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1. INTRODUCTION

The main of this paper is to find a bounded weak solution of the initial-boundary
value problem for the nonlinear diffusion equation of the form

N
9 b(u) — Y 2 aix,u, Vu) = f(x,u) in Ix D,
ot i=1 0x;

u=uP on IxTI,,

N

Yaix,u,Vu)cos (v, x;) =0 on I x I,,

i=1

u(x,0) = uy(x) in D,
where b(z) = |z"" .sgn(z), m >0, D is a bounded domain in R with smooth
boundary 0D, I'y, I'; are open subdomains of éD such that I'y n ", = 0, meas I'y +
+ meas I', = meas 0D, measI';y >0, a:Dx Rx R">R (i=1,..,N),
f: D x R — R satisfy Carathéodory’s conditions.

The equation in (1.1) appears in various physical, chemical and biological models.
For 0 < m < 1itis known as the slow diffusion equation, for m = 1 as the classical
heat equation and for m > 1 as the fast diffusion equation.

A similar equation is solved in [1], but one of the main assumptions of that paper
is ellipticity of the operator A(=) a;) while we assume only monotonicity. We also
prove boundedness of the solution. In the case of linear operator A it is possible
to get a smoother solution (see [6]). We solve Problem (1.1) using the method of

lines which has been intensively studied in [2], and we apply it to the slow and fast
diffusions simultaneously.



In the sequel we shall adopt the following notation: Let I = (0, T), T < oo,
Q=DxLV={veW), v=_0inT,}, Bz) = m/(m + 1) |z]’"+‘,

v ow
a(u;v,w) =Y [palx,u, Vv) — dx,
i=1 0x;

(f(0), w) = [pf(x, v) wdx,

Su(r) = MO =t =h) ’;(‘ —h.

2. EXISTENCE OF THE WEAK SOLUTION

We will assume that the elliptic part in (1.1) is continuous in all variables and
monotone in Vu, i.e.

CO  lalend - alun @020

forxe D, neR, & {eR", a(x,n,0)=0fori=1,...,N, and satisfies

(2.2) dai(x,n, &) _ day(x,n,¢)
g, 9&;
is the sense of distribution,
N N
(23) Yalo,m&&zC Y el -C, 1<p<o.
i=1 i=1
The growth conditions are of the form
N
(24), Y laix m O] £ C5 + Bt + [P (07 + 47 = 1),
i=1
. +1
@A 1] = €] + ), = min(m 1), e (o).

Boundary and Initial Data satisfy
(2.5) uo€ L(D)nV, uPeL,(I, W,(D))n L,(Q), dg u?eL,(I x D),
t
uP(t) > u, for t—>0 in Ly(D).

Definition 2.6. We call u € u® + L,(I, V) a weak solution of the initial boundary
value problem (1.1) if the following two conditions are fulfilled:

i) b(u) € L,(Q), (d/dt) b(u) € L(I, V*) satisfy
L (dit b(u), v) di = — L 00 - b(uo)) glt’ dx dt
for every veL,(I,V)n L,(Q), dv/dt e L,(Q) and v(T) = 0;
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it) f(u) € L(I. V*) and the identity

L (d% b(u), U) dr + J; a(u; u, v) dt = J‘, (f(u), v) dt

holds for every ve L,(I, V).

The main result of this paper is

Theorem 2.7. Suppose (2.1), (2.2), (2.3), (2.4) and (2.5). Then there exists a weak
solution of Problem (1.1) in the sense of Definition 2.6.

We now prove a series of assertions, which contain most of the essential elements
for the proof of Theorem 2.7.

Suppose that an integer n is specified and set & = T/n. Applying a time discretiza-
tion formula we use the approximation scheme

(2.8) M —_ % 2 afx,u;_y, Vu)) = f(x, u;_,),
h i=1 0x;

u; = up + V, where u} = (1/h) [¥'_ uP(s)ds, i = 1,...,n, u;_; = u, for i = 1.

Definition 2.9. We callu;,i = 1, ..., n a solution of Problem (2.8)in V, ifu;e u? +
+ V, B(u;) € L,(D), the functional F,(v) = [, b(u;) vdx can be uniquely extended
to V and the following identity holds for all ve V(i =1,.., n):

(2.10) (@1b(u;), v) + a(u;—q; us 0) = (f(u;—q), v) .

Lemma 2.11. There exists a unique solution u; of Problem (2.8) in the sense of
Definition 2.9 for any positive integers i, n = n,. Moreover, each u; e Lw(D).
Proof. By induction with respect to i.
Let us suppose the assertion is true for j = 1,...,i — 1. Let us now prove it for
j=1i
Existence. Let
! ul v ! 1
S(v)=| dt| Y afx,u;—y, tVo)—dx + | dt| - b(tw)vdx —
0 i=1 0x; 0 ph

D'=

_ L(% blur_ ) —f(ui_1)> vdx.

Due to (2.1), (2.2), (2.3) @ is continuous, strictly convex and coercive over ¥ and
has a G-differential

Dd(u, v) = (ll(li)—j;b—(——u"l) , v> + a(u;—g;u,v) — (f(ui—q), v) .
The classical results concerning the minimization of @ imply existence of a solu-

tion u? of Problem 2.8 for j = i (with the homogeneous boundary condition (see
[3]))- Then the function u; = uf + u is the solution of Problem 2.8.
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Boundedness. Suppose the contrary (see [4]), that is, there exists {c;}7,,
¢; £ ¢jpy, ¢; > o0 for j— 0 and K; = {xe D, ]u?(x)| > ¢;} with meas (K;) > 0.
Putting

Oc,__ 0 c_,__,/u X) xeD — K

= u}(x)] ¢ sgn (u(x)) xeK
we easily obtain tb(u [‘1) < &(uy) for sufficiently large j, which contradicts the mini-
mum property of u

Let us construct sequences of step functions {u, }, {u,} defined by

(2.12) ur(ty=up ti_,St<t;, i=1,..,n,
u(t) =u; L, St<t;, i=1..,n.
We can write (2.10) in the form

(2.13) (@"b(u,), v) + a(uy; u, v) = (f(um), v)

where n = no, ve V, u,, = u,(t — h) and u,(t) = u, for t € (—h, 0). The main role
in the proof of Theorem 2.7 is played by the uniform boundedness of the sequence
{u;} in L (D). First we have to prove a priori estimates.

Lemma 2.14. The estimates
i) i Jw[p dt < C,
ii) {pB(u,t))dx < C
hold for all n = n,.
Proof. Putting in (2.13) v = u, — u. and integrating it over (0, ) we have
(2.15) [ [ b(u,) (u, — uy)dx dt + [§ a(u; u,, u, — up)dt =
= ,[6 ,‘.Df(unh) (un - ul?) dx dt .
First let us estimate the first term in (2.15). Using the inequality
(2.16) B(z) — B(zo) = (b(z) — b(z0)) 2,
which follows from the fact that the function f(x) = m/(m + 1) x™*' — x™ +
1/(m + 1) = 0 for x > 0, we can write

(2.17) B(u,) — B(u,;,) < (b(u,) — b(u,,))u, for ae. te(h T).
We can integrate it over (0, 1) x D:
(2.18) 1/h [& (b (B(u,) — B(u,)) dx dt < [§ [ 0ib(u,) u, dx dt .
In virtue of the equality
f& [potb(u,) u, dx dt = (5 (0tb(u,), u, — u?)dt + [§ [p otb(u,) up dx dt
in (2.18) we have
1h §5 [ (B(w,) — B(uy)) dx dt < [§(04b(u,), u, — uy)dt + f§ [pdtb(u,) uy dx dt.
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Using integration by parts in the above inequality, we obtain -
(2.19) 1/h §i_, §p B(u,) dx dt — [, B(uo) dx <[5 (0ib(u,), u, — uP) dt —
— 67" [ (b(u,) — b(uo)) 0; "up dx dt + 1/h (i_, [ (b(u,) — b(uo)) u dx dt,
which yields
(2.20) 6 §poib(u,) (u, — u?)dx dt = 1k [i_, [, B(u,) dx dt — [, B(uo) dx +
+ J67"p (b(u,) — bluo)) 8, "u? dx dt — 1/h [i_, [ (b(u,) — b(ue)) up dx dt .
In virtue of (2.3), (2.4) and Young’s inequality we estimate
(221) [5 alttyys tyy ty— uP) dt = C, (5|5 At +C, [5|ul[p dt—-Cs 5 §oB(u) dxdt,
(222) |f6f0f () (u,—u?) dx dt]| < 6 [5]|u, |5 dt+Cy [ pB(u,s) dx dt+C [5]lur |5 dt,
which together with (2.20) yields (if 6 is sufficiently small)
(223) 1/ {, [p B(uy) dx dt + (3w, dt < C, [5 [» Buyy) dx dt + C,
in view of
[pB(up)dx < C,
1 e, [olb(w,)| dx di < 8/ [i_, [pB(u,) dx d + C;,
Jifoblu) 07 a2 dx di < € [ folb(u)
< Cy [§fpB(u,) dxdt + C,.

dxdt <

Using Gronwall’s lemma in the discrete form (letting a; = [, B(u,(t)) dx for t,_, <
<t < t;) we obtain the required estimates.

Lemma 2.24. For any n = ng and i =1, ..., n the solution u; satisfies
luilew = €
Proof. Putting v = b%(u;) — b*(u?) (see [6]), where s is odd, s > so(m) we obtain
(2.25) o (b(u;) — b(u;—q)) b°(u;) dx — [p (b(u;) — b(u;-,)) b5(u?) dx +
+ hfpa(u;—y, Vu) VB (u;) dx — h [ a(u;—, Vu,) Vb*(u?) dx =
= [pfui-1) (B°(ui) — b*(u?)) dx .

In virtue of (2.1) and (2.4), we can estimate the third term on the left-hand side and
the term on the right-side obtaining

(2.26) [p () < [o (L + Cah) |b(ui—i)| [6°(u))] + Cah [p [d] [b5(us)| +
+ [ |b(u;) — b(ui_l)l Ib“(u?)| + hfpla(u;y, Vu,)| |Vb‘(u?)[ +
+ C4h [p |d| lbs(“?)l + Cih fp ]b(ui-—l)l IbS(u?)I .
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Now we can successively estimate the third, the fourth, the fifth and the sixth terms
on the right-side in (2.26):

§o |b(us) = b(us—y)| [b°(wP)| < |b*(err)| [ ( b(u;)| + [b(ui-y)]) =
= Clbs(CM)l
where ¢, = sup [uf|, in view of (2.5), (2.14);
h fp [a(ui-y, Vu)| [Vb(u?)| = h [ |a(u;-1, Vuy) sb* = (u?)| [Vu?| <
< hslbs'l(cM)I (o B(ui-1) + [o [Vui]” + [p |Vu?|P < Chs b*~(cpr)]|

holds in view of (2.5) and Lemma 2.14;
o o d] [#68) = B fod] 5 CHben)|
Cah [ |b(ui—1)] |b*(u?)| < Cah|b(cr)| o |b(uiz1)| < Ch|b*(err)| -
All these estimates together with (2.26) imply
I 0" () = [ (1 + Cyh) |b(u;=y)| |b°(w))| + Cuh [y |d] |b5(us)| +
+ sC|b*(cy)| -

Applying twice Young’s inequality we obtain

‘[Dbsﬂ(ui) <@+ nh)“lj‘ b (upy) + (s + 1) Cih_@.[ |dls+1 +

D 1 —¢eCih

where 0<8<——1——- and =—C4(L+~1) .
8C4 C,h 1 —eCyh

This inequality may be formally rewritten as y; < ay,_; + b, from which we
recurrently obtain

13

a' -1 ; b
<a .
a—1" (y°+a—1)
So we have

(2.27) j’D b”l(ui) < (1 + nh)i(s+1) (jD bSH(uo) + CI1 J‘D<|dls+1 +
bs(CM)I)

where the constants C; (i = 1,2) are such that their (s + 1)-st root tends to 1 if
§ = 0.
Now taking the (s + 1)-st root of (2.27) and letting s — oo we obtain

1) ooy = (1 + k) ([b(o) oy + ()] romy + [Blerr)])
where we can estimate (1 + nh)" < exp (nT). This completes the proof.

yi<ayi—4+ b <aly, + b

+ C;
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Lemma 2.28. The sequence of functions {u,} defined by (2.12) is uniformly
bounded in L(Q).

Proof. This lemma immediately follows from Lemma 2.24.

Lemma 2.29. The estimate [§~* (b(u,(t + 1)) — b(u,(t)), u,(t + 1) — u,(t))dt <
< Ct holds forn 2 ngand 0 <t <1, < T.

Proof. Sum up (2.10) for i =j + 1,...,j + k and then put v = u;,, — u; —
— (u}y, — u?). We estimate

Io (?(uj+k — b(u;)) (ujer — u;) £ fp Ib(“j+k) - b(uj)l I”fﬂc —u?| +
+i:%1{la(ui“l; Ujpr — Uj — (“,?Jrk - uf))l +

+ jD lf(”i—1)| |uj+k —u; — (“?Hc - “?)I} h =<
< C{(fo (B(ujsi) + B(uy)) + 1) [lufss — 7|0y +

F R 0o+ 8% Jule + kil + e + )

IIA

< ClkH(L+ Jupal? + Jul?) 453 ule) < Ok

because of (2.14);;, (2.4) and (2.5).
Using our notation, we conclude that
T —kh

o " p (b(u,(t + kh) — b(u, (1)) (u,(t + kh) — u,(t)) dx dt < Ckh
and Lemma 2.29 is proved.

From Lemma 2.29 it follows that the sequence {b(u,)} is compact in L,(Q) (see [1],
Lemma 1.8, 1.9); thus there exists a subsequence (in the sequel, we denote a sub-
sequence of {u,} again by {u,}) and a function u such that

(2.30) b(u,) — b(u) in L(Q),
b(u,,) » b(u) in L,(Q).

From the fact that the operator b(u) = [u]"‘ sgn (u) is strictly monotone and from
(2.30) it follows (see [7]) that

(2.31) u,>u ae.in Q
and u,—>u in L(Q) for r>1,

because u,, is bounded in L, (Q).

Lemma 2.32. The sequence {u,} satisfies
i) d{b(u,) — (d/dt) b(u) in LI, V*),
ii) f(unn) = f(u) in Ly(Q),
iii) a(u, Vu,) = a(u, Vu) in L(Q), i =1,...,N.
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Proof. i) In virtue of (2.14), (2.28) and (2.13) we have
(2.33) sup |f: §p 0ib(u,) vdx dt| < C.

llo||Lp(I,V) < 1,veL (D)

So the sequence {d:b(u,)} is uniformly bounded in Ly(I, V*). Then there exists
a subsequence and y € L,(I, V*) such that

(234)  @b(u)— g in LI V¥).

From the fact that || ;b(u)|. v+ < C it follows that there exsits a subsequence
such that

(2.35) 0ib(u) = ¢ 1= % b(u) in LI, V*).

In virtue of (2.30) the identity

i () dt = =, o (b(w) - b(uo))gd,

holds for v e L,(I, V) 0 L,(Q), dv/dt € L,(Q), v(T) = 0.
Putting v = ¢, = (1/h) [i_, ¢ ds, ¢ € L,(I, V) and realizing that ¢, — ¢ in
L,(I, V) we obtain

d d
, ) = — b(u), ¢}, whichyeidls yx = — b(u).
[ =] (5 p0). which s = Lot
ii) In virtue of (2.31) we have

(2.36) f(u,) = f(u) ae.in Q.
From (2.4), and from Lemma 2.28 we obtain that

1/ )|ty S €1 + Cs [ b B(u) dx dt = C.
Hence there exists x € L,(Q) such that
(2.37) f(u) = x in L(Q).

(2.36), (2.37) together give the assertion ii) of Lemma 2.32.
iii) In virtue of (2.4);, Lemma 2.28 and (2.14) we obtain

”ai(unh’ V“n)l
which implies that there exists y; € L,(Q) (i = 1, ..., N) such that
ai(ts Vu,) = 2, in L(Q), i=1,...,N.

To show that y; = a;(u, Vu) we use Minty’s trick (see [3]), which is based on the
relation

(2.38) lim sup [; a(u,; u,, (u, — u)) £ 0.
(We prove this inequality later on.)

o =C, i=1,..,N,
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From the monotonicity we have

fi To (it Vit) = it W) (—} uy - w) >0,

where we[L,(Q)]", ,

and letting n — oo we obtain

fido 200 = W) (S w = w) 2 0.

= i

Putting w = Vu + ev, ¢ > 0, v e L,(Q), the above inequality (after ¢ > 0,) yields
N
(2.39) Jrfo X (ti — ai(u, Vu)) vdxdr 2 0.
i=1

Now putting w = Vu — ev, ¢ > 0 we obtain

240) 1l ii(’“ — ai(u, Vi) 0 dx di £ 0.

(2.39), (2.40) together yield
. ,
frfp X0t — ai(u, Vu))vdxdt = 0,
i=1

which holds for all v € L,(Q). This implies that
xi = au,Vu) ae. in Q, i=1,..,N.

Now we prove (2.38).
Putting v = u, — uy in (2.13) and integrating it over (0, t) we obtain

J6 a(ums s (u, — uy)) dt =

= [o [of(um) (4, — up) dx dt — [ (9:b(u,), (u, — u)) -
Using (2.19) in the above equality we have

Pyt i — 92) o)t — ) — 1] 1, Ba(0) +

+ [oB(uo) = fo " [n(b(un(t)) — b(uo)) 7 "uy +

+ 1/h iy So(b(u,(2)) — b(uo)) uy .

Letting n — oo and using (2.28), (2.30), (2.32) and Lemma 1.5 from [1] we obtain
the estimate

(2.41) lim sup fa(u,,,.; Uy, Uy — Uy) S J: fo(u) (u — uP) —

0

—LG; b(u), u — uv),

which holds for a.e. t€(0, T).
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Now let ¢ e L,(I, V) n L,(Q), do/dte L,(Q), ¢(s) =0 for se(T -6, T),
¢(0) = 0; then

(2.42) J.Ia(u,,,,;u,,,(p)= j ) o — L fpa"b(u)tp—

e [ fon-
+LLW%§{U}M¢—LGﬂM&)

Since the set & = {@p € L(I, V) n L,(Q), do/dt e L,(Q), o(s) = 0, se(0,9),
(T—6,T), 6 > 0} is dense in LI, V) (see [8]) we can put ¢ = u — uP e L,(I, V)
in (2.42) and obtain

(2.43) f i, (= %) j , f FOICEEE L (dﬂt b(u), u — uD> .

(2.41) and (2.42) together yield (2.38).

Proof of Theorem 2.7: Let us put v € L,(I, V) in (2.13) and then integrate it over
(0, T). Taking the limit as n — oo we obtain (in virtue of Lemma 2.32) that u is
a weak solution of (1.1) in the sense of Definition 2.6.

3. GENERALIZATIONS

a) The growth of the coefficients a;: Instead of the condition (2.4); we can consider

(3.1) 5;1|ai(x, n, &) = ullnl) (€ + [¢77),

where pu(z) e C((0, 00)) is increasing

Theorem 3.2. If (2.1), (2.2), (2.3), (3.1), (2.4), and (2.5) are satisfied, then there
exists a weak solution of Problem (1.1).

Proof. We replace the coefficients a; in (1.1) by
(3.3) ay = ay(x, Agn, €), where Jp = min (1, ﬁ) , R>0.
In virtue of (3.1) we have '
3 [al . ] = 3 a2 )] S allaa) (€ + [ =

< w(R)(C+ [,

where p(R) is a constant, because of || < R. This growth condition is a special
case of (2.4),.
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Now we consider the problem

(3.4) gb(u) -y éfi_ A (x, 1, Vi) = f(x, ),

i=1 0x;

u=u® on IxT,,

N
Y afx,u, Vu)cos(v,x;) =0 on IxTI,,
i=1

u(x, 0) = uyg(x) in D.

In virtue of Theorem 2.7 there exists a solution of (3.4). Let us denote it by ug.
Lemma 2.38 yields

(3.5) lur|r. = P, where P = Ci([uo]r ) + "d(x)”Lm(b) +
+ b(cy)) exp (C,T)

and P does not depend on R.

Putting R > P in (3.3) and considering (3.5) we obtain af = a;fori = 1,...,N,
because 4z = 1. Now Problem (3.4) is identical with Problem (1.1) and the proof is
complete.

b) Time dependent coefficients: All arguments remain the same, if we assume that
the coefficients a; and f depend on ¢. In this case we have to assume that a,(x, t, 1, é)
(i =1,..., N) and f(x, t, n) are smooth in t, , £ and we have to use approximations
ay, f, in (2.8) which are piecewise constant in time, for example

ti

ah(xa t, Ui—15 Vui) = %LJ\ a(xs S, Ui 15 Vul.) dS,
ti-1
1
flx tu;_y) = I—J f(x,s,u;-1)ds, for t,_; <s<t;.
1 ti-1
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Suhrn

O EXISTENCII SLABEHO RIESENIA NELINEARNEJ DIFUZNEJ ROVNICE

JURAJ ZEMAN

Praca je venovana otizkam existencie ohranieného slabého rieSenia nelinearnej difuznej
rovnice s nehomogénnymi zmieSanymi okrajovymi podmienkami.
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