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ORDINARY DIFFERENTIAL OPERATORS
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Summary. Boundary value problems for ordinary differential equations with random coef-
ficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes
multiplied by intensity functions and converging to the white noise process. A theorem on the
limit distribution of the random eigenvalues is presented together with applications in mechanics
and dynamics.
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of eigenvalues.
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1. INTRODUCTION

The aim of this paper is to present some results concerning asymptotic normality
of eigenvalues. The theory of random eigenvalue problems (see [12]) has been
inspired by certain technical applications, namely in mechanics and dynamics. For
illustration we present the buckling problem of a bar.
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Fig. 1
Consider a vertical bar with clamped lower end and free upper end which is loaded
by force P. The bar will stay in the straight position for small values of the force

but there exists a critical value of P when this balance is broken and the bar bends.
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The differential equation is

(1 -y = x(i) v,

with the boundary conditions
(2) »0) = y'(L) =0,

where « is the bending stiffness and A equals to P. (See [2].)

The above mentioned critical value of P corresponds to an eigenvalue of (1), (2).
There exists a sequence of simple positive eigenvalues {A,}_ . ., - oo under rather
general hypotheses on o(x).

If the shape of the cross-section or the modulus of elasticity varies with position
then the term 1/a in (1) can be treated as a stochastic process and X, as a random
variable. Under the assumption that the random deviations are very small the
perturbation theory can be used. The random eigenvalues can be expressed in the
form of a series of the so called homogeneous terms in the perturbations. Asymptotic
normality of A, can be established under additional assumptions.

In the paper we deal with eigenvalue problems in the general form:

(3) Mu = ANu, Ufu] =0,

where
M, N are random ordinary differential operators on an interval 0, L), U[u] is an
abbreviation for deterministic boundary conditions.

(3) covers a wide range of technical applications (see [2]). A very accomplished
theory is presented in [ 12]. The asymptotic normality of eigenvalues of (3) is derived
there under the assumptions that the random coefficients are weakly correlated
connected vector processes with sufficiently smooth and uniformly bounded trajec-
tories. Our paper aims at contributing to this theory. We apply the perturbation
results from [12]. Instead of weakly correlated processes we work with more common
stochastic processes. We obtain analogous results for perturbations being Gaussian
stationary vectorial processes near to white noise, which are multiplied by an in-
tensity function.

The application of methods based on the theory of probability in dynamics and
mechanics has become more and more common. A distribution of natural frequencies
of some engineering structures is studied in [13] from a slightly different point of
view, for example.

2. PERTURBATION RESULTS

Consider the deterministic eigenvalue problem

(4) Mou + Myu = MNou + Nu), Uju]l =0, j=1,2,...,2m,
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where

m

Mu = ;0( — 1) [fi(x) u"]9,

Na =Y (=1) [gifx)u?]9, k=01, m>m,
j=0

2m—1

U] = T o ut(0) + fu®(L).

Sij» 9u; are sufficiently smooth real functions,
. B are real constants.

The principle of the perturbation theory is to express the eigenvalues and eigen-
functions of (4) in terms of the perturbations f,;, g,; and various characteristics of
the so called unperturbed problem

(5) Mou = pNou, Uu]l =0, j=1,2,...,2m.

This is possible under proper conditions. The most important one is the uniform
smallness of the coefficients f/;, g ;.

Theorem 1. Assume the operators M, Ny in (4) to be positive, let the order of M,
be less than the order of M. Furthermore, let the equations

m j—1

(6) Z Z (__ 1)]+t [fkj(x) u(i)](j—t~1) U(t)lé. =0,

Jj=01t=0
m' j-=1

Y Y (= 1) g (x) e[ = 0

j=0t=0
hold for all admissible functions u, v and for k = 1, 2.

Assume that the unperturbed problem (5) possesses a discrete spectrum, let p
denote some simple eigenvalue of (5) and w(x) the normalized ezgenfunctwn as-
sociated with .

There exists a constant ij > 0 depending only on the problem (5) such that for
every i € (0, 7f) the following statement holds.

If |f1,(0)] £ n, |91(x)| £ 1 for every j and x then there exist terms h,, u,(x)
k=0,1,2,... such that the series

s u(x) = Zuk(X)

converge and determine a solution of (4).
In particular,

A=
k

Ms

0

o = b () = (),
M) h= 3 R ()  nar) dx.

(8) [ = (ko + 2] = Cn?,
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where we set g,j(.\‘) = 0 for j > m’ and C is a constant depending only on the
problem (5).

For the proof see [12].
Some comments to this theorem:

The admissible functions are the elements of C>™(0, L) satisfying the boundary
conditions. The positiveness means (Mku. u) > 0, (N,\.u, u) > 0 for k = 1,2 and for
all admissible u, v, not equal to zero.

The conditions (6) enable us to derive the equations for all admissible u, v:

m

(9) (M. 0) = 3 (fu®, o9y,

(N v) =3 (g u¥ o).
ji=o
Consequently, the conditions (6) are in fact sufficient for the symmetry of M,, N,.
In any case (6) holds when the boundary conditions in (4) are

u(0) = w'(0) = ... = u""1(0) =0,
u(lL)=uw'(L)y=..=u""(L)=0.

Analogous perturbation results can be stated in a more general situation for
operators in Hilbert or Banach spaces (see [3]). (7) follows from the general expres-
sion for A,

Ay = (Mg, ug) — R(Nouo, to)
and from (9).

3. THE REPRESENTATION OF A VECTORIAL
GAUSSIAN STATIONARY PROCESS

We will deal with problem (4), where M,, N,, U are deterministic and M,, N,
are operators the coefficients of which are centralized stochastic processes derived
from Gaussian stationary vectorial processes with rational spectral density. The fol-
lowing theorem gives us the representation of such processes by means of stochastic
integrals. This representation is used in the proof of Theorem 3. The one-dimensional
case of this representation is dealt e.g. in [4].

The real stationary process is called symmetric, if the correlation function is
a symmetric matrix for arbitrary t.

Theorem 2. Let X(1) = (X (1), ..., X,(t))" denote a vectorial real symmetric
Gaussian stationary process with continuous trajectories and with rational spectral

density f(4).
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Then

(i) f(2) is a real symmetric even positive-semidefinite matrix function. It has
a constant rank m £ n with possible exception of a finite set {),j,j =1,2,.... k}.
(ii) f(4) can be decomposed by

(10) f(1) = ia(u) BT(—i)),

where B, ,(s) is a rational matrix function analytic in {se€ C; Res = 0} and real
for real s.
(iii) If H(t), t = O denotes the inverse Laplace transform of B(s), i.e.

(11) B(s) = ¢ exp (—st) H(t) dr,
then the stochastic process

X(1) = (X,(1). ... X,(1)" .

Xi(0) =3 Lo Hult = ) dW®

k=1

has continuous trajectories and the same correlation function as the process X(1).
Here (W, ..., W™T denotes the standard m-dimensional Wiener process.

The proof is a simple modification of results presented e.g. in [11], [4]. When
dealing with distribution problems for Gaussian processes we can identify X(r)
and X(1).

4. THE LIMIT THEOREM

We will consider the random problem in the form (4) with the following notation.

m

Mou = ;0(— W [f(t) uP]9, f(1) £ 0 for 1e0, L),

Nou = Z(—-l,)f [gj(l) u(j)]m’ m>n.
Jj=0

U,[u] are the same as in Section 2.

Here f;, g; are sufficiently smooth deterministic real functions, so that My, N, are
well defined.

The operators M, N, are assumed to be random:

m—1 n

My = 3 (=17 (X0 u], Nyw= 3 (=1 X (0]

j=0
where

X(1) = (Xo(t)s s Xu—i(1) s X(1)s sy Xpnsu1)T
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is a vectorial stochastic process with sufficiently smooth trajectories that depends
on a real parameter. The details will be described later.

We suppose the operators M, N, to be positive, the same must hold for M, + M,
Ny + Ny a.s. Analogously to (6) the following equations are assumed to hold for
all admissible u, v.

m j—1

(12) ZO k;}(_ Y L) w0+ 0 0k = 0

n j—1

ST (= a0 u)0 o~ 0.

m—1j—1

(1_3) Z z (_ ]»)f—ﬁ-k [Xj(t) u(j)](j—k—n U(k)]{; =0 a.s.,
j=0k=0
n j-—1
S T (X () a0 = 0 as,
j=0Lk=0

The order of M, is supposed to be less than that of M, so that the perturbation
theory, namely Theorem 1 can be used. Conditions (12), (13) are commented in
Section 2. When the boundary conditions include

u(0) = u'(0) = ... = u™"3(0) =0,
w(L)=u(L)=...=u""2(L)=0,

then (13) is trivially fulfilled.
We will describe in a more detailed way the supposed nature of X(t). Let each of
its components be in the form

(14) X()=VE) ;1) X;(t), j=01,...m+n

Here a means a real parameter, ¢ = g(a) is a positive function of a. ¢ (1) is any
real deterministic sufficiently smooth function. We suppose )~(,,(t) to be a vectorial
real symmetric Gaussian stationary process with sufficiently smooth components
and with rational spectral density depending on a. By sufficient smoothness we
again mean the possession of so many derivatives that M, N, are well defined.

We will study the limit distribution of the eigenvalues of (4) for @ > oo assuming
that

IXH(Z) = ()?O,H(T)’ e ‘?m+n.a(l‘))T

converges to a vectorial white noise and &(a) converges sufficiently quickly to zero
so that Theorem 1 can be used. The functions ¢; express a possible nonhomogeneity
of the perturbations.

Let R,(t) be the matrix correlation function of X,(t), its elements being denoted
by R¥(t), j,k=0,1,....,m + n.
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f.(2) denotes the spectral matrix density of X,(t) with elements f#*(4). f,(2) is
supposed to be rational, and according to Theorem 2 it is a real symmetric even
matrix function with a constant rank r. In particular, the decomposition (10) holds.

B,(s) from (10) is a matrix function with elements BJ(s), where j = 0, 1, .... m + n;
k =1,2,..., r. We introduce their decomposition into partial fractions

" Vi Zko 4 _kl‘z(”)
15 B¥(s) = ~ Aped)
( ) ( ) vgl zgl (S + ‘,jkv(a))z

B R G ulal? "+ ey
where A,,.(a), ¢;;,(a) are real and Bj,,,(a), d;,.(a) are complex numbers.
According to Theorem 2 we suppose ¢, (a) > 0 and d(a) = 0;.(a) + i 5;.(a)

with positive 0;..(a), 6j.(a).
We define the matrix H,(1) by the relation

B,(s) = [& H,(t) exp (—st) dt .
Here we can give the explicit formula

(16) Hﬁ“(z)=yzjk[llzh,4,k, 2) tj:—]exp(—cjku(u)t)—l-

v=11]z=1 ( 1)
Ejx Pjke

+ 2 Z [B,,«p(a) exp (—dj(a) 1) +

e=1p=1

+ Bj,“,p(a) exp (-—djke(a) nl.

Finally we obtain the representation

(17) Xty =Y [0 HNt — s)dw®
k=1

as in Theorem 2.

Theorem 3. Let the assumptions and notation from this section hold. Let the
deterministic problem (5) have a discrete spectrum. Let y be any simple eigenvalue
and w(t) the corresponding normalized eigenfunction.

Let the matrices R,(1) fulfil the conditions

(18) lim {2, R,(1)dt = R for arbitrary A4 >0,

a— o
where R = {Ry}7i%, is a constant matrix,

(19) lim fg(- 4.0y [RI(1)| dt = O for arbitrary j, k,4 > 0,

(0) [ REWIG S K <0 for arbitrary k.,

where K is a constant independent of a.
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Let the terms from the decomposition (15) fulfil

(21) lim ¢ (a) = oo, lim g (a) = oo for arbitrary j, k. v, e

a—w a— o

Let there exist a positive constant q such that for arbitrary j, k, v, =, e, p and for
sufficiently large a we have

c,]-,[,; q(va) ”M "(a)
(22 ola) < 8 ) < €
2 s P s
(23) e(a) < Cin"(a) a(a)<£ﬁé@,v

ka~(a) - lBjkt’p(a) !4 .

Then, as a — oo, there exists a random eigenvalue Ma) of (4) with probability
tending to 1 such that

(Ma) — W]y(e(a))

converges in distribution to a centralized Gaussian random variable with variance

m—1
(24) = 33 {6 (o (0) W) [ — pamt I
Jk=
_ HAJ'm+k + “ZAm+j,m+k] dl .

A’ (1) is an abbreviation for the function R™* ¢ (1) ¢,(1) and we set R/* = 0, ¢ (1) = 0
for j, k > m + n.

Remarks

a) Conditions (18), (19), (20) express the convergence of the process X,(t) to the
vectorial white noise.

b) Conditions (22), (23) ensure sufficiently fast convergence of &(a) to zero and the
possibility of using the perturbation theory.

c) The existence of a small neighbourhood of p including exactly one simple eigen-
value A of (4) has been proved in a more general situation than in our theorem

(see [7]—[10], or [3]).
d) We can compare Theorem 3 with Theorem 2.14 in [12]. Similar results are
obtained there under different assumptions on the process X(t), namely it is

supposed to be a weakly correlated connected vector process with reciprocal
intensities a’*(¢). The functions A/(t) play the role of the intensities in our theorem.

Outline of proof. The detailed proof of Theorem 3 is rather extensive, we
present therefore only a scheme of it.
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(i) For a sufficiently large a and an arbitrary 4 > 0 the estimate

(25) P[ max |X,(f)] > 4]
J= (Y)E(O,L;" +n
m+n r Vi Zjko K UZA e
=X X Z ZK,AH Cio(a)exp | — —2 . A’c;(a) +
j=0 k=1 I‘Ajk,,-(a)

Ej P 2
ik Jke L . A ke a
+ Y Y Likep 0jse(@) exp(— va&#)} )
e=1p=1 ﬁlBjk(,p(a)I
where K., K m-* Ljkeps Ej,m,, are positive constants, is derived using the representa-
tion of X,(t) by means of (17). We note that for deriving (25) only the first from the
assumptions (22), (23) is needed.
From (25) it immediately follows that
max [ X,(1)]

J=0,1,....om+n
te(0,L)

converges to zero in probability. Due to this convergence we can apply Theorem 1.
Moreover, with probability tending to 1 we can use the expansion for A, particularly
the expression (7) for A, and the estimate (8).

In the introduced notation we have

A=+ i Ais
(26) A =zo [ (W) (X (1) = 1Xops (1)) i -

(i) The random variable A, is well defined. It can be easily shown that A, has
centralized normal distribution. The variance of A (a)/\/(¢(a)) converges to ¢*
given in (24).

To prove this we have

m—1
(MJe)2 = Y & [& (w(t) wh(s)?
jk=0
% [0(1) @(s) Rt = s) = 1 (1) i) REFIH(1 = 5) =
- “(P_,(f) (Plﬂ+k(s) Ri""+k(1 - S‘) -+
+ pz(pnﬁ-j(r) q)m-H((S) R:z"+j,m+k(l - Y)] dt ds .

Next we use the easily verifiable fact that under assumptions (18) (19), (20) a
arbitrary continuous function f(t, s) on <0, L)? satisfies

I5 6./ (1, s) Rt — s) dt ds — RI* [§ f(1, 1) dt .

Since A;/\/¢ is normal we conclude it converges in distribution to the variable
defined in Theorem 3.
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(iii) Finally we establish that the last term in the decomposition
A= p)e=rVe+(A—p—1)J/e
converges to zero in probability. This follows from the estimate
P = 1 — 1[Iy > 4] =
<Pl max |X(0)] > 7]+ P[ max |X(1)] > CTV2Mg12]
J=0,1.m+n j=0,1...m+n

1e(0,L) 1€{0.L}

where 7j is introduced in Theorem 1. The first term on the right converges to zero
according to (i). The second term can be estimated by means of (25). The resulting
terms converge to zero in virtue of (23).

5. EXAMPLES FOR THE ONE-DIMENSIONAL CASE

In this section we present two special versions of Theorem 3 when the process X (t)
is one-dimensional with some commonly used correlation function. Let X(¢) be the
unique random coefficient in (4). We suppose for the sake of simplicity that it
appears in the zero term of M, or N;.

Let conditions (12) be fulfilled, while conditions (13) can be omitted here.

Let

(27) X(6) = /() (1) Xo(1)
where ¢(1) is a continuous function on <0, L. As concerns X,(t) we will consider
two cases.

A) X,(t) is a real Gaussian stationary process with continuous trajectories and
with the correlation function

rt) = r,(0) exp (—alt]) .
The spectral density of X,(f) is then
ful2) = r0) a[n(3* + a?).
The density can be decomposed as in (10) and the representation
X)) = [L o J(2r0) a) exp (—a(t — s5)) dW, (see [4] or [5])
can be derived.

Assumptions (18), (19), (20) of Theorem 3 are satisfied if 2r,(0)/a - R. (21) is
obvious. (22) and (23) hold if

(28) ga)y< a7t

where h is any positive constant. Theorem 3 is then valid and the limit variance
of (A — )/ /e equals

R[5 (1) w*(1)dt or Ru? [5 o*(t) wh(r) dt

if X(t) appears in the zero term of M, or N, respectively.
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B) X (1) is a process as in A) but with the correlation function
rt) = r,(0) exp (—alt|) cos bt .

Here,
- r0) a(2? + a® + b?)
Ja(2) (4% = (b — ia)®) (2% — (b + ia)?) ,
Rt) = Lo bt = 5) AW,
where

ha(u) = (2 o(0) @) exp (—au) [cos bu+ e sin bu]

J(@ +b%) +a
(see [4] or [5]).
We suppose b = b(a) in order to have only one parameter. (18), (19), (20) are

valid if

2070 L, p. b <Ka (K fixed).

a’ + b*
(21) holds, and a sufficient condition for (22), (23) is (28) again. We have the same
expressions for the limit variance as in 4).

6. APPLICATIONS

In this section we indicate two applications of the results in the buckling problems.

A) The buckling problem of a bar

We have described this problem in Introduction — see Figure 1. Taking into
account the random fluctuations in the shape of the cross-section and in the quality
of the material we set in (1)

1
5 = 90+ X0,

where g(t) is a deterministic function and X(¢) is a stochastic process in the form (27).
Theorem 3 is applicable if X(t) satisfies (18)—(23) under rather general hypotheses
on g(1).

B) The buckling problem of a supported stanchion

Consider a stanchion in a horizontal position (for example a rail) lying on a resilient
subsoil, which is loaded by a force P.

T L‘ |
t_, P
vl
Fig. 2

274



Winkler’s hypothesis is often made. The substance of it is that the reaction of the
subsoil is in proportion to the deviation y. The constant of this proportionality is
the coefficient of Winkler’s subsoil x.

The differential equation for this problem is derived in [1]:

(Oty")" + %y _)\/y” ,
»(0) = ¥(I)

y(0) = y(L) = 0.

0,

o means the bending stiffness (it is considered to be deterministic here), and the
eigenvalues A are equal to the critical values of P at which the stanchion bends.
Admitting small perturbations of the coefficient %, we can assume

w(t) = f(t) + X(1),

where f(1) is a deterministic function and X(¢) is a stochastic process again in the
form (27). Theorem 3 is applicable under the hypotheses stated in A).

Acknowledgement. The author wishes to thank Prof. P. Mandl for his help in the
preparation of the manuscript.
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Souhrn
ASYMPTOTICKA NORMALITA VLASTNICH CISEL NAHODNYCH OBYCEINYCH
DIFERENCIALNICH OPERATORU
MARTIN HALA
Autor se zabyva okrajovymi ulohami pro oby&ejné diferencialni rovnice s nahodnymi koefi-
cienty. Tyto koeficienty jsou povaZovany za Gaussovské vektorové stacionarni procesy, vynaso-

bené intenzitami a konvergujici k bilému Sumu. Autor predklada vé&tu tykajici se limitniho
rozdéleni nahodnych vlastnich &isel spoleCn& s aplikacemi v teoretické mechanice a dynamice.
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