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STABILITY OF CHARACTERIZATIONS OF DISTRIBUTION 
FUNCTIONS USING FAILURE RATE FUNCTIONS 

MAIA KOICHEVA, EDWARD OMEY 

(Received September 20, 1988) 

Summary. Let X denote the failure rate function of the d.f. Fand let Xx denote the failure rate 
function of the mean residual life distribution. In this paper we characterize the distribution 
functions F for which Xx = cX and we estimate F when it is only known that Xi/'X or A« — cX 
is bounded. 

1. INTRODUCTION 

In reliability theory, the failure rate function A(x) associated with a failure rate 
distribution (d.f.) F(x) is defined by X(x) :=f(x)/F(x) where F(x) := 1 — F(x), 
F(0) = 0 andf(x) is a density of F(x). It is well-known [1] that X(x) Ax represents 
the probability that an object of age x will fail in the interval [x, x + Ax]. If F(x) 
has a finite mean \i then the mean residual life at time x is defined by M(x) : = 
:= J* F(t) dt\F(x). Clearly ^ ( x ) := l\(M(x)) is the failure rate function of the d.f. 
Fi(x) := 1\JLI Jo F(t) dt. It is well-known that each of A(x) and At(x) determine the 
underlying d.f. F. As we will show later, also the ratio A^/A^x) may be used to 
characterize F(x). 

In our first result we characterize the d.f.'s F(x) for which ^ ( x ) = c X(x). Then 
we discuss the stability of such a characterization. We discuss bounds for F(x) 
in the case when it is only known that X1(x)\X(x) is bounded and in the case when 
it is known that \Xt(x) — c/l(x)| is bounded. 

2. MAIN RESULTS 

In our first result we consider the case when Ax(x) = c X(x) holds. 

Theorem 2.1. Let c > 0 and suppose F(x) has a density f(x) and a finite mean fi. 
Assume /^(x) = c l(x)for all x ^ 0 such that F(x) < 1. 
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(i) IfO < c < 1, then F(x) = 1 - (l + ((1 - c)fic) x ) 1 / ( c _ 1 ) , x = 0; 

(ii) if c = 1, then F(x) = 1 — exp ( —(l//i) x), x = 0; 

(iii) ifc>l9 then F(x) = 1 - (1 - ((c - 1,/juc) x ) 1 / ( c _ 1 ) , 0 = x = ^uc/(c - 1) . 

Conversely, for each of the d.f. F(x) in (i), (ii) or (iii) we have lx(x) = c A(x). 

Proof. Integrating the relation ^ ( x ) = c X(x) between 0 and y yields 
- log J" F(s) ds + log tfF(s) ds = c ( - l og F(y) + log F(0)). 

Using F(0) = 0 and ft F(s) ds = /* it follows that f * F(s) ds = // Fc(y) and hence 
that 

(2.1) - M _ = l . 

If c + 1 it follows after integrating (2.1) that x\\ic = (1 - Fc~x(x))\(c - 1) and the 
results (i) and (iii) follow. If c = 1, integrating (2.1) yields the result (ii). A simple 
calculation also yields the converse results. • 

In the next results we examine the stability of the relation >^(x) = c X(x). In 
Theorem 2.2 below we discuss bounds for F(x) in the case when ll(x)IX(x) is bounded. 
In Theorem 2.3 we consider the case when At(x) — c X(x) is bounded. 

Theorem 2.2. Suppose F(x) has a density f(x) and a finite mean //. If there are 
constants c and d (0 < c = d < 1) such that d X(x) _ Xx(x) = c X(x) holds for 
x _ 0, then for all x = 0, 

/ 1 — r V / d ( c _ 1 ) / \ - d Y-Mrf-i) 
(2.2) ( l + * ^ x ) = F(x) = ( l + - - x V 

\ fiC ) \ fid ) 

Proof. Using F(0) = 0, ft F(s) ds =/* and Xx(x) = c X(x), we obtain after 
integration that \i Fc(x) = ft F(t) dt. Now define Fx(x) := Iffi j£ F(s) ds; we have 
Fi(0) = 0, F;(x) = F(x)//x and 

(2.3) / i F K ^ ^ a - F ^ x ) ) 1 ^ 

or equivalently 

Integrating this relation yields 

(2.4) 1 - Fx(x) = (l + 1 xY 

In a similar way, from J X(x) = Xx(x) we obtain 

(2.5) pF'Mzil-FW 
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and 

(2.6) i - F l ( x ) = ( l + ì — x^ 
fid 

Now we use F[(x) = \\\x F(x)) and (2.3) - (2-6) to obtain (2.2). 

Remark . If lim Xl(x)\X(x) = c, 0 < c < 1, it follows from the results of de Haan 
JC-»OO 

[5 p. 100] that F(x) is regularly varying with index l/(c — 1), i.e. lim (F(tx)\F(t) = 

= x1/(c_1) for each x > 0. If so, it is well-known that for each s > 0 there exist 
constants A, B, C such that 

Bx~e
 = F(x) x1 / ( 1~ c )

 = Axe, Vx = C . 

In our final result wre estimate F(x) in the case when Q := sup |/llvx) — c X(x)\ < oo. 
x^O 

Theorem 2.3. Suppose F(x) has a density f(x) and a finite mean fi and suppose 
F(x) < lfor allxeR. 

Suppose that for some constant c (0 < c _ 1), 

Q := sup \Xt(x) — c X(x)\ < oo . 
x^0 

Then 

(i) if C < 1 , F(x) 1 + 
џc 

(ii) // 1, E(x) — exp [ x j 

l / ( c - l ) 

_ 2D/Z, 

= до(l + c) ; 

Proof. For further use we define W(x) := §™ F(t) dt and <p(x) := F(x)— 
- ,4/(1 + Bx) <F(x) where A = l//z and B = Ai((l/c) - 1) (B = 0 if c = 1). Crucial 
in the proof of the theorem is the following 

Proposition sup \(p(x)\ _ fiQ. 
x^0 

P r o o f of the Proposition. Clearly cp(x) is continuous, differentiable and bounded. 
Also (p(co) = 0 and cp(0) = 1 — AJJ, = 0 by the choice of A. Let x 0 denote a point at 
which \(p(x)\ attains its maximum. Clearly cpf(x0) = 0 and sup \q>(x)\ — |<p(*o)|. 
Straightforward calculation yields x-° 

(2.7) ф í x J ^ ř W ^ x ) - ^ 

ę'(x) = F(x) • 

and 

(2.8) 
B 

X(x) + 
c(l + Bx) + (1 + Bx) Я,(x) J 
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Replacing x by x0 in (2.8), we obtain 

Б ( - Д I W ' + ( Ï T У (2.9) A(x0) ^— 
c(l + J3x0) (1 + flx0) A,(x0) 

Now by assumption — Q <. At(x) — cA(x) <. + g and hence also 

(2.10) -Q<XAX) + c. 

Now replace x by x 0 in (2.10) and use (2.9) to obtain 

A(x)j < +( 

-Q < (Ux0) *—) (l + ( <. +Q . 
^ - ^ \+Bx0)\ (1 + Bx0) Xt(x0)J ~ 

It follows that 

(2.11) <*i(x 0 ) — UQ 
1 + Bxol 

Now use (2.7) and (2.11) to obtain 

\<P(X0)\ S JT0 F(S) ds .Q= HQ. 

P r o o f of the Theorem. The remainder of the proof of the theorem now follows 

easily. From the definition of W it follows that W'(x) = F(x) and then it follows that 

¥"(x) + 
1 + Bx 

ţP(x)= -ę(x). 

First consider the case c < 1. 
Since ^(0) = //, the solution to this differential equation is given by 

W(x) = fi(l + Bx)-A/B - (1 + Bx)~A/B $x
0 <p(t) (1 + Bt)A/B dt, 

Hence 

F(x) - = ę(x) f0 ę(t) (1 + Bt)A/в át . 
y> a + вxY+AIB y> (i + вxY+л/вi0 v n ' (1 + Bx) 

Using the proposition it follows that 

Apt 
F(x) 

(1 + Bx)1 + AIB\ ~ 

sSW4 + (Г7^ í ; (1 + ','Г + 
á ж i + A + B 

- ЏQ(І + c) . 

This proves the result (i). 
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In the case when c = 1, in a similar way it follows that F(x) — juA exp ( — Ax) = 

= q>(x) — A/exp (Ax) jo (p(t) exp (At) dt where A = 1//L. Using the proposition 

we obtain 

\F(x) — \iA exp ( — Ax)\ g ^ 2 ; 

This proves case (ii) and the theorem. • 

3. CONCLUDING REMARKS 

3.1 In [4] the length biased d.f. is defined by its density g(x) : = \\iixf(x). The 

failure rate function associated with it is given by Xlx) = xf(x)j J^ tf(t)dt. It is 

easily seen that Xg(x) = [x X(x)^i(x)]/[x Xi(x) 4- 1]. Obviously Xg uniquely determines 

the d.f. F(x), Since Xx uniquely determines F(x), also Xg(x)\X(x) uniquely determines 

F(x). In [4] such characterizations are carried out. 

3.2 The problem of characterizing the exponential d.f. and its stability has been 

studied by many authors (see e.g. [3], [6]). In [2] the authors characterize the gamma 

d.f. via exponential mixtures. Let Ft(x) = 1 — exp ( — tx) (x ^ 0) denote the family 

of exponential d.f. with a parameter t > 0. If t has d.f. G then the mixture FG of Ft 

with the mixing d.f. G is given by 

(3.1) FG(x) : = J * (1 - exp (-tx)) dG(t) (x ^ 0) . 

Clearly FG(x) is the Laplace-Stieltjes transform of G and therefore uniquely deter­

mines G. In the case when G is gamma y(oc, ft) with parameters a > 1 and ft > 0 

(i.e. dG(t) = [(P« exp (-^ t) ^ _ 1 ) / r ( a ) ] dt), (3.1) reduces to FG(x) = (1 + (l/^x))~a 

(x ^ 0) so that FG is Pareto distributed. For the d.f. FG, let X and Xx be defined as 

in Section 1. From Theorem 2 1 we obtain the following characterization of the 

gamma d.f. 

s Corollary. Let a > 1 and let FG and G be related by (3.1). Suppose \i : = \^t~x . 

. dG(t) < co. Then G = y(a, /?) if and only if Xt(x) = (a — l/a) X(x) where /?, a and 

\x are related by p = (a — 1) \i. • 
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Souh rn 
STABILITY CHARAKTERIZACÍ DISTRIBUČNÍCH FUNKCÍ 

POUŽÍVAJÍCÍCH FUNKCE INTENZIT PORUCH 

MAIA KOICHEVA, EDWARD OMEY 

Nechť F je distribuční funkce doba do poruchy a M(x) příslušná podmíněná střední hodnota 
za podmínky, že doba do poruchy je rovna alespoň x. Označme X funkci intenzita poruch od­
povídající distribuční funkci Fa Xx(x) — \\(M(x)) pro všechna reálná x. V článku jsou charak­
terizovány distribuční funkce F, pro které platí Xx = cX, a je odhadnuto F, když je známo pouze, 
že X1/X nebo Xt — cX je omezené. 
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