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THE DETERMINATION OF FACTORS IN LINEAR MODELS 
OF FACTOR ANALYSIS 

PETR KRATOCHVIL 

(Received December 21, 1988) 

Summary. The author shows that a decomposition of a covariance matrix E = AA' implies 
the corresponding model, i.e. the existence of factors fj such that xt = -t-a,-7f; is true. The result is 
applied to the general linear model of factor analysis. A procedure for computing the factor 
score is proposed. 
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1. INTRODUCTION 

The usual models for factor analysis are based on the assumption of existence 
of a set of unobserved random variables. These variables are called factors and are 
used for description of a given set of observed variables. Sometimes the factors are 
considered to be nonrandom quantities that vary from one individual to another. 
Analysing the procedure of the application we see that the existence of factors is 
never verified, which causes certain problems if we have to teach factor analysis 
or to explain it to specialists. Really, there is no simple method that would enable us 
to prove apriori the existence of factors. It is peculiar to assume something which is 
not verified. A question arises whether the above assumption is necessary. In this 
paper we give a negative answer to the question. We show that the existence of factors 
in a linear factor model is a consequence of a decomposition of a covariance matrix. 
Now we describe the idea more precisely. In the sequel we suppose that all variables 
have finite variances and that they are expressed as deviations from their means. 
The covariance matrix is supposed to be nontrivial, i.e. L 4= 0. 

Let g be a column vector of m components and u a column vector of p components 
such that for a suitable p x m matrix A of real coefficients the observable column 
vector x of p components can be written as 

(1) x = Ag + u . 
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The components of g are called common factors and the components of u are called 
specific factors. The specific factors are supposed to be distributed independently 
of g and the covariance matrix &uu' = *F is supposed to be diagonal and non-
singular. Let $u = 0, $g = 0 and let Sgg' = - = the identity matrix. 

A well-known consequence of the linear model (1) is the following decomposition 
of the covariance matrix £ of the observed x: 

(2) £ = AA' + ¥ . 

The factor analysis has two steps. First the covariance matrix £ is computed and 
then the decomposition (2) is performed. In the paper [4] the authors have shown 
that the decomposition (2) of the covariance matrix £ implies the existence of factors 
such that the above mentioned properties are true, the components of g being un­
corrected and with unit variances. However, the matrix formalism was not used and 
the proof was awkward. 

In this paper we present a simple proof of existence of factors and derive conse­
quences of our method for the problem of factor scores. Although the factors are 
determined ambiguously, the score could possess better properties. The problem 
of factor scores has been discussed in the famous paper by Anderson and Rubin [2], 
A survey of modern methods for factor score is given in the monograph [3], See also 
the monograph [1], 

Let a matrix A be partitioned into two submatrices A = (A <&), where <i> is positive 
definite, diagonal .and <J>2 = V. Then AA' = AA' + T, i.e. 

(3) • " \ £ = AA' . 

We see that (2) is a special case of the simple decomposition (3) which is therefore 
quite general. Similarly we can show that the linear model (.1) may be considered 
as a special case of a model 

(4) x = Af , 

where f is a column vector of m + p components and can be partitioned into two 
subvectors f = (g' u 'O" 1 ) . 

In the following propositions we shall consider the general expressions (3) and 
(4) only. Thus the general model of component analysis and also the model of factor 
analysis will be treated. 

2. THE EXISTENCE OF FACTORS 

Lemma 1. Let 0 < r :g s ^ t be integer numbers. Let a t x r matrix Y and 
an s x r matrix Z be such that their transposes are semiorthogonah i.e. Y'Y = 
= Z 'Z = \r = the identity matrix. Then there exists a t x s matrix W such that 

351 



W ' W = ls and the decomposition 

(5) Y = W Z 

is true. 

Proof. The columns of Z are orthogonal s vectors. Hence we can choose s — r 
vectors z r + 1 , z r + 2 , .... zs such that we get a base of the space of all s vectors. Let 
the chosen vectors be columns of an s x (s — r) matrix Z , . Define a matrix G that 
is partitioned into the submatrices Z and Z l 5 G := (Z Z t ) . It is square and semi-
orthogonal, hence orthogonal, G'G = GG' = ls. Similarly we can choose s — r 
orthogonal t vectors and joint them to the columns of Y in such a way that a parti­
tioned t x s matrix F := (Y Yj) has a semiorthogonal transpose. Define a t x s 
matrix W := FG'. Then W G = F. Now we have W ' W = GF'FG' = GG' = ls. 
The equality between the first blocks of 

(Y Y,) = F = WG = W(Z Z-.) = (WZ W Z t ) yields (5). 

Remark . Recall that the dimension of a space of random variables is defined as 
the maximal number of mutually uncorrelated random variables on the basic space. 
A finite dimension is an exceptional case and in applications we may ignore an 
assumption about the dimension since it is fulfilled. 

In the following proof we use the notion of an orthogonal base. An orthogonal 
base of a subspace is a family of mutually uncorrelated random variables with unit 
variances and such that each random variable of the given subspace can be expressed 
as a linear combination. This expression is given for x by the formula (8) below. 
The subspace containing x and also the orthogonal base are not uniquely determined, 
which implies that the factors are not uniquely determined. This fact has caused the 
conviction that the factor analysis is a questionable theory. We hope that our results 
throw light on the matter. 

Theorem 1, Let x be a column vector of p components which are variables with 
mean zero and finite variances x' = (xl9 x2, ..., xp), and let 

(6) E = AA' 

be a decomposition of the covariance matrix, where A is a p x s nonzero matrix. 
Let the dimension of the space of all random variables be not less than s. 

Then there exists a column vector f Of uncorrelated random variables with unit 
variances and mean zero such that the model 

(7) x = Af 

is true. 

Proof. Since the dimension is supposed to be large enough, we may assume that 
all xi9 i — 1,2, . . . ,p , belong to a subspace with an orthogonal base g' = 
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= (gl9 g2, ..., gt), t ^ s. Let B denote a p x t matrix of the corresponding coordinates. 
We have 

(8) x = Bg 

Since the covariance matrix of g is the identity matrix, the relation (8) implies 

(9) L = B B \ 

which can be easily computed. Now (6) and (9) give AA' = BB'. Therefore the first 
and second factors in Singular Value Decomposition of A and B coincide, i.e. 
A = VDZ' and B = VDY' where the diagonal r x r matrix D is positive definite 
and the matrices V, Y, Z possess semiorthogonal transposes. The assumptions of 
Lemma 1 are fulfilled, hence there exists a matrix W with a semiorthogonal transpose 
and such that (5) is true. Define a column vector f = W'g. We get 

x = Bg = VDY g = VDZ W g = Af, 

i.e. (7) is true. 
An easy computation gives the covariance matrix Cf of the vector f: 

Cf = W C^W = W 1 f W = W W = I s , 

hence the components of f are uncorrelated with unit variances and the proof is 
complete. 

The decomposition (6) is a well-known and easy consequence of the relation (7), 
and as we have shown in Theorem I, the relation (7) is a consequence of (6) if a certain 
general condition is fulfilled. Therefore the existence of a model (7) and the de­
composition (6) can be considered as equivalent properties of x. 

Evidently, each semiorthogonal matrix V is a pseudoinverse of V. According 
to Theorem 1, x = Vh possesses a solution h = DZ'f, which implies the following 

Corollary 1. Let A = VDZ' be a Singular Value Decomposition of A and let 
the suppositions of Theorem 1 be fulfilled. Then 

(10) VV'x = x . 

Corollary 2. Denote h = D - 1 V ' x and let the assumptions of Corollary 1 be true. 
Then 

Z'f = h is equivalent to Af = x . 

Proof. The relation Z'f = h implies Af = VDZ f = VDD * V'x = x. The 
sufficiency of the condition is evident. 

In the following propositions we analyse the determination of factors. We show 
that the factors f can be expressed as sums where the first part is uniquely determined 
and the second part is uncorrelated with the first and can be arbitrarily selected. 
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Proposition 1. Let £ = AA' be a decomposition of a covariance p x p matrix 
of a vector x and let A = VDZ' be a Singular Value Decomposition of the p x s 
matrix A. Denote by h the r vector h = D " 1 V'x, r being rank of £. Let an arbitrary 
(s — r) column vector g o Of mutually uncorrelated components with unit variances 
be chosen such that these components are uncorrelated with the components of h. 
Choose an s x (s — r) matrix Z 0 such that Z 'Z 0 = 0 and Z 0 Z 0 = I. 

Then f = Zh + Z o g o are factors, i.e. Af = x is true. 

Proof. 

(a) A Z o g o = VDZ'Z o g o = 0 since Z'Z0 = 0. 

(b) AZh = (VDZ') Z(D" 1V'x) = VV'x = x by virtue of DZ Z D 1 = 5 and 

Corollary 1. Note that the existence of uncorrelated components of h and g o ensures 
the dimension condition in Theorem 1 and in Corollary 1. 

Now we get Af = A(Zh + Z o g o ) = AZh + A Z o g o = x. 

Proposition 2. Let A = VDZ' be a Singular Value Decomposition of a p x s 
matrix A, the diagonal r x r matrix D being positive definite. Let x and f be 
column vectors such that the model x = Af is true and let the components off be 
mutually uncorrelated with unit variances. 

Then there exists an s x (s — r) matrix Z 0 and an (s — r) column vector g o 

such that Z 'Z 0 = 0, Z 0 Z 0 = I, the components of g o are mutually uncorrelated 
with unit variances and uncorrelated with components of the vector h = D - 1 V'x , 
and f = Zh + Z o g o . 

Proof. Similarly as in the proof of Lemma 1, we can define a square orthogonal 
matrix G that is partitioned into submatrices Z and Z0 , G = (ZZ0) . The relation 
G'G = I implies Z 'Z 0 = 0 and Z 0 Z 0 = I. The relation GG' = 1 implies 

(11) Z Z + Z 0 Z 0 = I . 

Denote by g o the (s — r) vector g o = Z0f. According to Corollary 2, h = Z'f. 
Now the relation (11) implies f = If = ZZ'f + Z0Z0f = Zh + Z o g o . An easy 
computation gives the covariance matrix of g o which is equal to Z 0 Z 0 = I. Similarly, 
the entries of Z 'Z 0 = 0 are the correlation coefficients between the components 
of h and g o . The proof is complete. 

3. CONCLUSIONS 

As mentioned in Introduction, even the general linear model of factor analysis 
can be considered to be of the form (3) and (4). The existence of factors f and the 
model (4) is a consequence of the decomposition (3) as has been shown in Theorem 1. 
Let A = VDZ' be a Singular Value Decomposition of A. As we have seen in Pro-
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position 2, each vector of factors can be written as f = Zh + Z 0 g 0 where g 0 is 

uncorrelated with h = D _ 1 V'x, i.e. under general conditions it is also uncorrelated 

with VDh = V D D _ 1 V ' x = VV'x = x according to Lemma 1 and Corollary 1. 

The natural value is g 0 = 0. Then the factor scores are computed from 

f = Zh = Z D ^ V ' x . 
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S o u h r n 

URČENÍ FAKTORŮ V LINEÁRNÍCH MODELECH FAKTOROVÉ ANALÝZY 

PETR KRATOCHVÍL 

V článkuje ukázáno, že rozklad kovariační matice £ = A A7 implikuje platnost odpovídajícího 
modelu, tj. existenci faktorů f- takových, že xt= Ha-^f-. Výsledek je užit na obecný lineární 
model faktorové analýzy. Je navržen postup výpočtu faktorových skóre. 

Pe3K)Me 

OHPEJIEJ1EHME OAKTOPOB B JMHEMHblX MO/JEJlJTX 
OAKTOPHOFO AHAJ1M3A 

PETR KRATOCHVÍL 

B pa6oTe AOKa3biBaeTCfl, HTO pa3Jio>KeHHe KOBapHaunoHHOM Marpinibi Z = AA' BJICHCT 3a co6oií 
cooTBeTCTByKDHJiyK) MOAeJib, 3TO 3HaMHT cyniecTBOBaHnc 4>aKTopoBf- TaK^To xi = £ <*ijfj Pe3VjrraT 
npMMeHHeTCíi K oóuieří JiHHeMHoři MOjieírn 4>aKTOpHoro aHajTH3a. Hpefljio>KeH MCTO Î M3MepeHMfí 
(|).aKTOpOB. 
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