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Summary. Conditions under which the linear process is non-negative are investigated in the
paper. In the definition of the linear process a strict white noise is used. Explicit results are
presented also for the models AR(1) and AR(2).

Keywords: autoregressive model, linear process, non-negative process, strict white noise.

AMS subject classification: 62M10.

1. INTRODUCTION

In this paper we assume that {e,} is a strict white noise with a finite second moment,
i.e. a series of i.i.d. random variables such that Ee’> < 0. Let F be the distribution
function of e,.

The process

(r.1) X, =Y cey
k=0

such that ¢, = Land ) [ck] < o0, is called linear. The condition ) |ck] < o0 ensures
that (1.1) converges in the quadratic mean even if Ee, & 0. We shall investigate
only linear processes with real coefficients c¢,.

The process X, is called non-negative, if X, = 0 with probability one for all ¢.
Such processes occur frequently in practice (e.g. annual discharge of a river, pre-
cipitation, air and water pollution etc.).

If ¢, 2 0and e, 2 O for all k and ¢, then X, = 0 for all t. We prove that the con-
dition ¢, = 0 is also necessary to ensure non-negativity of X, (when e, = 0) while
if ¢, = 0 the condition e, > 0 is not necessary for X, = 0 (see Theorems 3.1, 3.2).
Explicit results are presented for the models AR(1) and AR(2).

2. PRELIMINARIES

Lemma 2.1. Let A, A,, ... and B, B,, ... be two sequences of random events.
Assume that the following conditions are fulfilled:
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a) Events A,, A,, ... are independent.
b) Events A,, B, are independent for each n.
c) limP(B;) = 1.

d) Y P(4;) = oo.
i=1
Then infinitely many events A; n B; occur with probability one.

Proof. See [3].

Lemma 2.2. Define
Zm =k—z ckel—k .
Then for arbitrary ¢ > 0 we have
P(|Z,) Z¢c) >0 as m— .

Proof. We assume that . |¢,] < oo. If Ee, = pu and var e, = ¢, then

m

0
=0, varZ, =0y ¢t > 0.

k=m

EZ,=u
k

o8

Thus

It

EZ) = var Z, + (EZ,)* > 0

and
P(1Z,| = ¢) = [z, dP S 72 [Z2 dP = ¢ 2EZ} - 0.

3. NON-NEGATIVE LINEAR PROCESSES

Theorem 3.1. Let ¢, = 0 for all k and Y ¢, < oo.If there exist ¢ > 0 and q € (0, 1]
such that
P(el < "‘C) = q 2

then with probability 1 there exist infinitely many indices t such that X, < 0.

Proof. Let j, be the smallest integer such that j,g™ = 1 (m = 1,2,...). Define
sets Sy, S, ... of positive integers as follows. Let

Sy =1{1,...j,}.
Let S, contain elements of j, couples

i+ Ljr+2)su (o + 22— 1, j1 +2j),
let S, contain elements of j; triples starting with

(s + 22+ L ji + 25+ 2, j;i + 2, +3),

278



and so on. We denote by ny, n,, ... successively the numbers 1, ..., j,, then the last
members of the couples, triples, etc. If n; € S,,, we put

an' = U'l[ + Z"i
where
m=—1 0
Un; = Z Crlni—k » Zni = Z Cxln;—k -
k=0 k=m
Introduce events
A, ={U, < —=c}, Bi={Z,, <c}, i=12,....

We have chosen indices in such a way that A4,, 4,, ... are independent. It is clear
that A; and B; are also independent. For n; € S,, we have
m—1

P(4) =P( Y cren—x < —c) 2 Pe,,-y < —c, k=0,...,m — 1) = g".
k=0
Thus

) 0
‘ZIP(AI') = Zlfmq"' = ®©.
= m=
Lemma 2.2 yields
P(B)=P(|Z,] <c)—>1.

Now, Theorem 3.1 follows from Lemma 2.1.
We have proved that if ¢, = 0, then e, = 0 is a necessary condition for X, = 0.

Our proof follows the ideas of the proof of Lemma 10.2 in [2] where the non-
negativity of the AR(1) model is considered.

Theorem 3.2. Let e, 2 0, var e, > Oand Y. |¢,| < co. Assume that F(d) — F(c) < 1
for all 0 < ¢ < d < oo. If there exists an index ko such that ¢,, < 0, then with
probability 1 we have X, < 0 for infinitely many indices t.

Proof. Denote M = max |c¢;|, ¢ = |¢,|. Since F(d) — F(c) < 1 for all 0 < ¢ <
< d < oo, at least one of the following cases must occur:

y > 0 such that P(e, < &) > 7.

a) The variables e, = 0 can be arbitrarily small, i.e. for every ¢ > 0 there exists

b) The variable e, can be arbitrarily large, i.e. for every ¢ > 0 there exists y > 0
such that P(e, > ¢) > y.

First, consider the case a). Since e, = 0, var e, > 0, there exists y > 0 such that
P(e, > 2y) = 8 > 0. Further,

cy
B,=Ple,<—L)>0, n=1,2,....
! nM
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Thus for n > k, we have

n—1

P(kz Crlr—y < _C')’) =
=0

v
v

P(e,_k0 > 2y, e,y < D for k= 0,....n — 15 k * kg
n

v

P<e,_,‘0 > 2y, 4 < T for k= 0,...,n—1; k+ k0>
nM
=p"'9>0.
Let j,, be the smallest integer such that
JBr ez, m> k.

The remaining part of the proof is now analogous to the proof of Theorem 3.1.
Consider the case b). It is clear that there exists y > 0 such that P(e, < y/M) =
= § > 0. Further,

B, =P(e, > yn/c) >0 for n> k.

If n > kg, then

n—1

P(Z Crlr—y < —'Y) =
k=0

v

P<e,nko>23,cke,_k<y for k=0,...,n—1;k=¢=k0)g
C

v

P e,,,‘o>m,e,_,\.<l for ' k=0,...n—1; k*ky)=
c M

=46""1>0.
Let j,, be the smallest integer such that
JmBud™ =1, m>k,.
Again, the proof can be completed in the same way as that of Theorem 3.1.

Remark 3.3. The assumption F(d) — F(c) < 1 for all 0 < ¢ <d < o in
Theorem 3.2 cannot be omitted. Define ¢, = 1,¢;.= —1,¢, = 1, ¢, = 0for k = 3.
Let e, have the rectangular distribution on the interval (2, 3). Then

X, =e —e_;+e_,>1

and so X, is non-negative, although ¢, = 0 and ¢; < 0.
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4. AUTOREGRESSIVE MODELS

The AR(1) process X, is a linear process satisfying
X, =bX,_, +e,.

This process exists if and only if be (—1, 1). Since
XI = Z b"el—n 5
n=0
the conditions of non-negativity of X, follow from theorems introduced in Section 3.

Theorem 4.1. Let be [0, 1). If there exist ¢ > 0 and qe(0,1] such that
P(e, < —c) = q. then with probability one X, < 0 for infinitely many indices t.

Proof follows from Theorem 3.1.

Theorem 4.2. Let F(d) — F(c) < 1 forall0 < ¢ < d < o. Let e, = 0, var ¢, > 0.
If be(—1,0), then with probability one X, < 0 for infinitely many indices 1.

Proof follows from Theorem 3.2.
Now, consider an AR(2) process

X, =bX,_, +b,X,_, +e,.
Let z,, z, be the roots of z> — b,z — b, = 0. It is known that X, exists if and only
if |z,| < 1, |z] < 1. This condition is satisfied if and only if (b, b,) belong to the
triangle 4 with vertices (—2, —1), (2, —1), (0, 1). See Fig. 1.

Cl1

LN

Fig. 1

Theorem 4.3. Let F(d) — F(c) < 1 forall0 < ¢ <d < . Let e, =2 0. If X, is an
AR(2) process, then X, = 0 for all t if and only if (b, b,)ed, b, = —bi[4,
b, = 0. »

281



Proof. The process AR(2) is a linear process with coefficients ¢, which coincide
with the coefficients in the expansion of the function

c(z) = (1 = byz — byz?)"!

in the neighbourhood of zero (see [1]). Let a,, «, be the roots of 1/c(z). Then
1 — bz — bz = —by(z — ;) (z — a,).

Assume that a; == a,. Then
e(z) = =b;'[Ay(z — ay) ™' + Ay(z — 2;)71],

where

Ay = (“1 - “2)“] , Ay = "(0‘1 - 0‘2)_] .
Thus

0
e(z) = by oty — )™ Y (a7* 7" - ay 1) 2
k=0
This implies

eo=by"oy — o) (a7 F T =yt

Since

a,=[—by + (bf + 4b,)'?]/(2b,) ,
we get

w0, = —1[by, oy — o, = (b} + 4b,)"/?[b, .
Then

_ _l’”‘l _b _ b2 4b 1/27k+ 1 __
& = 5 {[—b1 — (b7 + 4b,)"]

— [=by + (b7 + 4b,)' T+ 1) (b2 + 4by)"1/2 =

k/2] j
N 1+4—b22>.
i=o\2j + 1 bi

If b, > 0, b, > —bf/4, then ¢, = O for all k. Since ¢, = b;, we have ¢, < 0 if
b, < 0. In the case b, = —bf/4 we can derive

c(z) =A§02"k(k + 1) b2, oo =27k + 1) b .

If b, = —bi/4 and b, > 0, then ¢, = O for all k. The case b, = 0 is trivial.
If b, < —bi[4, then

%y, = r(cos ¢ + isin @),

where r > 0, ¢ € (0, 7). After a computation we obtain
_ -isin (k+ 1o .
sin @

Thus ¢, < 0 for infinitely many indices k.

The set of the vectors (by, b,) which correspond to a non-negative AR(2) process X,
is depicted in Fig. 1 as OBC.
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Souhrn

NEZAPORNE LINEARNI PROCESY
MARTIN ANDEL
V &lanku se vySetfuji podminky, za nichZ je linearni proces nezaporny. V definici linearniho

procesu se pritom uZiva striktni bily Sum. Explicitnich vysledku je dosaZzeno rovné&Z pro modely
AR(1) a AR(2).
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