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NATURAL AND SMOOTHING QUADRATIC SPLINE
(An elementary approach)

JIRi KoBZA, DUSAN ZAPALKA
(Received July 11, 1989)
Summary. For quadratic spline interpolating local integrals (mean-values) on a given mesh
the conditions of existence and uniqueness, construction under various boundary conditions
and other properties are studied. The extremal property of such'a spline allows us to presentan

elementary construction and an algorithm for computing needed parameters of such quadratic
spline smoothing given mean-values. Examples are given illustrating the results.
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1. INTRODUCTION. CUBIC SPLINES

Let us have a set of knots {x;i=0(1)n + 1},
(4x): a=xg<x;<... <X, <X,4;=Db

on the real axis with prescribed values g; at the knots x;.
A function S;(x) = S;3,(x)is called an interpolating cubic spline on the mesh (4x)
to data {g;;i = 0(1)n + 1} if it has the following properties:

1° Sy(x)e C?*[a, b] (it has defect one);
2° Sy(x) is a cubic polynomial on every interval [x;, x;1(],i = 0(1)n;
3° Si(x;)=g:, i=0(1)n+ 1 (conditions of interpolation).

The construction of such a function on the set of knots (4x) under various boundary
conditions, the questions of existence and uniqueness and other properties of cubic
splines are welldescribed in the literature — e.g. [1], [2], [8], [10].

In the class of cubic splines on (4x), the so called “natural splines” defined uni-

quely on the set (4x) by the conditions of interpolation 3° and by the boundary.
conditions :

Si(a) = S3(6) = 0.
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have a minimizing property
(1) Je[S5(x)]?dx < 2 [f"(x)]*dx forall feV,
V={feWi[ab]; f(x)=g;,i=001)n+1}.
This property is used in the construction of the cubic smoothing spline, which — in

situations, where the values g; represent some perturbed function values g(x;) —
realizes the minimum of the functional

@ I =pRUT e L)~ ol Sev

including a regulation parameter p (see [2], [8], [10], for details). Such a cubic
smoothing spline yields a compromise between interpolation and smoothness,
regulated with the help of the parameter p. We can find analogous minimizing
properties at splines of an odd degree described in the literature [1], [4].

For splines of an even degree such a property can be obtained only by a
change of the formulation of the problem, as will be shown in the following.

2. INTERPOLATING QUADRATIC SPLINES

It is known that the construction of the interpolating spline of the second (more
generally even) order in an analogous way on (4x) meets with some difficulties
(see [2]. [3]):

— there is no symmetry in boundary conditions (one free parameter only);

— in some important cases (periodicity) such a spline need not exist in general;
— even if such a spline exists it has some unpleasant properties (an error in boundary
conditions or data g, is transferred over the whole interval without damping).

This difficulties with quadratic (even order) splines can be overcome by separating
the meshes of the spline knots and the points of interpolation (which can be important
in the applications, too). '

Let us have the mesh (see [8]) (4x 41):

(4x 41) x;, i=0(1)n+ 1 knots of the spline,
t, i=0(1)n points of the interpolation,
g, i=01)n prescribed values in t;;
XoSa=ty<x; <ty <..<t_1 <X, <t,=b=Zx,4,.
A function S,(x) = S,,(x) is called an interpolating quadratic spline to the data g,
if it has the following properties:
1° S,(x)eC'[a, b] (defect one); _
2° S,(x) is a quadratic polynomial on every interval [X;, X;4,], i = O(1) n;
3° S,(t;) = g;» i=0(1)n (conditions of interpolation).
Theoretical and computational aspects of quadratic splines defined in this way are
discussed in [8], [3], [5]-
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With such a formulation of the interpolation problem, a majority of the above
difficulties disappear: such an interpolating spline is uniquely determined by the
prescribed values g;, i = 0(1) n and by two other conditions — e.g. by two boundary
conditions (first, second derivative at boundary, periodicity conditions). The properly
chosen parameters of the spline S,(x)(usually m; = S5(x;) or M; = (S5(t;)) are comput-
ed from a certain tridiagonal system (cyclic tridiagonal in the periodic case) of linear
equations with a diagonally dominant matrix of the system. So, we succeeded in
giving to quadratic splines construction and local properties analogous to the pro-
perties of cubic splines (the localizing properties are even stronger than those of the
cubic splines e.g. in case of t; = }(x; + X;,), which is the most frequently occurring
case). We also have new free parameters — the positions of knots — at our disposal;
this fact is used frequently in “shape preserving problems”.

Let us consider the question of minimizing properties of quadratic interpolating
splines defined on (4x) or (4x 4t); we are interested in some analogy with the natural
cubic spline with its minimizing property. Yet the facts that — with g, given —

a) the first order spline S;(x) (Euler’s polygon) minimizes

fa[f (0] dx (see [7]);
b) the natural cubic spline S3(x) minimizes

fa[f"(x)]* dx (over appropriate clases of functions — see [1], [7] for details)

shows us that there is no place for the direct analogy with interpolating quadratic

splines. The usual argument in the proof for odd degree splines makes use of the
inequality

) 0= (/™ = S, f™ = S5 1), =(f", f), — 2SS0, f™ —
= S5 1)2 — (S50, S6-1)2 -

Then the minimizing property of S,,,_ follows from the orthogonality relation
(4) (S(me)—l’f(m) - S(Z’:'n)—l)Z =0,

which can be proved using integration by parts (see [1], [7]). But — as we easily
see — such orthogonality relations do not hold for quadratic splines — neither
on the set (4x), nor on (4x 4t)! These splines interpolating the values g; simply have
not such a property. To obtain quadratic splines with an analogous property, we
have to change formulation of the problem — instead of interpolating the function
values, we shall match some mean values of the approximated function over the
intervals [x;, x;{]. Such constructions have appeared originally in data smoothing
(approximation of histograms by a smooth function, called histospline — see [2],
[6]). The purpose of this paper is to present a simple algorithm for computation
of the parameters of such a quadratic spline, to prove its minimizing property and
on this basis to present an elementary theory and construction of the quadratic
smoothing spline. The general variational theory can be found e.g. in [4], [9].
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3. QUADRATIC SPLINES INTERPOLATING MEAN-VALUES
(LOCAL INTEGRALS)

3.1 Formulation of the problem

Let us have a set of knots (4x) with h; = x;, , — x;, and real numbers g;,i = 0(1) n.
We search a function S(x) = S,(x) with the properties

1° S(x)eC'[a, b];

(5) 2° S(x) isaquadratic polynomial on every interval [x;, X;4 1],
i=01)n;

3° [¥+1S(x)dx = hyg;, i=0(1)n (the mean-value interpolation).

Such a function will be called a quadratic spline interpolating the mean-values (local
integrals) g;. According to (5), there are altogether:

3(n + 1) parameters defining S(x) ;
n + 1 conditions of interpolation;

2n  continuity conditions at the knots x;, i = 1(1) n.

So we have two parameters — for example boundary conditions — for determining

the spline.
Let us denote
(6) si=S(x;), m;=S'(x;);

with respect to the property 2°, we use the spline representation

L. 2 _
(7) S(x) = s; + my(x — x;) + E;;(miﬂ —m)(x — x,)* =

1

= Sipq + Mipq(X — Xi41) + o,

(mi+1 - mi) (x - Xit+ 1)2 s
x€[x;, Xi41] -
Integrating by parts over [x;, x;,,] we obtain

(8) [re S(x) dx = sihy + dm? + %(mi“ —m)h =

13

= sihi + $hi(misy + 2m) = s; by — ‘}mi+1h_2i + ’%(mﬁl —m) b} =

i

= Siy1hi + 30} (=m; — 2m;,), i=0(1)n.
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The continuity conditions for S(x) at x = x;, i = 1(1) n can be written by virtue
of (7) as '

1
S;- + m;_. hi— + — m; —m;_. hlz- = 5;,
1 1 1 2hi_1( 1) 1

we can write it as a relation between the parameters m;, s;
\ 1
(9) %(mi—l + mi) = h— (Si - si—l)
i—-1

with a simple geometrical meaning.
The continuity conditions for S’(x) are involved implicitly in our notation

m; = S'(x;), i = 1(1) n. The conditions of interpolation of mean values can be
written — using (8) — as

(10) s+ 3h(miyq +2m) =g;, i=01)n,
Spar = Shy(my + 2m,10) = g,.
Subtracting relations (10) with indices i, i — 1, we obtain
s;— Si—y + 3[hi(miyy — m) = hioy(m; + 2mi )] =g, — gi-1 5
dividing by h;_, and using (9) we have
1

%(mi + mi—l) + oh [hi(mi+1 + 2’".’) - hi—l(mi + 2mi—1)] =

i-1
1
= (gi - gi—l)'
hiy
So we can write the interpolation and continuity conditions — after some simple

manipulations — as relations between parameters m; and data g;, x; in the form
of the three-term recurrence

(11) hi_ym;_y + 2(hi—-1 + hi) m; + hm;, = 6(9i - gi-—l) , b= 1(1) n,

which has also a simple geometrical meaning.

3.2 Boundary conditions s, s,

We have two free parameters at our disposal; using the boundary conditions
S(xo) = So» S(Xp+1) = S, in the first and last relation in (10), we obtain

(12) 2homy + hom; = 6(90 - so) s

hnmn + 2hnmn+1 = 6(sn+1 - gn) .
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These two equations complete (11) to the system of linear equations

2hy,  hy, mg gdo — So

ho, 2(ho + hy), hy, my g1 — 9o

O I L L B e
hn—l’ 2(]1n—1 + hn)’ .hn my, In — Y9n-1
hn’ 2hn m, .1 L Sn+1 — 9n

The matrix of this system is symmetric, tridiagonal with a dominating diagonal,;
so we can use effective methods for computing uniquely the parameters m; = S'(x;),
i =0(1)n + 1. Then we can compute the values s; = S(x;) using the boundary
values s, or s,,; and the recurrence relation (9)

(14) s;=S;—y + ¥h;_y(m;_y + m;) (we can use (10), too) .

In such a simple way we will have computed all parameters needed for spline re-
presentation (7).

Remark. A special case of this problem is mentioned in [2] with the use of
another representation of S(x) resulting in a more complicated system of equations
with the block structure.

3.3 Boundary conditions mg, m,,
When the boundary conditions

(15) S'(xo) = myg , Sl(xn+1) =My

are given in our problem, we can use this fact for writing (11) as a system of linear
equations

(16)

2(h0 + hl)’ hy, my g1 — 9o — thomyo
hl’ 2(h1 + h2)’ h2’ m; =6 g> — 91
hn—l’ 2(hn—1 + hn) m, In — 9n-1 — %hnmn-f-l

The existence and uniqueness of the solution follow from the diagonal dominancy
of the symmetric matrix of the system.
The function values s; can be computed from (14) or (10) as in 3.2.

3.4 Boundary conditions M,, M, ,

The boundary conditions S”(xo + 0) = My, S"(x,+y — 0) = M, 4,
can be written in terms of m; as

(17) mo —my = —hoMo, —m,+my=hM,.,,.
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Completing the relations (11) with these two equations, we obtain a system of n + 2
equations for parameters m;, i = 0(1) n + 1 with a regular matrix of the system.

3.5 Periodicity conditions

To obtain the spline with periodic continuation, we have to prescribe the periodicity
conditions

(18) So = Sp+1, Mo = My .
Using (10), we can write it as
So + dho(my + 2m, () = go, Spy + h(—m, —2m,, ) =g,.

Subtracting again these two relations. we can complete (11) to the system of n + 1
linear equations for the parameters m;, i = 1(1) n+1:

(19)

2(ho + hy),  hy; ho m, 191 — 9o
hy, 2(hy + hy), hy, 0 m, g2 — 91
0, [ hn—-l’ 2(h,,—.1 + h,,)’ h,, m, In — Gu-1
hO’ e -h,,, ’ 2(h0 + hn) My d do — 9dn A

The matrix of this system is symmetric, diagonally dominant; we have also uniquely
determined parameters m; for any given data g;.

3.6 General boundary conditions
It would be possible to consider the more general boundary conditions

(20) agmg + bomy = fo, @M, + by 1My = friqs.

the special case of which are conditions (12), (15), (17). We can easily state sufficient
conditions for existence and uniqueness of the spline S(x) under these conditions.
We state the results of 3.1 —3.5 in the following theorem.

Theorem 1. With the data {x;,i = 0(1)n + 1; g;, i = 0(1) n} given, the problem
to find a quadratic spline satisfying (5) has a unique solution under the boundary
conditions listed below:

a) S(xo) = so»  S(xu+ 1) = Spt+15

b) S'(xo) =My, Sl(xn+ 1) =Myi15

c) 5"(x0) = Mo, S"(x,41) = My

d) periodicity conditions sy, = S,41, Mg = Myyy ;

e) general boundary conditions (20) with [ao| > |bo|, |bys1| > |aps4] -
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Remark. We have a symmetric strongly diagonally dominant matrix of the system
in cases a), b), d); the boundary values and the mean-values g; occur on the right-hand
side only. It can be shown — using the technique shown in [3] for quadratic splines
interpolating function values — that splines interpolating the mean-values share
with the cubic splines on (4x) and with quadratic splines on the mesh (4x 4t) the
localizing property: the errors in boundary values or mean-values have only local
influence on the spline and they are damped out with growing distance (this follows
from the strong diagonal dominancy of the matrix in (11), completed by boundary
conditions).

4. MINIMIZING PROPERTIES OF QUADRATIC SPLINES

Let us consider quadratic splines S(x), determined on the mesh (4x) by the mean-
value interpolation conditions

(21) [¥+r S(x)dx = hyg;, i=0(1)n
and some of the boundary conditions a)—e) from Theorem 1.
Let us denote V = {fe Wj[a, b]; [5i*' f(x)dx = hig;, i = O(1) n}.

Integrating by parts with f e V, we rearrange the inequality
(22) 0< [B(S —f)dx=[0(f)dx—20(f —5)S dx — [5(5)*dx
using

W= 8) S dx = [S'(f - S)Jt = ST (f - S)dx.

The last term vanishes because f, S € V and we have
(23) fa(f =8)s'dx =3 [ (f = §)dx =
i=0

[mi+ 1(fi+1 - Si+1) - mi(fi - s,-)] =

-

i=0

= mn+l(fn+1 - Sn+1) - mo(fo - So)-

It is now easy to see the conditions under which the orthogonality relation
{2 (f — 8') S dx = 0 holds, from which the minimizing property follows via (22).

Theorem 2. The functional J(f) = [5[f'(x)]* dx is minimized by a quadratic
spline S(x) interpolating the mean-values g; on (4x):
a) over all f € V by the spline with “natural” boundary conditions my = m,, = 0;
b) over all feV satisfying the periodicity conditions f, = f,., by the spline
with periodic boundary conditions (18);

c)over all feV satisfying fo = So, fur1 = Su+1 by the spline S(x) with the same
boundary conditions.
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In all these cases the spline S(x) is the unique solution of the problem. Uniqueness
of the minima follows by standard arguments of variational calculus: the functional

F(p) = J(S + pv), where p € R and S is the minimizing spline, -
veV with

fZ** (v(x)dx = 0,i = 0(1) n has a minimum for p = 0 or v ='0 only
[(+v',S), = 0,dJ[dp = 2p(v, v'),; (v, v'), = O for v = O only].

5. APPROXIMATION PROPERTIES OF S(x) -

Theorem 3. Let g € C'[a, b, je{0,1,2,3}; g, = (1/h;) [3i* g(x).dx, i = 0(1) n,
and let S(x) be the quadratic spline interpolating the mean-values g;lon the set (4x)

under boundary conditions of the type S¥(x;) = g®(x;),i = 0,n + 1; ke {0, 1, 2}
Then

(24) IS® — g®c = Cul' ™| gPc, k=j-1, j=123

with H = max {h;} and constants C,i given by the scheme

ilk| 0 1 2
10,86
421 1)27

30124 16 Afr+ 72, r=max{hfh,_,}"

1

Proof. Letusdenote
f(x) = (i, g(t)dt e C'*'[a, b].
a) We have the recurrence relation
fo=0, fixy=fi+hg;, i=0(1)n for the values f, f(x)).
Denote by S;(x) the cubic spline determined by the conditions of mterpolatidﬁ
Sy(x;)=/f;» i=0(1)n+ 1 and by the boundary conditions
S4(xo) = f'(x0) = 9(x0), S3(xu+1) = f'(Xn+1) = g(x,4,) provided k = 0; generally
SED(x0) = g¥(x) . S D(x01) = 6¥(x,01), ke{0,1,2).
Such a spline is determined uniquely by these conditions.
b) The function S(x) = S3(x) has the following properties: " -
1° S(x) is a quadratic spline on (4x); v
2 S(x) dx = Ji100 Six) dx = [So(0)]irrt = hgis .
(26) 3° S(x;)=g(x;) for i=0, n+1 (generallyS®(x; =g%(x))),
ke{0,1,2}; i=0,n+1). ~
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This means that S(x) is identical with the quadratic spline interpolating the mean-
values g; with the appropriate boundary conditions

S®Ox)=g®(x;), i=0, n+1; ke{0,1,2}.
c¢) It is known in the theory of the cubic interpolating splines that
[S® — f®]e < Cy B M|, m=<4, ke{01,...m— 1)

with fe C" and S{(x;) = f®(x;), i = 0, n + 1 (see [10], where the constants Cj,
are also given). But we have S; = S, f’ = g and the statement of Theorem 3 follows
immediately with j =k — 1.

6. CUBIC MEAN-VALUES INTERPOLATING SPLINES

Let us consider the question of construction of cubic splines interpolating mean-
values instead of function values. It can be shown that for the parameters s; = S;(x;),
m; = Sj(x;) of such a spline on the set (4x) the interpolation and continuity condi-
tions yield the block system of equations with three free parameters, which must be
determined by boundary conditions — asymmetry has again appeared. The condition
of orthogonality jz S’3'(f ” — §”)dx = 0 cannot be generally fulfilled — there are not
minimizing properties. Such properties can again appear if we interpolate the mean-
values of the first derivative: g;h; = [¥i*' Sj(x) dx. The full discussion of such
a problem can be done quite analogous to that in part 4; in this way we can obtain an-
other class of cubic splines minimizing [%(f”)? dx over an appropriate set of functions.

7. QUADRATIC SMOOTHING SPLINE
7.1 Relation between natural and smoothing splines

It is well known how to use extremal (minimizing) properties of natural cubic
splines to obtain the cubic smoothing spline to the given data (see e.g. [2], [10]).
We can quite similarly make use of the minimizing property of quadratic mean-value
interpolating splines to construct the quadratic smoothing spline to the given mean
values.

Theorem. 4. Given the values a; g, i =0(1)n;w; 20,i=0(1)n + 1
on the mesh (4x) with h; = x;,, — x;, the functional

@) I0) = B+ a R wlhg, - ) 5T

is minimized on the class of functions fe V = Wé[a, b] by some quadratic spline
S(x) with “natural” boundary conditions my = m,,; = 0.

Proof. Suppose that J(f) assumes its minimum for a function u(x) € ¥ with the
corresponding mean-values [3i*'u(x) dx = h;p;, i = 0(1) n. Then the spline S(x)
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interpolating the same mean-values p;, i = 0(1) n and obeying the “natural” bound-
ary conditions my = S'(xo) = 0, m,1; = S'(x,4{) =0 ' :

— assumes the same value of the second part of J(u);
— assumes a smaller value of the first part of J(f) according to Theorem 2.

The functional (27) represents some interplay between smoothness (the first part
of J(f)) and interpolation (the second part); we have there free parameters a, w;
at our disposal. The quadratic spline minimizing J(f) will be called the smoothing
spline to the mean-value data g;. In its construction we must overcome the problem
that we do not know the mean-values of S(x) in advance.

7.2 The algorithm

Let us denote by p; the mean-values of the spline S(x) we search;

(28) [E0t S(x) dx = hyp;, i = 0(1) n;
my = S'(xo) = 0, m,,; = S'(x,4;) = 0 according to Theorem 4. The remaining
parameters m; = S'(x;), i = 1(1) n, can be calculated according to (16) from the
system of equations '
2(ho + hy),  hy, my P1— Do
hy, 2(111 + hz),- h,, m, | P2 — Py
(29) B B e : =6|
. © heoy m,_y Pn—1 = Pn-2
hn—b 2(hn—1 + hn) m, Pn — Pu-1

The values of S(x) can then be established according to (9), (10) by
(30) So = Po — %homl s Spe1 = Pu t %hnmn s

$; = 8;-1 + %h;_l(m,-_l + m,') N i = 1(]) n.
Let us write the system (29) in a matrix form

(31) Rm = 6Qp

with the vectors m = [my, ..., m,]%, p = [po, ..., p,]", the square matrix R of the
system (29) and the (n, n + 1)-matrix Q,

The derivative S'(x) is a piecewise linear function; let us denote
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Siv12 = 3(m; + m,,). Using then Simpson’s formula of numerical integration,
we get (exactly!)

o (892 dx = ¥ Jz (877 dx = Sth(m} + 453y + miy) =

Il
ok

h[m +(m +m,+1) +m:+1]—

ll

(m +mm g+ miy) =

(32)

B IlM: I.'Ma

=3y m[mi_hi_y +2(himy + h)m; + him ] =
i=1
= 1m"Rm; (mo = myyy =0).

Let us define the functional F(p) by
(33) F(p) = [5(S")?dx + a Y whi(g;: — p))?
i<0

and denote D = diag [hi/w]i-o (the diagonal matrix).
Using (32) we can write

F(p) = %@TRm +o[D(g — p)]" D(g — p) =
= imTRp + o(g — P)T D*(g — p)

and with m = 6R“§p, R" = R, (R™Y)T = R™! we have also
(34)  F(p) = 66TQR™1Qp + (g — p)T D*(g — p).

A necessary condition for p to be the point of an extremum is

(35) F'(p) = 12Q"R™'Qp — 22 D*(g — p) = O

With 6R™!Qp = m, we can write it as

(36) Q'm —aD*(g —p) =0 or D*g-p)=(1/x)Q"m

Multiplying (36) from the left by 6QD~? and using (31) we obtain
6Qg — 6Qp = (1/«)6QD 2Q"m; rearranging it, we have
(37) (R + (6/x) @QD™2Q")m = 6 Qg,
or
(3aR + QD™2Q")u = 6Qg with 'm = }au (for small « — 0).

System (37) can be used to determine the parameters m; (or u;) of the spline we search
for. The values p; can be then calculated using (36):

(38) p=g-~ (1/a) D72Q™m
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For the least-square deviation we have B = (g — p)" D*(g — p) = |D(g — p|3 =
= (1/o) [D™'Q"m] = 55| D 'Q"u|3, and finally F(p) = im"Rm + «B.
The function values of S(x) can be obtained using (30). We can see from (37) that
for a — oo, S(x) converges to the spline interpolating the mean-values g;; for « — 0,
the vector u becomes independent of R and m — O; S(x) then converges to a constant
function (the least-square approximation of g,).

Following [2], we can introduce another functional

(40) Fup) = (1 — @) [ (S')? dx + ocig wik(g: — p)?, ac[0,1],

which is also minimized by the natural quadratic spline S(x). Proceeding in an analog-
ous manner, from Fi(p) = O we obtain the system of equations

(41) [6(1 — o) @QD™?QT + aR] m = 6aQg, or, with m = 6au,
(42) [6(1 — ) @QD™*QT + aR]u = Qg,

(43) p=g-6(1-a)D2Q"u,

(44) B = (g - p)D*(g — p) = |D(g — p)[> = [6(1 — 2) D~'Q"u]3.

The system of equations (41), (42) for « = 1 gives the interpolating spline, for & — 0
we have m; — 0 (constants least-square approximation). Algorithmically the system
(42) is easier to handle than the system (37).

In both systems — (37), (41) or (42) — we can see that

— the matrix R is symmetric and tridiagonal (see (20));

— the matrix QD™ 2QT is symmetric and tridiagonal, too:

dy +d,, —d, T
—dy, dy + d,, —d,,
QD ?Q" = ,
: TS |

—d,_y, dy_y + d,
D2 = diag[d,].
These facts imply that the matrices
R + (6/2) QD2QT, 6(1 — «) QD™2Q" + aR

are symmetric and tridiagonal, too.
Both matrices are diagonally dominant and so we have a unique solution of the
systems (37) or (41) for any data a, g, w.

Theorem 5. There is a unique quadratic smoothing spline S(x) to any data x,, g,
w;, o under consideration.
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8. EXAMPLES

8.1 The approximation properties of the mean-value interpolating or smoothing
spline S(x) to the function f(x) = x e™*, x € [0, 5] are demonstrated in Example 1.
We have written the values S, S’ for
a) interpolating splines related to boundary conditions

So =f(xo) s sn+l‘=f(xn+1) 5

Mo =My, = 0 5
periodic boundary conditions (Table I, Fig. 1);

Table I (Example 1; interpolation; results rounded to 3—4 decimals).

X Sx) o fxp & 5i m; S; m; i m;

0-0 0 1 01539 0 0964 0-109 Q 0-098 0-097
04 0-268 0-402 0-3142  0-269 0-381 0244 0:673  0-246 0-644
07 0-348 0-148  0-3615  0-348 0-142  0-354 0-064  0-354 0-072
1-0 0-368 0 03645 0368 —0-006 0366 0-017  0-367 0-015
1-25  0-358 —0-072 0-3472 0-358 —0-073 0-359 —0-079 0359 —0-077
15 0335 —0-112 03036 0335 —0-115 0-334 —0-115 0-334 —0-119
2:0 0271  —0-135 02069 0270 " —0-142 0271 —0140 0-272 —0-128
3-0 0-149 —0-100 0-0794 0-151 —0-097 0-149° —0-104 0-139 —0-193

50 0034 —0-027 0034 —0-020 0045 . O 0-098 0-097
505 Sg ‘ my = mg = 0 periodic
S ————50,5n*1

— — — -m0=mn.1=0

— ¢ o ¢ o period.

03
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b) smoothing splines with parameter o and weight coefficients
o=10, all w,;=1;
=10, w;={1,1,5,10,6,3,2,1,1} (Tablell, Fig. 2).

Table 1I (Example 1; smoothing).

X; S m; s m;
0-0 0-226 0 0-243 0
04 0-251 0-128 0-275 0-160
07 0-284 0-087 0321 0-146
10 0-301 0-026 0-348 0-037
125 0302 —0013 0-346 —0058
15 0-295 —0-043 0-326 —0-097
2:0 0-259 —0103 0269 . —0131
30 0-154 —0107 0-152 —0-104
50 0-046 0 0-047 0
o = 10, w; =1 o = 10, B = 0002
B = 0002 w;=1,1,5,10,6,3,2,1,1
x&"
—— = (Y =10, W; =1
S(X) ....... =10,

w={11,5,10,6,3,2,11}

i ( ™\
03 . % AN

N

\wﬁ x

1 2 3 5

Fig. 2
8.2 Interpolation and smoothing to given data g; are demonstrated in Example 2:
¢) interpolation with respect to boundary conditions
mg=my; =0,
SO = §q = 0 ’

periodicity conditions (Table III, Fig. 3) ;
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Table III (Example 2; interpolation)

Xi 8i Si m; S m; S m;
1 1 —0451 0 0 — 1-52 2:20 — 896
2 5 3901 870 3-761 9-:04 3-082 10-73
3-5 -1 0:669 —13-01 0:694 —13:13 0-79 —13-78
4 2 —1-085 5-998 —1-104 594 —1-134 6-09
5 6 5171 651 5-235 673 5-224 6°63
7 0 1-146 —10-54 0:796 —11-17 0-927 —10-92
7-5 4 0-341 7-32 1-202 12-80 0-878 10:73
9 5-829 0 —0-768 —14-40 2-20 — 896
my=m; =20 So=125,=20 periodicity
period.
-————So=5n.1=0
e+ e 8 ¢ my=m,4=0
/
II
X
A
\ /

d) smoothing with parameters
oa=10, all w;=1,

=50, all w;=1,

«=10, w;={1,5,1,5,10,20,1,5} (Table IV, Fig. 4).
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Table IV (Example 2; smoothing).

X; &; 5; m; $; m; 5; m;
1 1 0-640 0 —0-105 0 0-597 0
2 5 3-337 5-39 3663 7-54 3619 6°04
35 -1 2:734 —6-20 1-544 —10-36 2-881 — 7-03
4 2 1-361 0-70 —0-161 3-54 1-044 — 7-03
5 6 4-221 5:02 4-712 6:21 4:529 7-29
7 0 3-753 —5-48 2:146 — 877 1-520 —10-30
7-5 4 2-891 2:04 1-286 5:33 0-536 636
9 4:419 0 5-286 0 5-308 0
o= 10 o= 50 =10
w; =1 w; =1 w;=1,5,1,5,10,20,1,5
=10
- = (¢ =100, 1
______ Q@ =50,w;=

w;={1.5,1,5,10,201.5}

Fig. 4
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Souhrn

PRIROZENY A VYHLAZUJICI KVADRATICKY SPLAJN

JIki KoBzA, DUSAN ZAPALKA

V praci se studuji podminky existence, konstrukce a vlastnosti kvadratického splajnu, inter-
polujiciho lokalni integraly (stfedni hodnoty) na zadané siti uzlia. Jsou uvedeny soustavy rovnic
pro vypod&et parametri takového splajnu za ruznych okrajovych podminek, tvrzeni o existenci
a jednozna&nosti takovych splajnu (Véta 1), jejich extremalni vlastnosti (Vé&ta 2), véta o jejich
aproximacnich vlastnostech (V&ta 3). Dale je ukazana konstrukce kvadratického splajnu, vy-
hlazujiciho zadané sttedni hodnoty; ptislusny 'minimalizovany funkcional obsahuje dal$i volitelné
parametry (Véta 4, Véta 5). Vysledky jsou ilustrovany na prikladech.
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