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AN ITERATIVE METHOD OF ALTERNATING TYPE
FOR SYSTEMS WITH SPECIAL BLOCK MATRICES
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Summary. An iterative procedure for systems with matrices originating from the domain
decomposition technique is proposed. The procedure introduces one iteration parameter. The
convergence and optimization of the method with respect to the parameter is investigated. The
method is intended not as a preconditioner for the CG method but for the independent use.
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AMS Classification: 65N30.

We propose an iterative procedure for solving systems of linear algebraic equations
through solving smaller systems with matrices that are slightly modified submatrices
of the given matrix. This procedure can be useful for solving algebraic systems
originating from the discretization of boundary-value problems for second-order
elliptic equations on composite domains. Many authors established, in a similar
way, different preconditioners for the CG method, we refer only to [1], [2], [3].
The present method is intended for the independent use and is close to that of [4].

1. THE METHOD

Let a system of linear algebraic equations

(1) Mw =d,
be given, where
A DT O x f
(2) M=|DB E"| w= y| d=|g
OE C z h

We suppose that the matrices A, B, C are square and symmetric, O are null matrices
of the corresponding orders.
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Let us recall that the Schur complement of a regular block A4, in

A = Ay Ay

Ay Ay,
is the matrix 4,, — A,;A7,'4,, and that the Schur complement is symmetric and
positive definite assuming that 4 and 4,, are symmetric and positive definite as well.

Let further B, and B, be symmetric matrices such that B, + B, = B and that
the matrices

A DT and B, ET
D B, E C
are positive definite. It is easily seen that then the matrix M is positive definite too.
Let us denote by S, the Schur complement of 4 in

A DT
D B,
and by S, the Schur complement of C in
B, ET
E C |
We denote further p = DA™'f + ETC™'h.
Our procedure consists in the construction of a sequence of vectors y, converging
to the y-component of the true solution of (1). It is easily calculated that this exact
value is

(3) y=(Sy+S) (g —p)-

Let ¢ be a real parameter, 0 < ¢ < I.
Let an approximation y, to y be given. Let now y,,, be the y-component of the
solution of the system

(4)) Ax + DTy =1,
(4,) Dx + B,y = (1 — ¢)g + ¢«(DA™'f + Syy,) —
~ (1 —c)(ETC""h + SLy)
and let y”, , be the y-component of the solution of
(51) B,y + ETz = ¢cg — ¢(DA™'f + Syy,) + (1 = ¢)(ETC™'h + S1y,) .
(52) Ey + Cz=h.
The new iteration y,, is defined by
(6) Yurr = Pner (L= c)yrsy
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Remark. Let us substitute y, for y into the system (4), calculate x from (4,) and
calculate the value of the left-hand side of (4,) with this value of x. We have x =
=A"'(f - D"y,) and

Dx + By, = DA™'f — DA™'D"y, + Byy, = DA~'f + Sy, .
An analogous manipulation with the system (5) gives ETC™'h + S_y,.

This elucidates a little the origin of the right-hand side terms in (4,) and (5).
On the basis of this consideration we can say that one step of our iteration method
consists in the following sequence of operations:

1. Substitute y, into (4) and (5).

2. Calculate the unknowns x and z from (4,) and (5,), respectively.

3. With these values of x and z and y, calculate the value of the left-hand sides
of (4,) and (5,).

4. Use these values to construct the right-hand side in (4,) and (5,).

5. Solve the systems (4) and (5) for the unknowns x, y and y, z, respectively. Only
the y-components will be used in the sequel.

6. Calculate the new iteration y,, , from (6).

The solution of the systems (4) and (5) with respect to y, , , and y,, ,, respectively,
and the substitution into (6) gives

@) Ve ={[+ (A=) —c(l =) (T+ T )}y, +
+ el —¢)(Sg' + S (g - p)-
Here T = S;'S;.
By K we denote the iteration matrix
K=[c+({1=¢)?]I—-cl =c)(T+T).

Before studying the convergence of the process, we will show that if the sequence
defined by (7) is convergent it converges to the true value. Namely, the limit y,,
of the sequence y, satisfies

Vo =T =K)"he(l =) (Sg" + Sc') (g - p).
However, we have
I-K=2(l-0cI+cl-c)(T+T "=
=c(l —c)(Sg' + S (Sy + L) .
Therefore y,, is the value from (3).
In order to study the convergence, i.e. the spectral radius of K, we put e = ¢ — 1.
Let A be an arbitrary eigenvalue of T. Then 4 is real positive. We define u as u =

= A+ 1/A — 2, therefore u = 0. The corresponding eigenvalue of K is then (in
dependence on e)

w(p, €) = 4e* — (3 — e .

74



We can restrict ourselves to the interval <0, §) for e, i.e. ¢ € 4, 1). The shape of the
function |x(u, €)| in dependence on e? is in Fig. 1.
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/
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Fig. 1.

Now, let 2;, i = 1, ..., N, be cigenvalues of T and let y; be the corresponding
quantities. Let p,, = maxyu; and g, = ming;. Let o(e) = max (et €)|s

]%(ﬂmin’ e)l) ' '

Theorem. The spectral radius of K — for the chosen value of e — is equal to
a(e).

Proof. It is clear (cf. Fig. 1) that x(u;,e) > »(u;, e) for pu;, < p;. Therefore
— (p;, €) > —x(u;, €). We have

U(e) 2 —x('umax’ e) > —%(iui’ e) >
o(e) = #(tmins €) > #(ui, €) for i=1,..,N.

Therefore o(e) = |x(;, €)| and it is equal either to |4,y €)] OF to [#(tpins €)], q.€.d.

The process is convergent if a(e) < 1. It is seen e.g. that if y,,,, < 4, then o(e) < 1
for all e. This case corresponds to the eigenvalues of T in the interval (3 —-2./2,
3 +24/2).

The function o(e) has its minimum for e* = s/(4(8 + s)) where s = pp. + fin-
For this optimal value of e the spectral radius is o(e,,,) = r/(8 + r), where r = .. —
— Hmin- This quantity is always less that 1. By an appropriate choice of e (or alterna-
tively c) we are always able to achieve the convergence of the process.

In order to find e,,, it is however necessary to know the eigenvalues of T and the
corresponding pu's. Generally, this may be rather difficult. Therefore we try to illu-
strate the process by an example of a discretized boundary-value problem.
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2. EXAMPLE

Let © be a domain composed of two squares according to Fig. 2. On the domain
the Dirichlet problem for the Laplace equation is to be solved.

Fig. 2.

For the discretization we use the uniform square mesh with the step h = 1/n.
We use the standard five point approximation. Let us denote by
4 —1
A, = -1 4 -1
—-14

the square matrix of the order n — 1 and by 4, an analogous matrix, but of the order
2n — 1. Our discretized problem has the form

Ax =f,
where
(8) A=[ 4, -I,
-1, A, -1, v n — 1 times
—1, A, I,
—I,l A, J
JT1 A4, -1,
-1, A, -1,
2n — 1 times
| -1, A,

- L

Here, I, and I, are identity matrices of the order n — 1 and 2n — 1, respectively,
J = [—1,,0], where 0 is the null matrix of the order (n — 1) x n. The vector of
the unknowns x is a block vector with blocks corresponding to all the meshpoints
on a vertical meshline, the vector f of the right-hand side originates from the values
of the boundary condition and is blocked in the same way. The vertical and horizontal
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dashed lines in (8) indicate the blocking corresponding to that of (2). The matrix B
from (2) is now equal to 4, and we put B, = B, = A4,/2. The steps of the above
iterative procedure may be now described as follows:

1. Choose the values of the approximate solution on the interface between the two
squares arbitrarily.

2. Solve the Dirichlet problems for the two squares separately.

3. Calculate the approximate values of the normal derivatives of these solutions
on the interface from both sides. (This is due to our choice of the matrices B,
and B,.)

4. Put together the right-hand sides in the equations (4,) and (5,) and thus establish
the right-hand side for the Neumann condition.

5. Solve the Neumann problems for the two squares separately.

6. Combine the values of both solutions on the interface and obtain the new Diri-
chlet condition on the interface.

For the numerical experiment, the exact solution of the problem was taken as
the plane with values equal to zero on the left-hand side of the small square, to one
on the interface, and to three on the right-hand side of the big square. The Dirichlet
boundary conditions were taken from this exact solution. The null vector was taken
as the initial approximation for the values on the interface, intentionally a bad
approximation. For ¢ the value 0-5 was taken.

The results for different values of n and a few first iterations are given in Table 1.
The values shown are the maximum norms of the error on the interface. The standard
semilogarithmic form of real numbers is used.

Tab. 1.
Iter. n
No 4 6 8 10 15 20
1 142 —3 319 —3 520 —3 708 —3 1111 —2 143 —2
2 1179 —6 907 —6 232 —5 422 —5 102 —4 171 —4

2:52 =17 939 —1 2:03 —6

Finally, it should be mentioned that the matrices D and E from the blocking of (2)
are in this example of special form. It simplifies a little the computation. A further
simplification is obtained when using the elimination method, because for the
computation of the values and the values of the normal derivatives on the interface,
only one or two block steps of the back substitution are necessary. The whole solu-
tion is computed only after the process converges.
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Souhrn
ITERACNI METODA ALTERNUJICIHO TYPU
PRO SOUSTAVY SE SPECIALNI BLOKOVOU MATICI
MILAN PRAGER
Je navrZena iterani metoda pro soustavy s matici vznikajici pfi metod€ dekompozice oblasti.
Metoda obsahuje jeden iteradni parametr. Je vySetfena konvergence metody a jeji optimalizace

vzhledem k iteraénimu parametru. Metoda je uréena k samostatnému pouZiti, nikoli jako pred-
podminéni pro metodu sdruZenych gradientu.
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