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ON SOME PROPERTIES OF THE SOLUTION 

OF THE DIFFERENTIAL EQUATION u" + ~ = u-u3 

r 
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(Received June 26, 1989) 

Summary. In the paper it is shown that each solution u(r, a) of the initial value problem (2), (3) 
has a finite limit for /—> oo, and an asymptotic formula for the nontrivial solution u(r, oc) tending 
to 0 is given. Further, the existence of such a solution is established by examining the number of 
zeros of two different solutions u(r, a), u(r, a). 

Keywords: Spherically symmetric solution, trajectory of the solution, co — limit point of the 
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1. INTRODUCTION 

If u is a spherically symmetric solution of the equation 

(1) Au = u — u3 

in R3 which can be obtained from the Klein-Gordon equation in nuclear physics, 

then u = u(r) satisfies the initial value problem (for short, IVP) 

(2) u" + — = u - u3 , 0 ^ r < oo 
r 

(3) u(0) = a , u'(°) = ° 
where r denotes the distance from the origin, a e R and the condition w'(0) = 0 

arises due to the regularity of the solution to (l) at 0. 

By the transformation 

(4) y = ru 

the IVP (2), (3) changes into the problem 
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(5) / - У - - V , 
r 

(6) y(0) = 0 , y'(0) = a . 

Under a solution of (2) in [0, h) (0 < h = oo) each function u e C*([0, h)) n 

n C2((0, /i)) which satisfies (2) in (0, h) will be understood. Similarly the solution 

of (5) can be defined. Since for the solution y of (5), (6) we have y(r) = y'(@) r with 

Q — Q(r), 0 < Q < r, by substituting y into (5) we obtain that lim y"(r) = 0 and 
r-»o + 

hence each solution y of the IVP (5), (6) in [0, h) belongs to the class C2([0, h)) 
and both IVP-s (2), (3) and (5), (6) are equivalent to each other. 

Local existence and uniqueness theorems have been proved by G. Sansone in [5], 

pp. 7 — 13. They are given here as 

Lemma 1. For the IVP 

J c - l 
(7) / ' = j , - J L . , j;(0) = 0 , / (0) = й 

Г 

where k > 1 the following statements hold: 

(i) Uniqueness statement: For each oce R there exists at most one solution 0/(7) 

in any interval [0, hi], h > 0. 

(ii) Existence statement: If 0 < a < 1, or cc > 1, then there exists a solution y 

of (1) in an interval [0, ti\. 

As to the remaining cases, the functions y = 0 and y(r) — r are solutions of (7) 

for a = 0 and a = 1, respectively, while for a < 0 the existence of a solution to (7) 

follows from the following statement: 

If k is odd (and this is the case of (5)), and if y is a solution of (7) in [0, h), then 

so is — y. 

By this lemma as well as by the above mentioned equivalence of the IVP-s (2), 

(3) and (5), (6) we conclude that the problem (2), (3) has a unique solution for each 

a e K in an interval [0, h), 0 < h ^ oo. 

2. GLOBAL PROPERTIES OF SOLUTIONS OF EQUATION (2) 

Consider a function E e C(R2, R) which is defined by the relation 

(8) E(x, y) = i y 2 + i x 4 - ix2 , (x, y)eR2 . 

It is easy to show the following properties of this function: 

(a) E(- V 0) = £(1, 0) = - i < E(x, y) for each (x, y) e K2, (x, y) =j= ( - 1 , 0), 

( x , y ) * ( l , 0 ) . 
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(b)£(R2) = [-},<x>). 

(c) For each c e [ — £, oo) the set 

(9) E(x, y) = c 

is symmetric with respect to the x-axis, to the y-axis and with respect to the 
origin. 

(d) If — {- < c < 0, then the set (9) is a pair of closed curves the parts of which over 
the x-axis are determined by the function 

y(x) = ~J(2c — 2~x4 + x2) , 0 < x t < x < x2 , — x2 < x < — x t 

where xx < x2 are positive roots of the equation 

47X ~%x — c . 

(e) If c = 0, then the set (9) is a closed curve passing through the origin the part 
of which in the first quadrant is described by the function 

y(x) = x V(l ~ W), 0 ^ x ^ V2 . 

(f) If c > 0, then the set (9) is a closed curve the part of which in the first quadrant 
is described by the function 

y(x) = J(2c - i x 4 + x2) , 0 ^ x ^ *i , 

where xx is a positive root of the equation 

4 X "2fX ——• C . 

Using the properties of the function E we will prove 

Theorem 1. If u is a solution of the equation (2) on an interval (a, b) where 
0 :g a < b < co, then this solution can be extended in a unique way to the interval 
(a, co). Each solution of (2) in (a, co) is bounded together with its first and second 
derivative in a neighbourhood of co. 

Proof. The uniqueness of the extension follows from the fact that the function 
f(r, u, v) = —2v\r + u — u3 is continuous and locally Lipschitz continuous in the 
variables u, v on the set (0, co) x R2. 

Let u be a solution of (2) in (a, b). Multiplying the identity (2) in (a, b) by the 
function u' we get the identity 

u"(r) u'(r) + u3(r) u'(r) - u(r) u'(r) = - - M - ^ 
r 

and hence 

(10) - E(u(r), u'(r)) = - ? i ^ , a<r<b. 
dr r 
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Thus the composite function F(u(*), u'(*)) is nonincreasing and hence for a < r0 g 

= r < b we have E(u(r), u'(r)) = E(u(r0), u'(r0)). As the set of all (x, y) e R2 

for which E(x, y) = E(u(r0), u'(r0)) is compact by the above analysis of the func­
tion F, both functions u, u' are bounded in [r0, b). This implies that the solution u 
can be extended to the interval (a, oo). The extension will also be bounded together 
with its first derivative on each interval [r0, oo) where a < r0. On the basis of (2) 
the second derivative of this solution will be bounded in the same interval, too. 

Corollary 1. The problem (2), (3) has a unique solution in [0, oo) for each a e R. 
Any other IVP for the equation (2) at r0, 0 < r0 < oo, has a unique solution 
extending to an interval (a, oo) where 0 :g a < oo. 

J. Chauvette and F. Stenger in [3], pp. 229 — 230, assert that numerical experiments 
indicate that each solution of (2) approaches either 1 or — 1 or 0 as r -> oo whereby 
only countably many solutions tend to 0. This statement is certainly true for constant 
solutions ux(r) = 0, u2(r) = 1 and u3(r) = — 1 of (2) in [0, GO). 

Let u be a nonconstant solution of (2) in (a, GO) where 0 ^ a < co. In the proof 
of Theorem 1 it was shown that the composite function E(u(*), u'(*)) is nonincreasing 
(in fact it is decreasing since the zeros of u' are isolated) and hence there exists 

(11) lim E(u(r), u'(r)) = cx . 
r-*oo 

The property (b) of the function E implies cx e [ —|, oo). 

Lemma 2. Letu be a solution of the equation (2) in the interval (a, co). If ct = — £,. 
then either lim (u(r), u'(r)) = (1, 0) or lim (u(r), u'(r)) = (—1,0). 

r-*oo r->-oo 

Proof. If ct = — £, then for each c2, — J < c2 < 0 there exists an r0, a < r0 < 
< oo, such that for all r > r0 the trajectory (u(r), u'(r)) of the solution u lies in the 
interior of exactly one of two closed curves E(x, y) = c2. Suppose that it lies in 
the interior of the right curve cp + . Then for an arbitrary neighbourhood U of the point 
(1, 0) there exists a c2, — \ < c2 < 0 such that the right curve i/>+ E(x, y) = c* 
together with its interior lies in U, and for c* there exists an r* such that for all 
r > r* the trajectory (u(r), u'(r)) of u lies in the interior of \j/+ and hence in U. 
This means that 

ii 
r->oo 

m (u(r), u'(r)) = (1 ,0 ) . 

If the trajectory (u(r), u'(r)) of u for r > r0 lies in the interior of the left curve (p. 
of the system E(x, y) = c2, then we get 

lim (u(r), u'(r)) = ( - 1 , 0 ) 
r-»oo 

and the lemma is proved. 
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Let c! > — i and Jet r0 be such that a < r0 < oo. Then the trajectory (u(r), u'(r)), 
r0 g r < oo, of the solution u starts on the curve 

(12) E(x, y) = E(u(r0), u'(r0)) 

(or on one of the curves if E(u(r0), u'(r0)) < 0) and the whole trajectory lies in the 
interior of that curve up to its initial point, intersects all curves (9) for ct < c < 
< E(u(r0), u'(r0)) (whereby for c < 0 we consider only the curves (9) which all lie 
either in the right half-plane or in the left half-plane), in the upper half-plane it 
moves from the left to the right while in the lower half-plane it moves from the right 
to the left, and it lies in the exterior of the curve 

(13) E(x, y) = Cl. 

In the sequel we will need the following definitions. 

Definition 1. We shall say that the trajectory (u(r), u'(r)) of the solution u winds 
up infinitely many times around the curve (13) (if —\<c1<0, then around one 
of the two curves (13) which we denote by cp) if for each half-line p starting at the 
origin for ct = 0 while in the case —\ < c1 < 0 at exactly that point from the 
two-point set {(1,0), (—1,0)} which lies in the interior of cp, there exists an in­
creasing sequence {rn}^°=i, r0 < rx < ... < rn < ... tending to oo as n ->- oo and 
the corresponding points of the trajectory (u(rn), u'(rn)) belong to p. 

In the opposite case, i.e. if there exists a half-line px starting either from the point 
(0,0), or from the point (1,0), or from the point (—1,0) according to whether 
Ci = 0, or — \ < ct < 0 and the curve cp lies in the right half-plane, or — \ < cx < 0 
and the curve cp lies in the left half-plane, and there exists a point rx > r0 such that 
for all r = rx we have (u(r), u'(r)) $ pl9 then we say that the trajectory (u(r), u'(r)) 
of the solution u winds up finitely many times around the curve (13) (around the 
curve cp if — | < ct < 0). 

In accordance with the definition of co-limit points and co-limit sets of a trajectory 
for the autonomous system we introduce the following definition. 

Definition 2. A point (b, c) e R2 is called an co-limit point of the trajectory 
(u(r), u'(r)) of a solution u, r0 — r < oo, if there exists an increasing sequence 
{r/.jr=i> r0 < rx < ... < rn < ... such that rn -> oo as n -* oo andlim(u(rn), u'(rn)) = 

« - > OO 

= (b, c). The set Q of all co-limit points of the trajectory of the solution u is called 
the co-limit set of the trajectory of this solution. 

As the trajectory (u(r), u'(r)), r0 = r < oo, of the solution u lies in a compact 
set the boundary of which is the curve (12) or one of the curves (12), the co-limit 
set Q of this trajectory is non-void. With respect to (11) and to the continuity of E, 
Q is a subset of the curve (13) or one of the curves (13) if — \ < cx < 0 which as 
above we denote by cp. 
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Directly from Definition 1 it follows that if the trajectory of the solution u winds 
up infinitely many times around the curve (13) (or around (p if — £ < cL < 0), then 
the co-limit set Q of this trajectory coincides with the curve (13) or with the curve (p. 
In fact, for each point (b, c) of the curve (13) there exists a half-line p which starts 
at the point determined by Definition 1 and passes through (b, c), and an increasing 
sequence {r„}^°=1 such that r0 < rx < ... < rn < . . . , lim rn = co and (u(rn), u'(rn)) e 

n -+oo 

e p. The points (u(rn), u'(rn)) lie in a compact subset bounded by (12), hence there 
exists a subsequence (u(r„J, u'(r,,J) which converges to a point (k, /) e p. At the 
same time (11) implies that E(k, J) = c l5 hence (k, /) belongs to the curve (13), 
thus (k, /) — (b, c) and (b, c) e Q. 

Lemma 3. If — J < cx and the trajectory of a solution u winds up finitely many 
times around the curve (13) (or the curve cp if —\ < c t < 0) then there exists 

lim (u(r), u'(r)) = (0, 0) . 
r-»oo 

Proof. Let the half-line pi and the number r1 > r0 be such as in Definition 1, 
that is for all r _ rx let (u(r), u'(r)) <£ plm Clearly the limit set Q± of the trajectory 
of the solution u in [r1? co) is the same as the limit set Q of the trajectory of u in 
[r0, oo). 

We shall prove that Qt is a one-point set. Since the trajectory of the solution u 
lies in a compact set, this means that there exists 

lim (u(r), u'(r)) = (u0,u0) 
r->oo 

and at the same time (u0, u0) belongs to the curve (13). Then u0 = 0, since other­
wise u0 would not be finite. Simultaneously, E(u0, u0) = ct > —J, hence 

(14) iu* - \u2
0 = d 

and further, on the basis of (2), there exists lim u"(r) = u0 — u0. This limit should 
f -+00 

be 0, otherwise u0 would not be finite. Therefore u0 is equal either to 0, or to I, 
or to — 1. After substituting into (14) by virtue of ct > — £ we get that u0 = 0. 

Let P! be the intersection point of the half-line px with the curve (13) (or with 
that curve from the pair given by (13) in the neighbourhood of which the trajectory 
of the solution u lies for all sufficiently great r). If cx = 0, we consider the intersection 
point P! =t= 0 if such a point exists. If Qx has at least two different points P2, P3 

which lie on the curve (13), then observing the rule that the movement along this 
curve in the upper half-plane goes from the left to the right and in the lower plane 
in the opposite direction we conclude that the movement from P2 to P3 or from P3 to 
P2 passes through Pt. Consider the case that the movement from P2 to P3 passes 
through Pv Then the trajectory of the solution u for all sufficiently great r lies in 
the neighbourhood of the curve (13) and the movement from the neighbourhood 
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of P2 into the neighbourhood of P3 intersects the half-line pv This contradicts the 
assumption of the lemma and hence the proof of the lemma is complete. 

Now we prove 

Theorem 2. Let u be a solution of the equation (2) in the interval (a, co), 0 _i 
^ a < co. Then 

lim u'(r) = 0 
r~+ oo 

attrf either 

(a) lim w(r) = 0 
r-*oo 

Or 

(b) lim u(r) = 1 
r->-oo 

Or 

(c) lim u(r) = — 1 . 
r-*-co 

Proof. By Lemma 2, if cx = —J, then the case (b) or the case (c) occurs. Lemma 3 
implies that for c{ > — \ the case (a) occurs provided the trajectory of the solution u 
winds up finitely many times around the curve (13). Hence it is sufficient to show 
that this trajectory cannot wind up infinitely many times around the curve (13). 
Suppose the opposite and consider the case cx 4= 0, cx > — \. 

Integrating (10) in the interval [r 0 , oo) where a < r0 < oo we get that 

(15) ^ d t < oo 
J ro ř 

Let £ > 0 be sufficiently small (so that the whole curve (13) does not lie in the strip 

— s^y^s). Let us introduce the system of intervals {(ak, bk)}™=1 in [r0, co) 

in which 

(16) u'2(r) > e2 . 

Note that there exist u0 > 0, M > 0 such that on each interval (ak, bk) we have 

\u'(Q\ = |t.'(r)|max ^ u0 , 

and simultaneously in [r0, oo) we have |u"(r)| ^ M. 
By these inequalities we get 

u0 - s ^ \u'(Q - u'(ak)\ = M(£fc - ak) 

and 

Hence 

u0 - e í \u'(bk) - u'(Q\ í M(bk - Q . 

(17) bk-ak>2^ -=K, fc=l,2,.... 
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On the other hand, for r e (bk, ak+1) we have 

2 u'(r) 
(18) |u-(r)| * |u(r) - u 3 (r) | 

and thus 

|w'(tffc+i) ~ M'(^fc)| = 2e = |u"(i/)| ( a k + 1 - bfc) ^ s1(ah+1 ™ 6fc) , 

which implies that 

2s 
(19) * fc+l bкѓ-=L, fc = l,2, .... 

Let k0 > 0 be such that 

(20) K^k0L. 

From (15), (16) it follows that 

(21) oo>r^>d^2£ r^dr^ir^dr 
J r o ' * = 1 J a k t fc=1Jak * 

On the other hand, (17), (19), (20) yield 

oo pbk 2 co / - a k + i 2 

(22) I ^ d f ^ f c 0 £ i-dl , 
- - - J * • * = 1 Jbk t 

because 

Í
Ъk p 2 (*<*k+i p2 

- dí > fc0 - dí 
"k t J»k ř is equivalent to the inequality 

~(Ьk - űk) ^ k0(ak+í - bк)~, к = 1,2, 
í >7 

where ah < £ < bk < rj < ak+1. 

Then (22) implies that 

00 = -î:d,-îfГ íd,+Г' íd,ìÄfл+ i)Г íd, . 
., ' »-"VJ. ' J., ' / »-»\ *vJ„, ' 

Therefore £ J«k (^l1) dt = °°> w h i c h contradicts (21). 
fc=i 

It remains to investigate the case cx = 0. Then we can use (17), but (18) and (19) 
can be applied only to that part of the trajectory which does not lie in a neighbourhood 
of 0. 

Again integrating (10) in (a, oo) we get 
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£(M(r),u'(r)) = r ~ ^ d t 

and hence 

(23) u'\r) = M2(f •) _ _ _ _ 
; 2 

+ г 4 u'\t) 

t 

If we put 

j(r) = - u2(r) «4(r) 

2 

v(r) = = u'2(r) , a < r < 00 , 

then we can write (23) in the foгm 

àt, a < r < oo 

„(,-)= Дr) + Г-t-^dí 

from where we get 

./ X 4 v(r) - , , v 
v'(r) + — 1 J = f'(r) 

r 
and therefore 

(24) v(r) = / ( r ) + i [c , - ft, 4r 3 / ( t ) dt] , a < r < oo , 
r 

where r0 e (a, oo) is a chosen point and ci = [v(r0) — / ( r
0 ) ] r0. 

Comparing (24) with (23) we get that the function 

g(r) = I [ d - j ^ o 4 t 3 / ( 0 df] , a < r < oo 
r 

is decreasing and lim g(r) = 0. 
r-+oo 

By means of this function we define a pair of functions 

(25) y(r) = c1-$;04t3f(t)dt, 

x(r) = r4 , a < r < oo . 

This pair defines a new function y1 of the variable x by the relation 

yi(*) = y\j{xj\ 

where r(x) is the inverse function of the function x(r) given by (25). Hence yt is 
given parametrically by the pair (25). Then 

/iW = 4 i =-/W' a<r<cx> 

An 
323 



where x = x(r). For any two points x2 > xx > a4 we get that 

(26) yi(x2) - yi(Xl) = H\ y[(x) dx = - ft 4r 3 f(r) dr . 

Since g(r) = yx(x)jx is decreasing to 0 for x -> co, we have that 

(27) yi(x) > 0 for all x > a 4 . 

By the properties of the function/it follows that in the interval (a, GO) there exists 
a sequence of intervals (ak, bfc), k = 1, 2, ... , in which /(r) < 0 while /(r) ^ 0 
in (bfc, a/c+1). 

Let e > 0 be arbitrary. Then there exists an r 0 > a such that for all (ak, bk) in 
(r 0 , oo) we have 

(28) \u'(r)\ < e and |/(r) | < e . 

Further, there exists a ck e (afc, bfc) such that 

u'(bk) - u'(ak)\ < (29) 

srnce 

and 

Ък - ak = 
u"(ck) 

2e 

л/2 — 2e 

u"{cк) = - - - * ) + и(cå) - «3(cfc) 

|w"(cfc)| _̂  |ii(ck) - u3(cfc)j - 2 
»!(c*) 

= V2 - 2s . 

In the interval (bfc, ak+i) there exist two subintervals [cfc, Jfc], [/fc, gk~\, bk < ck < 

< dk < fk < gk < tffc+i, with the property that 

\u(dk) - u(ck)\ = ^J2 - 2e and \u(gk) - u(fk)\ ^ ^J2 - 2e , 

As |u'(r)| g 1/V2 + e for r > r0, we have 

(30) dk - ck = K d - ) - " ( _ _ _ _ _ > 1 

KOI _L + e~ 
V2 

and similarly 

(31) a , - A = l . 

At the same time 

(32) / (r) ^ e in [ck, dk~] as well as in [fk, ofc] . 

In view of (28), (29) and (30), (31), (32) we have 

- I ^ 4 r 3 / ( r ) d r - j ^ 4 r 3 / ( r ) d r = 0 
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and 
- Jffc 4r3 f(r) dr ^ - s j ^ 4 r 3 dr < -e . 

Hence 
- J£4r3/(r)dr- j£ + > 4r 3 / ( r ) dr < - e 

and by (26) we conclude 

00 

Z [ - ^ 4 r 3 / ( r ) d r - i r ' 4 r 3 / ( r ) d r ] = 
k = k0 

= lim yx(x) - y^X)) = - oo , 
:c->oo 

which contradicts (27), This contradiction completes the proof of Theorem 2. 

3. ASYMPTOTIC FORMULAE FOR THE SOLUTIONS OF (2) TENDING TO 0 

First we derive the estimates for the solutions from below. To this aim we need 
the following lemma. 

Lemma 4. Let 0 :g S < 1. Then the general solution z of the differential equation 

(33) z" + — - (1 - d)2 z = 0 
r 

is the function 

z(r) = c 1 - e - ( 1 ~ ^ + c 2 - e (1~* ) r, r > 0 
r r 

where cl9 c2 are arbitrary real constants, and hence its Cauchy function satisfies 

I t e ( l - < 5 ) ( r - t ) _ e - ( l - ^ ) ( r - t ) 
K& 0 = \—; z > ° 

1 — o r 2 

for 0 < t < r, 

The proof can be done by direct calculation. 
Suppose that u is a nontrivial solution of (2) on (a, oo) such that lim u(r) = 0. 

r->oo 

Then there is an r0 > a (without loss of generality we may assume that r0 > 1) 
such that 
(34) \u(r)\ < 1 for r0 = r < oo . 

It is easy to see from the equation (2) that u'(r) = 0 cannot occur in [r0, co) and 
thus we have two posibilities: 
either 

(35) w(r) > 0 , uf(r) < 0 , u"(r) > 0 in [r0, oo) 
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or 
u(r) < 0 , u'(r) > 0 , u'f(r) < 0 in [r 0 , oo) . 

Suppose that u(r) > 0 in [ r 0 , oo). The other case can be dealt with by considering 

the function — u which is also a solution of (2). 

By Lemma 4 u satisfies the equation 

(36) u(r) = A - e " r + B - e r - f K 0 ( r , t) u3(t) dt 
r r J r o 

where 

(37) K r o) = A - e~ r o + B - e r o = c 0 > 0 , 
r 0 r 0 

u'(V„) = Ae-> (-1 - i ) + B. f i - 4 ) = CІ < 0 . 

After simple calculations we get that 

A = ie r o [c 0 ( r 0 - 1) - cxr0] , 

^ = i e " r o [ c 0 ( r 0 + 1) + c V o ] -

Since r 0 > 1, c 0 > 0, cx < 0, we have that A. > 0. The inequality K0(r, t) > 0 and 

hence 

0 < ti(r) ^ A - e~ r + B - er , r ^ r0 

r r 

yield that B ^ 0. On the other hand, this implies that c0(r0 + 1) + c ^ ^ 0 which, 

on the basis of (37), is equivalent to the inequality 

u'(r0) _ r0 + 1 

w(r0) 

But we can vary r 0 and thus we obtain the inequality 

(38) ___) ^ _ i _ i for all r ^ r 0 . 
u(r) r 

By integrating (38) we prove the following lemma. 

Lemma 5. If u is a nontrivial solution of the equation (2) in (a, oo) with the 

property lim u(r) = 0, then there is an r0 > max ( l , a) such that for all r ^ r 0 

r-*oo 

sgn u(r) + sgn u'(r) + sgn u"(r) 

and 

w(r) ^ u(r 0) r 0 e r o - e~r if u(r) > 0 in [r 0 , oo) 
r 
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u(r) ^ u(r0) r0ero - e r if u(r) < 0 in [r0, oo) . 
r 

Let 0 < (5 < 1. As the equation (2) can be written in the form 

tt" + f ! i - (i - \ 5 ) 2
 M = M - (l _ s)2 u - u 3 , 

r 

u satisfies the equation 

u(r) = A1ie-(1-a)r + B1-e
(1-^)r + 

r r 

+ JJ. X/r,r)[(l - (1 - *)-)«(0 - «»(r)]di. 

Let |u(r)| < 1 in [r0, oo), u(r) > 0, ur(r) < 0 in the same interval. Then there exists 
an r t > r0 such that 

[1 - (1 - S)2) u(r) - u3(r) > 0 for all r ^ rx . 

This implies that 

(39) u ( r ) > A 1 - e - ( 1 - a ) r + B1ie
(1^)r, r ^ rt . 

r r 
Further, 

(40) 11(1-,) = A, 1 e - ( 1 " 5 ) r i + B, 1 e ( 1"5 ) r i = d0 > 0 , 
ri r< 

+ uXrO-^A .e-^-^^- 1 - 1 ( 1 - ^ 

+ Bie
(1-^/'- i + 1 ( 1 - <5)) = d, < 0 . 

After some calculations we get the relation 

Ai = ^r~r^ W ^ 1 - 5 ) - 0 - -Vd e(1^)ri > o, 
2(1 - &) 

because d0 > 0, dA < 0 and rt can be taken sufficiently great. 
Further, 

(41) Bt = — ^ ld0(rt(l -5)+l) + dtrt] e ^ 1 ^ " . 
2(1 - 5) 

By (39) we obtain that 

1 > u(r) > A, i e - ( 1 - a ) r + Bt-^
x~s)r, r>zrt. 

r r 
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hence Bx ^ 0. On the basis of (40), (41), the last inequality is equivalent to the 
inequality 

___) < _ U _ 8 + 1 
u(ri) 

As we can vary r l 5 we come to the inequality 

Җ á - ( ( l - * ) + i ) , гSìг, 

and integrating we conclude that 

tt(r)^tt(r1)r1e
(1~5)ri-e-(1-5)r

: 
r 

Hence the following lemma is true. 

Lemma 6. If u is a nontrivial solution of the equation (2) in (a, oo) with the 

property lim tt(r) = 0, then there exists an r\ _ r 0 > max (l, a) where r 0 was 
r-* oo 

determined in Lemma 5, suc/i that 

(42) t/(r) g tt^^r^'-^-e^1-^, r _ r x if tt(r) > 0 in [r 0 , oo) , 
r 

and 

u(r) ^ u(r x) r - e ( 1 - ' ) r i - e - ( 1 - ' ) r , r ^ rx if u(r) < 0 in [r 0 , oo) . 
r 

R e m a r k . Lemma 5 and Lemma 6 describe the asymptotic behaviour of the 

solution tt of (2) which tends to 0 as r -> oo. The estimate (42) can be improved. 

To this aim we write (36) in the form 

u(r) = i e " ' (A + i J r o te' u3(*) dr) + i e'(B - i J r 0 te- u3(r) dr) . 
r r 

Further, 

B - i | r o te- u 3 (0 dr = _ - i /• r e - u3(r) dr + 

+ i |r°° te-' u3(.) dr = B - a + i J * te-' u3(r) d r . 

As 

1 r r 1 r°° 
lim tt(r) = lim fer tt3(t) df = lim tef w3(f) dt - 0 , 

r->oo r-oo2rerJro r-oo2re r J r 

the equality B — a — 0 must be valid and hence the modified form of (36) is 

(43) tt(r) = - e~ r(A + \ \r

ro te u\i) df) + - er \ Jr°° t e " ' tt3(f) df. 
r r 
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Г tê uҢђdt ѓc3ľ -2 ť'3{l-å),át = c3 Г 
J г i Jr i ^ • J Гi 

e ^ 2 ř + 3 á ( d ř , r ^ r , 

Further, on the basis of Lemma 6 we have that 

1 

t 

and the last integral is convergent as r -> oo if 5 ^ §. Then 

| £ te' u3(t) dt = i £ te* u3(t) d t - i Jr°° te< u3(t) d t , 

and the following lemma is true. 

Lemma 7. If u is a nontrivial solution of the equation (2) in (a, oo) with the 
property lim u(r) = 0, then there exists a constant A2 such that u satisfies the 

integral equation 

(44) u(r) = A2 - e~r + Jr°° K0(r, t) u3(t) d t . 
r 

To investigate the existence of a unique solution of (44) we begin with the following 
lemma. 

Lemma 8. Let 0 < 5 < f, K ^ A2 > 0, r2 ^ K3/(2A2) and Jet 

£ = \u e C([r2, oo)): 0 ^ u(r) ^ - e ^ 1 " ^ , r2 <> r < co 1 . 

Then the operator T defined in E by the relation 

(45) Tu(r) = A2 - e~r + Jr°° K0(r, t) u3(t) d t , r2 ^ r < oo , ueE 
r 

maps E into E and is antitone. 

Proof. As 6 < | , for each u e E the integral Jr
0 u

3(t) e't dt converges as r -> oo, 
hence Tis well defined and the function Tu is continuous. As K0(r, *) < 0 for t > r, 
Tis antitone in K, that is if uu u2 e E and 

M-i(r) ^ «2(r) for all r ^ r2 , then T u ^ r ) ^ Tu2(r) 

in [r2, co). 

Further, 

(46) T(0) = A2 i e" r g - e~r+<5r, r2 ^ r < oo , 
r r 

and 

(47) 
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if and only if 

i^3 /»oo 1 JT3 f 0 0 1 1 
— e - r l i e - 2 , + 3 ó ' d í - — e r - e - 4 t + 3 á , d ř á A 2 - e " r , 
2r J r í2 2r J r t2 r 

The left-hand side of the last inequality is smaller or equal to 

r з ñoo л кó ľ00 1 K 
e 

/•oo i K3 ґ°° J 
-г i - 2 ř + 3 d ř d ř < f _ . e - r _ 

J r *2 " 2r J r t 
dt = — - e " 

2 r ~ J r t 2 ~ ~ 2r J r t 2 2r2 

Hence (47) will be satisfied if 

K _ r . _ 1 - r — e r < A2-e 
2r 2 - 2 r 

and this is true for all r ^ r 2. As Pis an antitone mapping, (46) and (47) imply 
T(E) c E. 

In C([r2, oo)) consider the sup-norm | j- | | . Then the following lemma holds. 

Lemma 9. IfO < S < _• and r 2 __ K3/2A2 is sufficiently great, then the operator T 
given by (45) is contractive in E. 

Proof. Let u, v e E. Then |u2(l) + u(t) v(t) + v2(t)| __ (3K2/t2) e ~ 2 ( W ) < , r 2 __ 
__ t < co and hence 

1JC2 

\T(u)(r) - T(v)(r)\ S \? W t , t)| ~~ e" 3«->« dfflu - »| , 

r 2 ___ r < co . 

As limf(K 2/r) J r °°( l/r)e- '- p + 2 ^df = 0 in view of the inequality 5 < _-, there 
r-»oo 

exists an r 2 __ K3/2A2 such that for all r __ r 2 the last expression is smaller than 1 
and hence Fis contractive. 

Finally we prove a theorem which improves the result by G. Sansone in Theorem 5, 
[5], p. 18. 

Theorem 3. For each nontrivial solution u of the differential equation (2) with 
the property lim u(r) = 0 there exist numbers r2 > 1, 0 < A3 < A2 such that 

I—"• 00 

(48) A 3 i e - ^ |u(r)| _ _ A 2 i e " r , r __ r2 . 
r r 

Proof. We know that there exists an interval [r 0 , co) such that either u(r) > 0 
holds in this interval or u(r) < 0 in [r 0 , co). Consider only the case (35). Lemma 5 
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gives an estimate from below 

u(r) ^ A3 - e~ r , r 0 ^ r < oo 
r 

while Lemma 6 yields an estimate from above 

u(r) ^ K - e ~ ( 1 ~ ^ ) r , rt ^ r < oo . 
r 

Lemma 7 says that u is a fixed point of the operator T As u e E and by Lemma 9 Tis 
contractive in E when r 2 is sufficiently large, u is the unique fixed point of this operator 
and the method of successive approximations is applicable. Since T is antitone, the 
inequalities 0 ^ u(r) = (K/r) e~ ( 1 ~d)r yield the estimates u = Tu g T(0) = 
= A2(i\r) e~ r for all sufficiently large r. Hence (48) is true and the theorem is proved. 

Lemma 8 and Lemma 9 imply the following theorem. 

Theorem 4. There exists an uncountable one-parametric system of solutions u 
of the equation (2) with the property 

(49) lim u(r) = 0 . 
r-»oo 

Proof . Let A2eR and consider the integral equation (44). If A2 > 0, then in 
Lemma 8 we choose K = A2, 3 = \ and r 2 ^ A\\2 sufficiently large. By this lemma 
the operator T defined by (45) maps E into itself. From the proof of Lemma 9 it 
follows that the operator Tis contractive if r 2 has the property 

[>-' ^ e - ' 2 | - e - ' / 2 d ř < l . 
lr-, 

Then the equation (44) has a unique solution in E and hence it satisfies the in­
equalities 

(50) 0 g u(r) S — e " 3 / 4 r , r 2 ^ r < oo . 
r 

The same conclusion holds if A2 < 0. In this case the proof proceeds similarly with 
the only exception that E = {u e C([r2, oo)): 0 ^ u(r) ^ (A2\r) e~ 3 / 4 r , r2 <^ r < oo}. 
If A2 = 0, then (44) has a trivial solution in (0, oo). 

Let A2 > 0. By (50) it follows that 0 S (r/2) e r w3(r) ^ (A2/2r2) e~ 5 / 4 r in [r 2 , oo) 
and therefore J*̂  (t/2) e f u3(t) dt exists and the integral equation (44) can be written 
in the form 

u( r) = ÍA2 - Г - e' u3(t) dЛ - e-r 

+ 
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Г 0 0 t 1 Г г 

- e _ í uъ(t) át-ď - KQ(r, t) uъ(t) át , 
J r 2 2 r J Г 2 

+ 
' Г2 

r2 = r < °° • 

By virtue of Lemma 4 u is also a solution of the differential equation (2) which 

satisfies (49). 

4. ZEROS OF THE SOLUTIONS OF (2) 

Denote by u(% a) the solution of the initial value problem (2), (3) in [0, oo). By 

Corollary 1 it exists and is uniquely determined by a. With help of Lemma 4 we 

get that it satisfies the integral equation 

(51) u(r) = - - — - ľк0(r, t) u3(t) dř , 0 
2 r Jo 

< r < 00 . 

Conversely, if u e C([0, oo)) is a solution of (51), then it satisfies the initial value 
problem (2), (3) in [0, oo). 

Similarly, if we write (2) in the form 

2u' , 
u H = u — u 

we get that u' = u'(*, cc) satisfies the integral equation 

(52) u'(r) = \ f > [ u ( 0 - u 3 ( 0 ] d t ) 0 
' J o 

< r < СO 

and hence 

2 «'(;•) 
l i m = lim i(u(r, a) — uъ(r, a)) = | ( a — a 3) . 

r-^0+ r r-+0 + 

Putting this result into (2) we get u(-, a) has the second derivative at 0 and 

u;/(0, a) = lim u"(r, a) = | ( a — a 3) . 
r--+0 + 

By means of these considerations we prove the following theorem. 

Theorem 5, The solution u = u(r, cc) of the initial value problem (2), (3) con­

tinuously depends on a on each compact interval [0, r 0 ] , r 0 > 0. In other words, 

V a« -"* cc for n -> oo, then the sequences {u(*, ccn)\ and {u'(*, a.,)} converge locally 

uniformly to u(*, a) and u ' ( ' , a), respectively, in the interval [0, oo). 
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Proof . It suffices to show that the above mentioned convergence is uniform on 

each compact interval [0, r 0 ] . Let F be the function determined by (8), Since the 

sequence F(u(0, a„), u'(0, a,,)) = \an— \a\ is bounded, and by (10) the functions 

E(u(i\ a,,), u'(r, ocn)) are nonincreasing in the variable r, the curves (u{i\ an), u'(r, an)), 

O ^ r ^ r 0, lie in a compact set. Thus the sequences {u(r, a,,)}, {u'(r, a„)} are 

uniformly bounded in [0, r 0 ] and from (52) it follows that the sequence {(2u'(r, a„)/r} 

has the same property. By (2) we finally get that {u"(i% a,,)} is uniformly bounded 

in [0, r 0 ] , too. The Ascoli theorem then gives that there exists a subseuence {a„k} 

of the sequence {art} such that the sequences {u(r, ank)} and {u'(r, a„k)} converge 

uniformly in [0, r 0 ] to the functions v and v', respectively. 

By (51) we have 

иfr O - ~Г ^—-^- - ľк0(r, t) iŕ(t, aПk) át, 0 
2 r J 0 

< Г й Гn 

The limit process leads to the relation 

, ( r ) - « _ _ J _ _ _ L : __ f r

X o ( r > t) v*(t) d t 9 o < r g r 0 . 
2 r J 0 

By the uniqueness of the solution of the initial value problem (2), (3) we get that 

v(r) — u(r, a), 0 _̂  r :g r 0. Since each subsequence of the sequence {u(r, a„)} has 

a subsequence, say {u(r, aWm)}, such that the sequences {u(r, a,Jm)| and {u'(r, a^)} 

converge uniformly on [0, r 0 ] to the same functions u(r, a) and u'(r, a), respectively, 

the whole sequences {u(r, a,,)} and {u'(r, a,,)} converge uniformly on [0, r 0 ] to the 

functions u(r, a) and u'(r, a), respectively. The proof of the theorem is complete. 

By Theorem 2, there exists lim u(r, a) = 1(a) e { — 1, 0, 1}. Denote 
r->oo 

N_t == {ae R: lim u(r, a) = — 1} , 
r-> oo 

N! = {a G R: lim u(r, a) = 1} , 
r-+ oo 

\ 
N0 = {a G R: lim u(r, a) = 0} . 

r-*oo 

Clearly K = N_t u Nx u N0, O e N 0 and NtnNj = 0 for i += j , i,je{-l,0, 1}. 

If u is a solution of (2), — u is also a solution of this equation. Hence aeN1(aeN-1) 

implies that —aeN_1 ( — ae Nt) and a e N0 iff' — a e N0. Further properties of the 

s e t s N . ^ N i , N0: 

1, The sets N_l5 Nx are Open (in R). 

Proof. We only prove that N_x is open. Similarly the openness of N1 can be 

proved. Let a 0 e N«x. Then there exists an r 0 > 0 such that the trajectory (u(r, a 0), 

u'(r, a0)) of the solution u(r, a0) lies in the interior of the left curve F(x, y) — ct 
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for a cl9 — £ < cx < 0, for all r ^ r0. By Theorem 5 this implies that for a suf­
ficiently small e > 0 there exists a d = <5(r0, e) > 0 such that for all a, \a - a0\ < 5 
we have |w(r, a) - w(r, a0)| < e, |w'(r, a) - w'(r, a0)| < e in [0, r 0 ] . Hence for 
these a — s, the point (w(r0, a), w'(r0, a)) also lies in the interior of the left curve 
E(x, y) = ct and therefore lim u(r, a) = — 1 for a, \a — a0| < 5. 

2. (0, V2] <= N1# 

Proof. If a e (0, *J2], then the initial point (u(0, a), u'(0, a)) of the trajectory of 
the solution u(r, a) lies in the interior (or on the boundary if a = *J2) of the right 
part of the curve E(x, y) = 0 and, since E(u(r, a), u'(r, a)) is decreasing in r, the 
cases lim u(r, a) = 0 and lim w(r, a) = — 1 cannot occur. By Theorem 2 the only 

r-* oo r-*oo 

possibility is that lim w(r, a) = 1 and hence aeN1. 
r-> oo 

The statement 2 implies 

3. [ - V 2 ? 0 ) c N _ 1 . 

Due to the uniqueness of the initial value problem for the equation (2), if 
lim u(r, a) 4= 0, then u(r9 a) has only finitely many zeros, or no zero. By Theorem 3 
r-> oo 

the same is true for nontrivial solutions w(r, a) with lim u(r, a) = 0. Hence it makes 
sense to define a function r~+0° 

, n : ( - c o , 0 ) u ( 0 , oo) ~> R 

by the relation 

n(a) is the number of zeros of the solution u(r, a) . 

The following statement is true. 

4. The function n is constant on each component of the set Nt and on each 
component of the set N_l. 

Proof. We prove the statement only for N1# For N_x it could be proved analo­
gously. The open set Nt consists of at most countable many components which are 
open intervals by the statement 1. Let (a, b) be such an interval. We assert: The 
function n is continuous in (a, b). Indeed, if a0 e (a, b), then lim w(r, a0) = 1 and 

r-»oo 

there exists a point r0 > 0 such that the point (u(r0, a0), u'(r0, a0)) of the trajectory 
of the solution u(r, a0) lies in the interior of the right curve E(x, y) = c1 for a cl9 

— i<c1 < 0. By Theorem 5 it follows that for all a sufficiently close to a0 the graph 
of the solution w(r, a) lies in an e-neighbourhood of the graph of the solution u(r, a0) 
on the interval [0, r 0 ] , and the point (w(r0, a), u'(r0, a)) also lies in the interior of the 
right curve E(x, y) = ct. This implies that neither w(r, a0) nor u(r, a) has a zero in 
the interval (r0, oo). By the fact that the local maximum of the solutions u(r, a) lies 
in the set (—1, 0) u (1, oo) while the local minimum of these solutions belongs to 
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the set (—00, — 1) u (0, 1), as well as by the fact that the graphs of the solutions 
u(r, a) are near to the graph of u(r5 a0) it follows that u(r, a) have the same number 
of zeros in [0, r0] as the function u(r, a0). Hence n(a) = n(a0) for all a sufficiently 
close to a0. This implies the continuity of the function n in (a, b) and, as this function 
attains only values from the set of nonnegative integers, we get that it is constant 
in (a, b). 

From the proof of the statement 2 we get the following statement. 

5. The equality n(r) = 0 holds in (0, V2] u [ - V 2 , 0). 

Using again the continuity of u(r, a) with respect to a we come to the next state­
ment: 

6. If a0 #= 0, then there exists a 8 = S(a0) > 0 such that 

n(a) = n(a0) for each a e (a0 — 5, a0 + 5) . 

In other words, the function n is lower semicontinuous. 

7. Let a > 0 (a < 0). Then 

a e N ! implies that n(a) is even (n(a) is odd) . 

a e N _ j implies that n(a) is odd (n(a) is even) . 

On the other hand, 

n(a) is even (n(a) is odd) gives that a e Nt u N0 . 

n(a) is odd (n(a) is even) gives that a e N_! u N0 . 

Suppose that a 4= 0. If u(-, a) attains a local maximum (a local minimum) at 
r0 = 0, then by the equation (2) either u(r0, a) = 1 or — 1 = u(r0, a) < 0 (either 
u(r0, a) 5j —1 or 0 < u(r0, a) = 1). Since the function E(u(*, a), u'(m, a)) is non-
increasing, we conclude that if E(u(r0, a), w'(r0, a)) = 0, then u(#, a) has no zeros 
in [r0, oo) and either lim u(r, a) = 1 or lim u(r, a) = — 1. Thus the following state­
ment is true: r~>0° r "°° 

8. Suppose that a 4= 0. If u(*, a) attains a local maximum at r0 _̂  0 and 

1 = u(r0, a) = V2 ( - 1 S u(r0, a) < 0) , 

then u(% a) has no zeros in [r0, oo) and aeNt ( a e N _ t ) . 

Further, if u(*, a) attains a local minimum at r0 = 0 and 

-J2 = u(r0, a) _J - 1 (0 < u(r0, a) = 1) , 

then u(', a) has no zeros in [r0 , oo) and a e N_, (a e Nx). 

Theorem II in [4], p. 479, implies the existence of a sequence {afc}^°=1 such that 
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u(',ank) has exactly fc — 1 zeros in (0, oo) and lim u(r,cck) = 0, hence <xkeN0 
r-+oo 

and n(otk) = fc — 1, fc = 1,2, . . . . Theorem 4A in [ l ] , p. 86, asserts that there 

exists at most one value a1 with the above mentioned property. The numerical 

evaluation of some ak can be based on the following theorem. 

Theorem 6. If 0 < a < a and n(oc) 4= n(a), then there is a0 e [a, a] such that 

lim u(r, a0) = 0 . 
r-»oo 

Proof. If at least one of the numbers a, a belongs to N0, the theorem is true. If 

both a, a e N i U N _ i , then in view of the statement 4, a, a belong to different 

components of NiUN_t which are disjoint open intervals. Hence there exists 

an a0 e (a, a) from the complement of Nx u N_t, i.e. a0 e N0. 

Remark . The values of the function n can be calculated with the help of the 

statement 8. 
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Suhrn 

O NIEKTORtCH VLASTNOSTIACH R I E S E N I DIFERENCIALNEJ ROVNICE 

2u' 3 

u" -j -= u — u 
r 

VALTER SEDA, JAN PEKAR 

V praci sa dokazuje, ze kazde riesenie u(r, oc) zaciatocnej ulohy (2), (3) ma konecnii limitu, 
ak r - > oo a urceny je asymptoticky vzorec pre netrivialne riesenie u(r, a) iduce k 0. Dalej sa 
existencia takehoto riesenia dokazuje pomocou skumania poStu korenov dvoch roznych rieseni 
u(r, a), u(r, a). 
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