
D1 by oo s hy) = B (e ys oos )
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(iii) forevery k 2 3,3 <j < k,0 < hyyy < h £ ... £ h, we have
¢k+1(hk+1" ’h1+1’hp hp J—22 00 h1)=
=B Mgy eees hjygs gy oo by)

(2.7) Proposition. Let P: C([0, T]) —» C([0, T]) be a continuous memory pre-
serving operator. Then its identification functions are reducible.

Proof. Let us choose arbitrarily k = 1, (h, ..., h;) e D, and a sequence
{(h, ..., h"} = Dy such that h{"” — h; as n - co. We construct a partition 0 =
=1t <t, <..<t, = Tand define functions u™, u to be linear in every interval
[ti-nti] j =2,k

ji—1
) = (=17 i+ T (=07 = ).
) = (<R T (0 (0 ) = 1k

We have [[u® — uor < 22 | — hy|, hence u™ — u.

Put w = P(u), w" = P(u(")) By hypothesis we have |w™ — w5 7 = 0. On the
other hand, we have

DU, . W) = (=1 (W) = WOy, y)).
hence

| (1", ..o B) = D (R, . )| S W™ — w01

for arbitrary m, n.
This proves the continuity of @, in D,. It remains to verify (2.6) (i), (iii). We prove
for example

O (= s hy—gs ooy hy) = Dp_y(hy_q, ..., by)

(the other relations are analogous).

We choose 0 < h_; < ... < h; and a sequence 0 < h{® ~ h,_,. Using the
partition 0 = t, < ... < t, = T as before we construct functions u, u™ which are
linear in [#;4,¢;],j = 2, ..., k and

ji-1
u(ty) = u®(t) = (=1 by + ¥ (=07 (hy = hisy)
i=1

w(T) = u(ty—y) + 2(= 1) by = u(t,_,),
u(T) = u™(t,_) + 2(=1)k** b .
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We have indeed |u — u®™]|;o.7 = |-y — B{®| = 0. Put w = P(u), w® = P(u®).
We have

MSu™)(T) = {(tg, hy)s -vos (tem2s Bi=2)s (te 1 Bi—1)s (T, BV)}
MS(W®™)(T) = {(t1, 71)s - oo (tm25 Th=2)s (Brm15 Timr)s (T 1)},
MS(u)(T) = {(ti, hy)s - (tims Bi3)s (T i)}

MS(w)(T) = {(t0, h)s ooy (Bum3s Tim3)s (T i)}

ro= Bk k), =1, k=1,
P = D(h, by gy .0 hy)

Using (2.4) we obtain |[w™(T) — w(T)| = 2|r,—; — r{”| and the continuity argument
completes the proof.

where

(2.8) Proposition. Let P be an injective continuous memory preserving operator,
lim &,(h) = co. Let us assume r, — 0<> h, — 0 in (2.2). Then P is bijective and

h— 0

P~ is a memory preserving operator with reducible identification functions.

Proof. Let we C([0, T]) be given MS(w)(t) = {(¢;, r;)}. Lemma (2.5) and Prop-
osition (2.7) enable us to compute hy, h,, ... from (2.2) in the form

hy = '1”1(’”1)
hy = lI’z("za 7’1)

by = Yt .o 1y)

We can define an operator Q : w — u, where u(t) is given by (1.6). The functions ¥,
are reducible identification functions for Q. A straightforward computation shows
that Q maps C([0, T]) into C([0, T]) and P,Q = Q,P is 1he identity.

Notation. Let hy = hy = h, = ... be a given sequence, h; \ 0. We put
k-1
A, {hy}) = (=11 (b — h) + ZO(”l)j+1 (h; = hjs1)
=
(2.9) for he[hey, hy),
Ahy {(h}) =0 for h = hy.
For two sequences {h,}, {;}, h; \ 0, ii; o 0 we denote
(2.10) d({h;}, {ﬁj}) = max {]ho - EOL ‘:1:‘;‘ ]’1(}% {h;}) = Ah, {ﬁ,})l} .
Remark. Let u, iie C([0, T]) be given functions and let te[0, T] be fixed,
MS(u) (t) = {(t;, hy)}, MS(#) (1) = {(¥, h;)}. Formula (1.5) yields
Mh, {h;}) = B(u) (1), Ak, {R;}) = 1,(2) (1)

provided we put h, = h, if h = h, and the same for f,,.
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By (1.2) (iv) we have

d({hy}, {h;}) < lu — a0, -

The converse is also true.

(2.11) Lemma. Let h; \, 0, h; ~ 0 be two sequences. Then there exist functions
u, e C([0, T]) such that A(h,{h;}) = I, (u)(T), A(h, {h;}) = 1,(@) (T) for every
h =0 and

lu = itro,ry < d({h;}, {h}}) -

Proof. Let us assume for instance hy = hy; > hy = h; > 0 (the other cases are
analogous). We find k = 1 such that h, = h; > h,,, and put

hf =h; for j=1,...k,

Ff =h, for j=1,...k, if kisodd,

hf =hy for j=1,...k—1, b =h,, if kiseven, i, = h,q,
i¥ = fy for j= 1, k+1, h¥y = hey if kiseven, iy < hy, .

We construct the sequences {h}, {h]} so that they satisfy the following requi-
rements:
(@) A(h, {h;}) = A(h, {K}}), A(h, {h}}) = A(h, {k}}) for every h = 0,
(b) the open interval (A}, 1) or (hJ , hiY) does not contain any other element of
{h R hyh, i=1,2,.

Forj < kand h = I (a), (b) hold. For j > k we proceed by induction. Let us
assume that (b) holds fOI‘j < I and (a) holds for h > min {h], h]}.

Let us assume for instance h; > .

Let h,, = max {h; h; < h}'}, h, = max {h; h; < h}}. Three cases are possible:

() Af > hy = hy = Byyy or BY 2 hy =y = Iy,

(ii) Af > By = iy > by,

(i) A = hy = hpyy > Iy
and we put respectively

(]) ii;k+1 = iim h;k+1 = hma

(11) ii;k+1 = l’;n’ hl*'!-l = h;k+2 = I:i;k+2 = i‘ln+ 1

(iii) hivr = E;kﬂ =y, = hiez = My

We verify easily that (a), (b) hold for j < I + 1 and h = min {h}', , h]\,}.

We choose an arbitrary sequence 0 = t; < t, <...< T, t; # Tas j— . The
functions u, # are linear in each interval [t,, ¢;,,], and

u(t) = A5, (B)) + (=17 b
(2.12) {ﬁ(tj) = MRE{REY) + (= 1)+ i
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For | < j < k we have A(h}, {/}}) = 0, hence
lu(t;) — a(1;)] = |2(hy, {hi}) + (=17 (hy = By)| <
S(hy —hy) +{hy —hy) + ...+ (h; — hy) = hy — Iy .

For j = k we have cither h} e[hjﬂ, k7], hence A(hY, {hf}) — A(h}. (h}}) =
= (=1)/(h} — h})and therefme

lu(ty) = a(t))] = |A(h7, {hF}) — 2(h7, {REY| < d({h7}. {AF}) =
=d({h}, {h}),
or h c [hJJr 1s hﬂ with the same conclusion.

Consequently, 7 < d({h}, {h}) and it remains to verify that
Mh, {0} = L(u) (T), A(h, {kF}) = 1,(#) (T). This follows from the formula

Hien = =07 (u(t) = u(tyh)) hfsq = H=07 (@) - a(t;,0).-
Lemma (2.]_1) is proved.

(2.13) Theorem. Let P: C([0, T]) — C([0, T]) be a memory preserving operator
with identification functions {®,}. Then the following conditions are equivalent:
(i) P is locally Lipschitz, i.e. Lipschitz on bounded sets;
(ii) there exists a nondecreasing function : [0, ) — [0, w0) such that for
every pair of sequences h; \ 0, fi; ~ 0 we have d({r;}, {F;}) < .
< y(max {h, &}) d({h;}, {I;}), where r;, ¥; are given by (2.2) for {h;}, {k;},
respectively;
(iif) |40, {r;}) = A0, {F;})| = W(max {h, &}) d({h;}, {R,;}).
Proof. The implication (ii) = (iii) is trivial. Let us assume that (iii) holds. For
arbitrary functions u, e C([0, T]) and 1€[0, T] we find MS(u) (1) = {(1,, h,)},
@) (1) = {(7;, hy)}. We have |P(u) () = P(a) (1)] = |A(0, {r;}) — (0, {F;})] =
= lﬁ(max ullco.s [@co.0}) [ = o, hence (i) is verified.
Finally, assume that( ) holds and let h; \ 0, h N 0 be given sequences. Following
Lemma (2.11) we construct the functions u, i such that [u = itlio.ry = d({h;}, {h}}).
Putting w = P(u), w = P(il) we have

d({r;}, {F;}) £ |w — ®|o,;y and (ii) follows easily. =

(2.14) Corollary. Let P be a memory preserving operator with identification

functions {®,} such that lim @,(h) = oo and there exist a nondecreasing function
1Pk A

and a positive nonincreasing function ¢ such that for every pair of sequences
h; \Oh N 0 we have

o(max {h, &}) d({h;}, {h;}) < d({ i} (7)) =
< y(max {k, k}) d({h;}, {h,}).

Then P, P~' are locally Lipschitz memory preserving operators.
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Remark. Corollary (2.14) follows immediately from (2.8) and (2.13). We see that
the system of memory preserving operators satisfying the hypotheses of (2.14) is
a group with respect to superposition. The unit element is the identity with identifica-
tion functions @,(h,, ..., h;) = h,.

The forth coming sections are devoted to the study of important particular cases.

3. ISHLINSKII OPERATOR

Let us consider a continuous memory preserving operator P which is shift in-
variant, i.e. the form of the hysteresis loop is independent of its starting point in the
(u, w)-plane. In terms of identification functions this means that &, depends only on ,.
Proposition (2.7) yields &, = &,_, = ... = &,. In particuiar, the form of the
hysteresis loops is independent of the memory level.

Let us assume that &, is an increasing absolutely continuous function and ®;
has locally bounded variation. Let u € C([0, T]), te [0, T] be given, MS(u) () =
= {(t;, h;)}. By (2.4) we have

P(u) (1) =j=§/1(—1)j+1 (@4(h)) = @y(hjs 1)) =
o e O (S IO

J=0/1 hj+1

=@@mwm+rwﬂmwm»

0

hence

(3.1) Pu) (1) = @1(0) u(t) + [ h(u) (1) doi(h),

which is the classical definition of the Ishlinskii operator (cf. [5], [6]). We conclude
that the following theorem holds:

(3.2) Theorem. Let &, ™' be increasing functions in [0, o), ®(0) = 0, whose
derivatives have locally bounded variation. Let P be the memory preserving
operator with identification function r, = ®(h,). Then P, P~" are locally Lipschitz
continuous Ishlinskii operators with generating functions &, ®~*, respectively.

Example. Putting &(x) = x for x€ [0, h], &(x) = c¢(x — h) + h for x > h we

obtain
I+(—-1) = (1 + <% - 1) 1,,)

where I is the identity and ¢ > 0 is a constant.
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4. PREISACH OPERATOR

Let us investigate the case where the form of the hysteresis loops in the (u, w)-plane
depends only on the u-coordinate of its starting point (congruency of hysteresis loops,
cf. [1], [9]). We say that the memory preserving operator is vertical-shift invariant.

Let u € C([0, T]) be given, t€[0, T], MS(u) (t) = {(t;, h;)} and let us assume
for instance k = h,. We denote

= i) = (1Y% 1 = ).

The vertical-shift invariance means that the value of the identification function
e = Du(hy, ..., hy) depends only on h; and u,_ 4. In order words,

Dy his Pr— s ooy hy) = Ol oy — Emyy ooy — &)
for every k=3, hy 2 h, = ... h, and &,,...,&_, such that h, — & = ...
. 2 oy — &-1 2 hy satisfying the condition that u,_, is independent of {&}, i.e.

k-2
(-—1)" &1 +.=Zl(—1)i+1 (f; - ‘fi+1) =0.

We put the last relation into the form

k—1
(4.1) G=2)(-1y¢.
i=2
Let us choose &; = h; — Iy for j =3,...,k — L
Using the identity

k=1
2% (=1 hy = hy + (=1 " by — Ay, {h;})
j=2
we obtain from (4.1)
hy — & = Ji(hl =&+ hy - l(hk’ {hj})) :
The reducibility of @, implies
(4.2) re = @3(he Hhy — &+ e = Ah {})), 1y = &),

where &, is to be chosen.
Putting &, = hy — h, — |A(hy, {h;})| we can transform (4.2) into

(4.3) rie = @l by + |y {B})]) -
Let us introduce the function
(4.4) S(h,0) = [§ ®5(h, b + |])dé, 20, geR',

and let us first assume that S is sufficiently smooth.
Putting the relation

(4.5) n=%%%%%m
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into (2.4) we proceed as in Section 3 obtaining

P(u) (1) = f S ) 3 (?f (. (0 {h,-}»)] dh =
- j“’— < [g (0 200 )| + (5 - S) (h, 40 {1}

o oh?*  0o?
We use the fact that A(h, {h;}) = 0 for h = h and |(d/dh) A(h, {h;})| = 1 for a.e.
h e (0, k).
Let us denote

0*s 98
4.6 — — — | (h, 0) = ulh, o),
(4.6) < e 6gz> (h, @) = u(h, o)

2 0.0 =90

Notice that we have S(0, ¢) = 0.
This yields

@) P () = g(u®) + [§ nh. 1(u) (1) b,

which is the equivalent definition of the Preisach operator (cf. [7]). We may conclude:

(4.8) Theorem. (i) Every vertical-shift invariant continuous memory preserving
operator with smooth identification functions is a Preisach operator.

(ii) Let P be a Preisach operator (4.7) and let S be the solution of the wave
equation (4.6) with Cauchy data S(0, ¢) = 0, (0S/oh) (0, ¢) = g(e). Let us assume
that g, p are odd and continuously differentiable with respect to ¢,

h
g’(Qih)-i—J‘ %'u(o,gi(h —0))do > 0
0 0¢Q

for every ge R', i = 0. Then P is a memory preserving operator with identification
functions

Oy .y 1) = g(hk, A(he (1)) -

Proof. It remains to prove (ii). It suffices to show that the function h—
> (0S[d0) (h, A(h, {h;})) is increasing for every h, | 0. We have

o+h h pot+h—o
(4.9) S(h, 0) = 1‘[ g(&)dé + lj J w(o, &) déda,
2 e—h 2 (]

¢e—hta
hence

i(%‘g(h,/l(h, {h,.})) 0. -

dh
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(4.10) Remarks. (i) In the Cauchy problem (4.6) the variable h plays the role of
“time”. We observe some kind of duality between the time variable t and the memory
variable / in the elementary hysteresis operator [,(u) (¢).

It is shown in [7] that the graph of the function h > I,(u) (¢) for a fixed ¢ in the
Preisach (¢, h) — halfplane is the interface between the positive and negative domain.
It consists of characteristics of the equation (4.6).

(i1) Taking into account (4.9) we see that the requirement of smoothness is not
necessary. In fact, it suffices to assume that g’, du/do are integrable functions or
measures.

(4.11) Theorem. Let P be the Preisach operator (4.7) and let pu(h, @), g(0) be given
Sfunctions which are odd with respect to ¢ and such that g’ is locally bounded,
dulde is locally integrable. Let us assume that lim g(h) + [§ (o, h — o) do = oo

h—

and that there exist functions ne L'(0, o), &€ Li (0, ) such that &(h) =
> (0pfde) (h, ¢) = —n(h), fo |n(h)| dh < inf{g'(s); se R'} for every r = 0.

Then P, P~! are locally Lipschitz memory preserving operators. Moreover, if
& |n(h)] dh < inf {g’(s); s € R'}, then P~ " is Lipschitz.

Remark. This theorem was motivated by Theorem 5.14 of [ 2]. Here, the assumption
of positivity of the Preisach measure is replaced by a weaker one. Roughly speaking,
we assume that the Preisach measure is bounded from below by an Ishlinskii measure.

Proof. The local Lipschitz continuity follows immediately from (4.7). We make
use of the fact that [,(u) (t) = 0 for h = |u|;o,,. We have lim ®,(h) = + o0, hence
h=+ o0

by (2.8} it suffices to prove that P is injective and P~ ! is locally Lipschitz.
Let u, ve C([0, T]) be given, w = P(u), z = P(v). We find te[0, T] such that
lu(t) = v(t)] = |u = v]ro,ry and construct MS(u) (t) = {(1;, h;)}, MS(v) (1) =

= {1, B}, MS(w) (1) = {(1;, r))}, MS(2) (1) = {(7, 7))}
We have to prove that there exists a positive function s such that

(412) MO, {i}) = A0, {A})] < w(max {k, BY) d({r;}, {F}}) -

The case (0, {h;}) = (0, {k,}) is trivial. Let us assume for instance A(0, {h,}) >
> A0, {h;}) and put h = min {h = 0; A(h, {h;}) = A(h, {h;})}. Indeed, we have
h < max {h, h}.

The function h > (8S/dg) (h, A(h, {h,})) is increasing (see the proof of (4.8)) and
tends to oo as h — co. Therefore, for each r = 0 there exists a unique 4 = 0 such that

@13)  r= %f (hy 2(h, {1,}).

316



This enables us to compute A(r, {r;}) from (2.9). Repeating the proof of (4.7) we
obtain

(1) Ao n)) = 3 000 0 + [t Ao (1)) do

where h is given by (4.13).
Using (4.14) for r = # = (8S|ag) (h. A(h, {h,})) = (3Sée) (h, A(h, {,}) and for
r = 0 we obtain
(A0, {h;})) = g(A(0, {A;})) =
— (0. () — 20, 7)) — (0. ) — 20, (7))

h (e, (h;}) Fi
—‘[J —u(a,g)dgda.
0J i(o,{hj}) 0

Let us denote o = inf {g'(¢); £ € R'} > 0. We obtain

(4.15) A0, {h;}) — (0, {h;})) =
< 2({r;}. {7}}) + [6 [Ao. {h;}) = Ao, {A;})] n(0) do .

By (1.2)(iv) we have |A(o, {h;}) — A(c, {k;})] < 2(0, {h;}) — (0, {k;}). Putting
Y(x) = 2(x — [5 |n(h)] dh)~" we get (4.12) directly from (4.15).

Indeed, if [§ |n(h)| dh < o, then ¥ is bounded and P~ ' is Lipschitz. -

Let g: R' > R' be an odd increasing function. The Nemytskii operator G:
C([0, TT) = C([0, T]) is defined by the formula G(u)(t) = g(u(t)). Let us denote
by ¥ the set of such operators.

Similarly, we denote by #°, & the set of memory preserving Preisach and Ishlinskii
operators, respectively. We obviously have ¥ ¢ #, # c #', F % = {cl},
where I is the identity and ¢ > 0 is a constant.

If we rewrite the formulas (4.14), (4.13) in the form

(4.16) nmmm=§wmwmwjl@ummw,

where r = (0S/dg) (h, I,(u) (t)), we obtain a superposition formula for Preisach
operators.

(4.17) Theorem. (i) Let Ge 9, We W be given. Then Wo GeW'.

(ii) Let Fe &, We W be given. Then F o We ¥

(iii) Let We #" be given by (4.7) with (op/de) (h, @) > 0 (or <0) for every h > 0,
0€R'. Let us assume W™ leW'. Then W, W le %.

Remarks. (i) We can give a natural interpretation of (4.17) (iii). A ““horizontal-shift
invariant” operator which is vertical-shift invariant, is shift invariant.
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(i1) Asa consequence of (4.17) we see that if F € # is given by (3.1) with ¢{(0) >
> 0, #] > O a.e. and G € ¥ is arbitrary, then G . F € # implies G = cI.
Indeed, we see from (4.5), (4.9) that the identification function for G has the form

(418)  re = Hg(Uhe {h}}) + h) = 9(A( () — i) -

The superposition of memory preserving operators corresponds to the superposition

of identification functions. Applying (4.18) with k = 2 and (4.17) (iii) we conclude
that there exists a function ¥ such that

Jz‘(g(q’:(hl)) - g(‘ﬁ,(hl) - 2(1)1(112))) = ‘p(hz)
holds for every h, < h,. This implies g’ = const.
Proof of (4.17). (i) Let us assume (4.18) and
oS
si=— (re, A(re {r;})) -
oo
For proving (i) it suffices to find a function S, such that
aS
(4.19) Sk = T,Ql (Bys Ay {hj})) -
C
For the sake of simplicity we denote A, = i(h,, {h;}). We have A, — 4 =
= (=1)**' (b — hy4,), hence
Aerr — (“l)k I (‘Uk hy .
An elementary computation yields

) = T (= ) = $5 (0o + ) =
— g+ 1)) + X (aler — ) — g~ ) =
= Ha(h + ) +Jgozj1k - h))
hence (4.19) holds provided we put
(ko) = [ 214l + 1) = o(c = ),
Hole + ) + o(€ — W) dc .

(i) Let us assume S, as above and h, = &(s,). We immediately obtain

0S,
%0 (1 A(ris {73})) 5

h, =
where

Sy(h, @) = J.0¢ Gf (h, é)) dé, hence FoWeWw .
]
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(iii) Let &,, ¥, be the identification functions corresponding to W, W ™! respec-
tively, (0S/d¢) (h, @) = ®,(h, h + |o]).
Let ry > r, be arbitrarily given; we find hy > h, such that r, = &,(h,), r, =
= ¢2(h2, hl)'
For ¢ = 0 we denote
#1(c) = ®y(hy + 20),
Po(0) = @,5(h, + o, hy + 20),
?3(0') = @3(1’12, hz + 0, h1 + 20') = ¢2(h2, hl) =17r,.
For ¢ sufficiently small we have A(3(0), {#;(¢)}) > 0, hence
hy = ¥3(73(0), #2(0), #4(0)) =
= ¥y(ry, ®y(hy + 20) — 20,(hy + 0, hy + 20) + 2r,).

Differentiating the last expression with respect to ¢ we obtain for ¢ = 0

(4200 0= %ﬁ (12 12)£(0)
Ty

where
f(0) = ®4(hy + 20) — 2&,(h, + 0, By + 20) =

= i'g(hl + 20,0)—2§§(h2 + 0, hy — h, + a).
de de

Formula (4.9) yields
hy Fl
10 =2["%

ao(n,hl —n)du+0.
hy VY

The identity (4.20) implies that ¥, is independent of r,. Consequently W™!, We &#
and (4.17) is proved. -

5. OTHER EXAMPLES

A. Moving model (see [3]).

Let W be a Preisach operator and & > 0 a (small) constant. Let u € C([0, T]) be
a given input function. The output v of the moving model is given by the implicit
formula

(5.1) v =W+ e).

We include this model into the framework of memory preserving operators.

(5.2) Proposition. Let W be a Preisach operator (4.7) such that there exist y > 0
and ne L'(0, ®), 0 < g'(e) < 7, 0 = (0n/d0) (h, 0) < n(h) for every e R, h > 0.
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Put &, = (y + [§ n(h) dh)™". Then for every c€(0,¢,) the moving model (5.1)
can be represented by the memory preserving operator P, = W(I — eW)™*, which
is Lipschitz continuous. In other words, (5.1) is equivalent to the identity v = P,(u).

Proof. Putting z = u + ev we see that we have v = W(2), u = z — ¢ W(z),
hence (5.1) is formally equivalent to v = P,(u).

Theorem (4.11) says that (I — eW)~! is Lipschitz, hence P, is a superposition of
Lipschitz continuous memory preserving operators.

B. Modified Ishlinskii and Preisach models

When we take into account for instance the effect of hardening (softening) in
one-dimensional elasto-plasticity, we are led to consider the identification functions
in the form (cf. (4.2) for &; = 0)

(5-3) Ty = ‘pz(hk, hx) s
(54) re = Pa(hy 3(hy + b — Al {hy}), by) .-

Such models correspond again to memory preserving operators which generalize
the Ishlinskii and Preisach operators, respectively. Let us note that we always have

e + Al {B})] < by

Using the procedure of Sections 3 and 4 we obtain the following expressions for
operators (5.3), (5.4), respectively:

L) 2
(5.3) P(u) (1) = 0%, (0, Nullgo,n) u(t) + J‘ () (1) ‘z'?? (h, Iulo,n) dk
ahz o ahZ

(5.4) P(u) (1) = g (0, u(2), luligo,n) + [ p(h. 1 () (£), lullgo,n) db »
where

oS

é‘g(h’g"f) = ¢3(h’%(f + h - Q)’ 5)
and

2
u(h,e,€)=(as

9%S
T T L 4 h; ’ é .
dh? ag=>( e:f)

It is easy to state continuity and inversion theorems for these operators anal-
ogous to those which are proved in Sections 3 and 4.

C. Hysterons of the first kind or mh-hysterons.

Let f, > f, be given increasing continuously differentiable functions R' — R',
lim f(x) = lim (—f,(x)) = + 0.
re4+e X~ 00
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For every piecewise monotone function u € C([0, T]) we define

700 () ), 12000 1,
1I u 1S nondecreasing in tO’ tl y
(9 PO = Y () () £} 1€ 0 1]

if u is nonincreasing in [#,, t,],

P(u) (0) — {max {UOafr(u(O))}a If uO(O) g %(frul(UO) + fl~l(v0))a
min {vo, fy(u(0))}, if u(0) < 4(£7"(ve) + fi" (vo)),
where v, € R! is fixed.
It can be shown (cf. [5]) that the value of P(u) can be defined for arbitrary con-
tinuous inputs and that the operator P: C([0, T]) » C([0, T]) is locally Lipschitz.

Notice that the assumptions here are more restrictive than in [5] or [4], but this is
not substantial.

The operator P is called the hysteron of the first kind ([5]) or the mh-hysteron ([4]).

(5.6) Theorem. There exist increasing bijections ¢, y: R — R' of class C' such
that for every u e C([0, T]) we have

(5.7) P(u) (1) = o' (L(¥()) (1)) ,
where 1, is the operator (1.1) for h = 1.
Proof. Put uy = 3(f; '(vo) + fi '(ve)) and by induction
u, = £ (filue-y)) for k>0,
w, = fi (fi(wes1)) for k<0.

We choose an arbitrary increasing continuously differentiable function ¢,:
[fr(“o)’fx(“o)] — R! satisfying

<P0(fr(”0)) = -1, <Po(vo) =0, (Po(ft(uo)) =1,
(Pz)(fr(“o) +) f;(“o) = Q’E)(fl(uo) _) f;(“o) .
By definition we have f,(u;,,) = fi(u,) for every integer k, and u, — +oo as k —
— 400, hence R! = D [A(u)s fi(w)]-
For x e [f(u), f, ,(::;)j wwe define
olx) = 24 @ i(f(f(7 %)) for k>0,
odx) = =2 + @i (/7 (x))) for k<O,
o(x) = ofx).
We easily check that ¢ is a well defined increasing continuously differentiable

bijection R' — R! and for every x € R' we have ¢(f(x)) — o(f,(x)) = 2.

321



Finally, we put y(x) = (o(/,(x)) + ¢(£,(x)))-

It suffices to verify (5.7) for an arbitrary continuous piecewise monotone function.
Comparing (1.1) to (5.5) we see immediately that for v(f) = y(u(t)) we have I;(v) (¢) =
= ¢(P(u) (1)), hence (5.7) holds. -

(5.8) Corollary. Let us assume f,(x) = —f,(—x) for every x e R', v, = 0. Let g
be a given continuous increasing function. Then the operator P, given by the
formula P,u) = g(u) + P(u), where P is the mh-hysteron (5.5), is a Preisach
operator.

Proof. The function ¢, in the proof of (5.6) can be chosen to be odd, hence ¢, ¥
are odd increasing functions. The operator Py(v) = g(¢ ~'(v)) + ¢~ '(I,(v)) has the
form (4.7), with u(h, 0) = ¢ (o) 8(h — 1), where & is the delta-function. The
corresponding identification function can be computed from (4.9), hence it is
a Preisach operator (cf. Remark (4.10 (ii)). By Theorem (4.17) the operator P, =
= P, o { is again Preisach.

Remark. Krasnoselskii and Pokrovskii ([5]) have proved the existence of a func-
tion f of two variables such that

P(u) (1) = f(u(®), 1i(w) (1)) ,

but this representation does not emphasize the memory preservation property.

6. DISSIPATION OF ENERGY

We first investigate the properties of memory preserving operators with respect
to differentiable functions.

(6.1) Lemma. Let P be a locally Lipschitz memory preserving operator with
identification functions ®(h,, ..., h,), and let us assume that 09,[0h, is continuous.
Then for every ue W>'(0, T) we have P(u)e W*(0, T) and for every te[0, T]
the limits (P(u)) (t4), (P(u)) (t—) exist.

Proof. Let ue W*1(0, T) be given. The local Lipschitz continuity yields for
every t > s

(6.2) ’P(“) (t) = P(u) (S)] = 'l’(“””[o,rl) ”“() - “(S)Il[s.r] ’

hence P(u)e W' *(0, T).

The set M = {te (0, T); u/(t) # 0} is open, M = U (a; B;). For te(0, T)\M
the inequality (6 2) implies (P(u))’ () = 0. =t

The sign of ' is constant in (a;, B;). We find MS(u) (a;) = {(t;, h;)}. Let us assume
for instance ¢ = t, and u'(r) > 0 for t € (&, B;).
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The interval («;, f;) may contain points t,.,, such that 75, < 7,,_; and
u(tyy41) = u(tyey ). If the set {54} < («;, B;) is infinite, then t,,,, N o; as
k — .

For 7€ (Tys1s Ta-1)> k = 1 we have

MS(u) (2) = {(t1, 1)s s (tans Bai)s (75 Hu(z) — w(t2))}
MS(P(u)) (2) = {(t5, 71)s s (t2i P25 (70 Pos 1 (B(ual7) — u(tz))
Byps s hy))} -

Using (2.4) we obtain

(6.3) P(u) (<) = u'(x) ﬁf_zu (3(u(e) = ultse)), Moo ooos hy) -

L TR

hence

For © > 7, we have simply P(u) (t) = ®,(u(r)) and Lemma (6.1) follows easily. u

(6.4) Assumption. P is a locally Lipschitz memory preserving operator. The
functions h— ®(h, hy_y, ..., hy) are of class C* in [0, h,_,] for every h; \ 0.

We assume that there exist constants H > 0, y = 0 such that for every h; \ 0,
hy £ H the function i +— ¢(h, {h;}) defined by the formula

Dy (h, hy—yy ... hy) for hel[h, hey),
oy ) Plhs ey 1 o Me—1
o(h, {h}) = {tpl(h) for h=h,

is concave and increasing in [0, H],

2
d’o h{h})) < —y forevery he(0, H)N{h).
dh? JJ Q7]

(6.5) Proposition. (i) Let &,: [0, c0) — [0, o0) be of class C*, ®{(0) < 0. Then
the Ishlinskii operator (3.1) satisfies (6.4).

(ii) Let g(u) = eu, ¢ > 0 a constant, and let pu: [0, o) x R' - R be of class C?,
(0u)de) (0,0) < 0. Let us assume that there exists n e L'(0, ) such that
(op)de) (h, @) = —n(h) for every (h,o)e(0,0) x R* and [;|n(h)|dh <& for
every r = 0. Then the Preisach operator (4.7) satisfies (6.4).

(iii) Let g(u) = eu, & > 0 a constant, and let p: [0, o) x R* — R' be of class C?,
(0u/de) (0,0) > 0, (¢u/do) (h, @) = O for every (h,@)e(0, ®) x R'. Let P be the
Preisach operator (4.7). Then P~" satisfies (6.4).

Proof. The case (i) is trivial, since we have simply ¢(h, {h,}) = ®,(h).
(i) We have o(h, {h;}) = (0S/d¢) (h, A(h, {h;})), where S is given by (4.9).
A straightforward computation yields

o = om 3
oz e 1) = % (h, A, {h;})) +
+(1+ |x1)jh g_;g (0. h — o + »i(h, {h;})) do,
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where
di
x = sign| — (h, {h; .
g (dh( {J}))

Since [A(h, {h;}) < hy, we see that (6.4) holds provided H is sufficiently small.

(i) We have r, = ®y(hy, ..., hy) <> by, = (8S]d0) (ry, A(r, {r;})), where S is given
by (4.9).

Denoting y(r, {r;}) = (8S/de) (r, A(r, {r;})) we obtain y(p(h, {h,}), {r;}) = h.
After differentiation we have

d2 d2 d -3
G (1) = = X0 (T ) s 7= ol ).

Repeating the argument of (ii) we see that for r, r, sufficiently small we have

e<W¥ oo, Wesoy,

hence (6.4) follows easily. -
Inequalities of the following type play a crucial role in the theory of partial dif-
ferential equations with hysteresis (see [6], [7]).

(6.6) Theorem. Let P be a memory preserving operator satisfving (6.4) and le
ue W»'(0, T) be given, |u|or < H. For te[0, T] put

E(1) = ¥(P(u)) (1) w'(1).

Then for every 0 < s <t < T we have
T t
E(t—) — E(s+) = J‘(P(u)) (v) u"(x) dr — %f [uw'(z)]? dr .

Proof.Let0 < s <t < Tbe given. The set {t € (s, t); u'(r) * 0} is open, u'(r) = 0
implies (P(u))’ (t) = O (see the proof of Lemma (6.1)). Therefore, it suffices to con-
sider the case when u is strictly monotone in (s, t). Since P is odd, the cases u’ > 0
and u’ < 0 are symmetric. Let us assume for instance u’(t) > 0 for 7 (s, t) and let
MS(u) (s) = {(t;, h;)}, t = t, (the argument is similar for ¢ = t,).

We construct (see the proof of (6.1)) the sequence {7,..;} < (s,t) such that
u(taxr1) = u(tans1)s Taess < Tax—1- If (s, t) contains infinitely many points 75, |,
then 75,4, \ s as k — oo and u'(s) = (P(u))’(s) = 0.
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For 7€ (T4 1, T2 1) wWe have (6.3), hence

J.tzk_l(P(u))’ (D u'(t) dt = E(tys—y—) = E(taes 1 +) —

T2k —

1 az‘pzwl 1
—(u'(t —(u(t) — ultzn)), hogs .-, by )dr =
0P T (L0 i), ) e 2

T2k+1
T2k -4
2 E(t3-1 =) = E(tahsy +) + zj' I“'(T)P dr.
T2k +1
[n the case u(t) > u(1,) for 7 € (ty, t) we have P(u)(z) = ¥,(u(r)), hence

J (P(w)) (=) w'(z) dr = E(t—) — E(r,+) + J w(2) de .

It remains to prove
(6.7) E(ty-1 +) £ E(tah-1 —)
forevery k= 1,2,... suchthat 7,,_,€e(s1).

For k = 2 (6.3) yields
0]
E(ty—y +) — E(ty-y —) = Hu'(ta4-1))? [O e 1( dkm 1o e y) =

h2k 1

0Pyys (

— R (o hg e hy) | =
Ohyys s '

= (' (t24-1) l:’*‘ (hag-y +, {h - j—(:(hu - {h,}):l =0,

since ¢ is concave. The same inequality holds for k = 1 and Theorem (6.6) is proved.

-
The proof of (6.6) contains also the following result.

(6.8) Corollary. Let the hypotheses of Theorem (6.6) be satisfied. Then for every
te(0, T) we have

E(t+) < E(t—).
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Souhrn

OPERATORY ZACHOVAVAJICI HYSTEREZNI PAMET

PAVEL KREJCL

Rozvoj matematickych metod vySetfovani problému s hysterezi v posledni dob& ukazal, Ze
podstatnou roli hraje struktura hysterezni paméti. V této praci jsou charakterizovany hysterezni
operatory, které maji pamé&t Preisachova typu (operatory zachovavajici pamé&f). Jsou vysetfeny
jejich vlastnosti (spojitost, invertibilita) a jsou nalezeny vztahy mezi specialnimi tfidami t&chto
operatoru (Preisachovy, ISlinského a Némyckého operatory). Pro obecny operator zachovavajici
paméf je odvozena energeticka nerovnost.
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