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QUADRATIC ESTIMATIONS IN MIXED LINEAR MODELS

STEFAN VARGA

(Received September 22, 1989)

Summary. In the paper four types of estimations of the linear function of the variance com-
ponents are presented for the mixed linear model Y = Xp - e with expectation E(Y) = Xp and
covariance matrix D(Y) = 6,V + ... + 0, V,.
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INTRODUCTION

The usual mixed linear model is
) Y=Xp+e,

where Y is the n-vector random variable, X is a given n x p-matrix, p an unknown
p-vector of parameters and e a random n-vector of errors with expectation zero and
a covariance matrix

(2 D(e)=D(Y)=6,V, + ... +6,V,, = V,.

The matrices V,; (i = 1, 2, ..., m) are known symmetric n x n — matrices and 0,
(i = 1,2,..., m) are unknown variance components.

The minimum norm quadratic estimators (MINQUE) of the function of variance
components

m

€) q=Y/0,=10

1

are given in the papers [2] and [4]. These estimators are based on the vector Y, the
matrix V=V, + ...+ V, and prior values (ay,...,®,) = a of the variance
components (04, ...,0,) = 0, and they are in the form

) QY. V,a) = YAV, a) Y

(the matrix A in (4) depends on the matrix V and the vector o).

The minimum norm quadratic estimation of the function (3) which is based on
the vector Y, the matrix V and the matrix S of prior values of the elements of the
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covariance matrix Vo = 6,V + ... + 6,V,, (MINQUE(S))
() (Y, V,S) = YA(V,S) Y

is defined in the paper [5].

In the present paper four estimations of the type of (5) are given:

(a) without restrictions: MINQE(S)

(b) invariant for translation in p: MINQE(L, S)

(c) unbiased: MINQE(U, S)

(d) satisfying both (b) and (c): MINQE(U, L, S).
Further, the relationship between these estimation and the corresponding estimations
of the type of (4) which are given in the papers [2] and [4] is established.

The estimation MINQE(U, I, S) is studied in the paper [5] and the estimations
MINQE(I, S) and MINQE(U, S) in the paper [6].

1. NATURAL ESTIMATION AND S-ESTIMATION

We assume that the vector of all variance components 8 = (04, ..., 0,,)’ (' denotes
transposition) is an element of the set € of all @ € 2™ (#™ is the m-dimensional real
linear space) such that V, defined in (2) becomes positive definite (p.d.). Further we
assume that the matrix V = V; + ... + V,, and the matrix S of prior values of the
elements of the covariance matrix V, are positive definite too.

Let o/ be a set of symmetric n x n — matrices and (Jzﬂf, < -)) a Hilbert space
where (e, «> denotes the inner product of elements A, B e &/ given by (A, B) =
= tr AB (tr C denotes the trace of the matrix C).

The natural estimator of the function (3) in the mixed linear model (1) is defined
by the expression

(6) e, Y A VTl2Y V- 1ize,
1

(see (5.4.3) in [4]), where e, = V~'/?e and the vector A = (A, ..., A,) is a solu-
tion of the linear system

(7) ML= f.

The (i, j)-th element of the matrix Mis M, ; = tt V''V,V"'V,and f = (f, ..., f,.)".
The transformation e = $'/2¢ (¢ = S™'/?e) in the linear model (1) yields the
natural estimator (6) of £ in the form

(8) £¢Ne = &' ) »,SV/2V71V V-1s!/2g
1

where the vector % = (%, ..., %,,)’ is a solution of the linear system
9) Mx = f.
The matrix M is defined as in (7).
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The quadratic estimator (5) with respect to the transformation e = 8§'/?¢ has the
form

(10) 4(Y, V,S) = YAY = (Xp + S‘/Zs)’A(XI} + 81%) =
sl/zAsuz S'/ZAX ’
The difference between the estimator (10) and the natural estimator (8) of the

function '0 is
(l l) Y'AY — ¢'Ng =

S!2AS'2 - N S‘,/ZAX €
= (al’ B) IAQL/2 e .
X'AS - X'AX B
The minimum norm quadratic estimation which is a function of the matrix S

(MINQE(S)) is obtained by minimizing the Euclidean norm of the matrix H of the
quadratic form (11) defined by

> (S'2AS'2 — N S'2AX

(12) - (x'As”2 X'AX >

The suqgare of the Euclidean norm of the matrix H is

(13) “H“2 tr S”ZAS”2 N)? + 2tr X’ASAX + tr (X'AX)>..

It is shown in the paper [4] that a quadratic estimation Y'AY of the function f'0
is invariant with respect to translation in B if A € o7, unbiased if A € oZ,, invariant
and unbiased if A € .o/, where

(14) o, = {Aes/: AX =0},
(15) oA, ={Aed: XAX =0; trAV; =f, j=1,...,m},
(16) oy ={Aesd: AX=0; trAV, =1, j=1,...,m}.

Definition 1.1. 4 quadratic estimator Y'AY of the function £'0 is

(a) MINQE(S) if the matrix A minimizes the expression (13) in the class of;
(b) MINQE(I, S) if the matrix A minimizes the expression (13) in the class <Z ;
(c) MINQE(U, S) if the matrix A minimizes the expression (13) in the class o ,;
(d) MINQE(U, 1, S) if the matrix A minimizes the expression (13) in the class o 5.

Theorem 1.2. a) The MINQE(S) of the function £'0 in the model (1) exists iff
fe.u(M), '

where the matrix M is defined as in (7) (the (i, j)-th element of the matrix M is
M,; = tr V''V,V"'V)) and (M) denotes the vector space generated by the
columns of M.

b) If fe . #(M), then the MINQE(S) of the function £'0 is the statistic Y'AY,
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where
n

(17) A, =) T ISV 'V VIST !
1

T ='S + XX’ and the vector# = (%, ..., %,,)" is a solution of the linear system (9).
Proof. a) The matrix A, in Y/A,Y exists iff the linear system (9) ) is consistent.
This system is consistent iff fe JI(M) :
b) The matrix A, is symmetric, therefore it suffices to prove that it minimizes
the expression (13) for which : PRI (

(18) tr (SY2AS'2 — N)? + 2 tr X'ASAX + tr (X'AX)? =
= tr ASAS + 2 tr X'ASAX + tr (X'AX)” —

m .

—22% tr SV-IV,VISA 1 tr N2 =
= tr A(S + XX’ A( + XX') — 22% tr SV™'V,V7ISA + (r N> =
_trATAT—zzu tr SV-1V, V- ISA + tr N

is satisfied.
Because tr N? is indepedent of the matrix A, the matrix A, minimizes the expres-
sion (13) or (18) in the class .« if

tr(A; + D)T(A, + D)T —
~2yu tr SV™'V,V7IS(A, + D) =
, >t1ATAT~22xtrSV 'V,V71SA,

holds for each symmetric matrix D.

m

tr (A, + D) T(A, +D)T—2thrsv 'V,V7IS(A, + D) =

=trA TAT—-ZZ% tr SV~ 1VV ISA, + tr DTDT +

+2tr A, TDT — 22 % tr SV-1V,V-1SD
1

With regard to the fact that the expression tr DTDT is nonnegative it suffices to
prove that

m

tr A,;TDT = ¥ %, tr SV 'V,V~'SD.
1T

tr A, TDT = tr Y », T 'SV 'V,V IST ITDT =
m 1

=) x%;tr SV™'V,V~ISD
1
Corollary 1.3. One choice of the MINQE(S) of the vector of unknown variance
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components 0 = (0,,...,0,) is

(19) =M'm

provided the MINQE(S) exists for all components of the vector 0. The matrix M
is defined as in (7) and the i-th element of the vector m is m; =

= YT ISV IV, V7IST 'Y (M~ is a g-inverse of the matrix M defined by
MMM = M),

Proof. The MINQE(S) of the function f'0 is
f70=YAY=Y Zi"x,.T-lsv—lv,.v-lsT*lv =
= ZT%,Y’T“‘SV“‘VN”ST“Y =xm=fM"m

because x = M™fis a solution of the linear system Mx = f.

Theorem 1.4. a) The MINQE(I, S) of the function £'0 in the model (1) exists iff
fe.#(M),
where the matrix M is defined as in (7).

b) If fe #(M) then the MINQE(L, S) of the function £'0 is the statistic Y'A,Y,
where

(20) A, =Y x@VlVVv-lQg,
1

where Qg = 1 — X(X'S™!X)™ X'S™! (I is the unit matrix) and % = (%y, ..., %y,)’
is a solution of the linear system (9).

Proof. a) The matrix A, in Y'A,Y exists iff the linear systeni (9) is consistent.
This system is consistent iff f & .#(M).

b) It is obvious that the matrix A, is symmetric. The equation A, X = 0 is satisfied
because of QX = 0. It suffices to prove that the matrix A, minimizes the expression
(13) in the class o, for which

tr (SU2AS2 — N)? + 2 tr X’ASAX + tr (X'AX)? =
= tr ASAS — 2Y %, tr SV-1V,V-ISA + tr N2
1 -

is satisfied because of AX = 0.
The matrix A, minimizes the expression (13) in the class ¢, if for each symmetric
matrix D which satisfies the condition DX = 0 the inequality

tr (A, + D)S(A, + D)S — 2Y %, tr SV'V,V_IS(A, + D) >
1

2 tr A,SA,S — 2 %, tr SVT'V,VTISA,
1
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holds.
tr (Az + D) S(A2 + D) S —2Y n;tr SV“V,-V‘ls(A2 + D) =
1

= tr A,SA,S — 2Y %, tr SV"1V,V-1SA, + tr DSDS +
1

+ 2tr A,SDS — 2 %, tr SV™'V,V7ISD,
1

With regard to the fact that the expression tr DSDS is nonnegative it suffices to
prove that

tr A,SDS = Y %, tr SV !V,V~ISD .
1

tr A,SDS = ¥ x,tr SQV™'V,V-'@SD =
1

»-Mg

¥, tr[S — X(X'ST!X)” X ]V7lv v,
[S — X(X'S™'X)" X']D =Y %, tr SV-1V,V-1SD .
1
Corollary 1.5. One choice of the MINQE(L, S) of the vector of unknown variance
components 8 = (04, ..., 0,)" is
(21) 0=Mu

provided the MINQE(I, S) exists for all components of the vector 8. The matrix M
is defined as in (7) and the i-th element of the vector u isu, = Y@QV~1V,V71QY.
Proof. The MINQE(I, S) of the function '8 is

f70=YAY=YY»xQVVVIQY =
1

%Y@V IVV1QY = x'u=fM-u.

,.-Mg

Theorem 1.6. a) The MINQE(U, S) of the function £'0 in the model (1) exists iff
fe . #(M) and Cx —fe.#(B),

where the matrix M is defined as in (7), the (i,j)-th element of the matrix B is
B,; =tr T"'(V, — P,V,Py) T~ 'V, the (i, j)-th element of the matrix C is C; ; =
—tr T"Y(W, — P,WP) TV, and T =5 + XX, W, = SV-1V, V1S,
P = X(X'T™1X)~ X'T.

b) If fe .#(M) and Cx — fe M(B) then the MINQE(U, S) of the function f'0
is the statistic Y'A;Y, where

(22) A; = Z % T (W, —P,WP)T ' =) 7»,-T_1(Vi - PTViP'T) T !,
1 1
where ® = (%, ..., %)’ is a solution of the linear system (9) ynd h = (A, ..., )’
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is a solution of the linear system
(23) Cx - BL=f.

Proof. a) The matrix A; in Y'A;Y ex1sts iff the linear system (9) and the linear
system (23) are consistent. The linear system (9) is consistent iff ' e .#(M). The
system (23 is consistent iff the system Cx - f =.B\ is conmstent and this is true
iff Cx — fe.#(B). ’ ‘ S

b) The symmetric matrix A, defined in (22) satisfies the condition tr A}V, = f;
(j =1, ..., m) because the equation (23) holds. The equation X'A;X = 0 is satisfied
because of X'T™ 1P = X'T™! (See Lemma 2.2.6 of the paper [3]). It suffices to
prove that the matrix A minimizes the expression (13) in the class «7,.

We can write the expression (13) (X AX =0, T =S + XX') in the form of

(24) tr ATAT — 23 %, tr SV 'V,V7ISA 4 tr N2,
1
Let D be a matrix for which
(25) D=D, XDX=0, trDV,=0 (i=1,....,m)

holds. The matrix A, minimizes the expression (24) in the class &7, if for each
matrix D which satisfies the conditions (25) the inequality

tr (A, + D)T(A, + D)T — 2Y %, tr SV"'V,V-IS(A, + D) =
> tr A;TA,T —2Y %, tr SVT'V,VTISA,
holds.
tr(A; + D)T(A, + D)T — 2Y %, tr SV-IV,V-IS(A, + D) =
1

m

= tr A;TA,;T — 2% %, tr SV 'V,V7ISA; + tr DTDT +
1

+2tr A;TDT — 23 %, tr SV !V,V7ISD .
1

With regard to the fact that the expression tr DTDT is nonnegative it suffices
to prove that tr A;TDT =) %;tr SV"'V,V7ISD. The matrix D satisfies the
conditions (25) and therefore P;7DP;, = 0, tr DV, = 0 (i = 1, ..., m) and

tr A;TDT = Y %, tr (SV™'V,V7!SD — SV™'V,V~!'SP;DP;) —
1

- Z Aitr (DV, — V,PiDP.) = Y %, tr SV1V,V~1SD
1

Corollary 1.7. One choice of the MINQE(U, S) of the vector of unknown variance
components 8 = (04, ..., 0,) is

(26) 0=Mu—-MCBVv+By
provided the MINQ(U, S) exists for all components of the vector 0. The matrices

140



M, B, C are defined as in Theorem 1.6, the i-th element of .the vector u is u; =
= YT (W, - P,WP) T“IY, the i-th element of the vector ¥ is v; =

— YTV, = PV R T | sy

+ Proof. The MINQE(U, S) of the function £'0 is

70 = YA,Y = Z%YT (W, — PW P TT1Y —
—ZXYT v, —PVP)T Y = wu — Ay =

:f(M u— M CB™v+ BV

because »' = f'M~ is a solution of the linear system (9)and 1’ = fM"CB~ — f'B~
is a solution of the linear system (23).

Theorem 1.8. a) The MINQE(U, I, S) of thefuhction f'0 in the model (1) exists iff
fe. /(M) and Lx — fe.#(K),
where the matrix M is defined as in (7), the (i, j)-th element of the matrix Kis K, ; =
= tr V,@sS™'V,S71Qy, the (i, j)-th element of the matrix L is L, ; =
— rV,@VIV,V Qg and @ = | — X(X'STIX)" XS,
b) [f fe #/(M) and Lx — fe #(K) then the MINQE(U L, S) of the function £'0
is the statistic Y'A,Y, where

(27) A, =Y x@VIVVIQ - Y y,@57 VS 1@y,
1 1
where % = (%, ..., %,) is a solution of the linear system (9) and ¥ = (y(, ..., Yu)'
is a solution of the linear system
(28) Lx — Ky = f.

Proof. See [5], Theorem 2.3.

Corollary 1.9. One choice of the MINQE(U, L, S) of the vector of unknown variance
components 8 = (0,,...,0,) is
(29) 0=M m-MLKn+Kn
provided the MINQE(U, 1, S) exists for all components of the vector 0. The matrices
M, K, L are defined as in Theorem 1.8, the i-th element.of the vector m is m; =
= Y'QgV~'V,V'Q,Y and the i-th element of the vector n is n; =
=Y'QS$ 1V, $T1Q,Y. ‘

Proof. See [5], Corollary 2.4.

2. A COMPARISON OF MINQE (S) AND MINQE

The estimations of the function f'@ obtained in this paper (MINQE(S)) are
quadratic estimations of the type of Y'A(S)Y ,where the matrix A(S) is a function
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of the known matrix S which contains prior values of the elements of the covariance
matrix Vg in the model (1).

In the papers [2] and [4] quadratic estimations of the function f’ obtained by
Rao (MINQE) are defined which are of the type of Y'A(V)Y. The matrix A(V)
is a function of the known matrix V = oV, + ... + o,V,,, where a, ..., o, are

m " m>

prior values of the variance components 6, ..., 6,, in the model (1).

It is shown in Theorem 2.1 that the MINQE(S) is equal to the MINQE if the
matrix S does not contribute to the estimated situation by new information (S =
=,V + ... + o, V,, = V).

Theorem 2.1. If S = V, then the MINQE(I, S) of the function £'0 is equal to the
MINQE(I), the MINQE(U, S) of the f'0 is equal to the MINQE(U) and the
MINQE(U, 1, S) of the '8 is equal to the MINQE(U, I).

Proof. It is shown that the MINQE(U, I, S) is equal to the MINQE(U, I) in
Theorem 2.7 of the paper [5].
If § = V then the MINQE(L S) of the ' is (see (20))

f'o=Y i %@, VIV VT1Q,Y = YA,Y,
where 1
A, = i::uiQ;,V_lViV'IQV =
= i[l — VTIX(X'VIX) "X
VLGV VI — X(XVTIX) "XV ] =
_ TZV“[I — X(X'VTIX) XV
V1= VIIX(XVTIX) "X VL
IfY %V, =Wand I — X(X'V"1X)"X'V™! = | — P then we have
A, = V(1 — P)W(l — P')V~!
and Y'A,Y is the MINQE(I) of the f'8 defined by the formula (5.4.11) in the

paper [4].
If § = V then the MINQE(U, S) of the function ' is (see (22))

79 = Y’(Z xiT“(W,. — PTWiP’T) T 11—
1
- Z )"iT—l(vi - PTviPIT) T_l) Y =
1

= Y(Y % T YV, = PVPY) T ! —
1
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- Z )"iT_l(vi - PTViP’T) T_l) Y=
1
= Y’(Z (ui - )\,i) T"I(Vi - PTViP}) TY = Z 5,Y'AY,
1 1

where A; =T Y(V; = P, V,P;)T™! and & = (3,,...,5,) is a solution of the
linear system G§ = f (the (i, j)-th element of the matrix G is G, ; = tr A,V,). This

J

result is equal to the MINQE(U) of the '8 which is defined by the formula (5.2.2)
in the paper [4].

3. EXAMPLE

We consider a very simple situation when we have two independent measurements
Y1, ¥ of the unknown parameter B with different variances (V(y,) = 0, and V(y,) =
= 0,). The mixed linear model (1) is

Y=Xp+ e,
where Y = (y;, »,), X = (1, 1), e = (e, e,)" and

0, 0 10 00
D(e) = (0‘ 92> =0, (0 0) +0, (o 1) = 0,V, +0,V,.

Let (51 0
S= (0 s2>

be a matrix which contains prior values of the elements of the covariance matrix D(e).
We will show four estimators of some functions of the unknown variance com-
ponents 0, 0,.

a) The MINQE(S) of 8, and 0, are (see (17) or (19))

5t

0, = (3152 n sw [yi(s2 + 1)* = 2y1pa(s2 + 1) + y3]
_ 53
B (slsz + 8y + 8,)°
If$ = V (s; = s, = 1) then MINQE(S) of 6, and 6, are
8, = é(z}ﬁ - ), 8= %(2)’2 - n)?.
b) The MINQE(I, S) of 6, is (see (20) or (21))

(==3

2 [y%(sl + 1) = 2p,p5(sy + 1) + Yf]

%

(Sl + 32)2

IfS = V (s, = s, = 1) then the MINQE(I, S) of 0, is
é2 = %(Yl - J’2)2

This estimator is equal to the MINQE(T).

62 = (Y1 - )’2)2
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¢) If s; = 2and s, = 1 then the MINQE(U, S) of 0, is (see (22) or (26))
0, = J’12 - Vi)2
and this estimator is equal to the MINQE(U) for oy = 2and o, = 1.
d) If s; = s, = 1 then the MINQE(U, I, S) of 6, and 0, do not exist but for

example the MINQE(U, I, S) of the function 8, + 0, is independent of the matrix S
(see (27)) and is equal to the MINQE(U, I)

0, ‘?'ez = ()’1 - J’2)2~
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Sahrn -

KVADRATICKE ODHADY V ZMIESANYCH LINEARNYCH MODELOCH
STEFAN VARGA
V praci st uvedené nutné a postaujuce podmienky existencie a explicitné vzfahy Styroch
typov odhadov linearnej funkcie varianénych komponentov v zmieSanom linearnom modeli

Y = XB +- e so strednou hodnotou E(Y) = XB a s kovarianénou maticou D(Y) = 0,V - ...
e 0,V
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